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On the Integral Identities Consisting of
Two Spherical Bessel Functions

Cheng-Wei Qiu, Le-Wei Li, Saïd Zouhdi, Tat-Soon Yeo, and
Qun Wu

Abstract—When deriving dyadic Green’s functions for the spherical
structures with gyrotropic or bianisotropic materials, an integral whose
integrand function consists of two spherical Bessel functions and a power
function needs to be evaluated. Therefore, this paper revisits thoroughly
the evaluation of the integral of ( ). Starting from pointing
out an error, it provides the correct solution to the integral in spherical
coordinates in terms of distribution, in particular, step functions and delta
functions. The formulation is further extended to a more generalized
integral ( ); and it is newly found that the solution to the
generalized integral varies differently in the cases of even and odd values
of . The mistakes that we found in the previous literature can also be
proved easily by some of our intermediate solutions.

Index Terms—Bessel function, bianisotropic metamaterials, dyadic
Green’s functions (DGFs), electromagnetic field.

I. INTRODUCTION

The dyadic Green’s functions (DGFs) [1], [2], as a mathematical
kernel, relate directly the radiated electromagnetic fields and the
source distribution, and this constitutes the basis of the integral equa-
tion methods (including the method of moments and the boundary
element method). During the procedure of formulating the dyadic
Green’s functions for spherical structures with isotropic materials [3],
chiral materials [4], and especially uniaxial anisotropic materials [5],
the series of integral identities discussed in the present paper will
not be encountered since the off-diagonal elements are zero in the
material’s parameter tensors. However, for the research of complex
media and metamaterials (in which the bianisotropic effects will arise
[6]), the problems of evaluation of the following integrals should
be envisaged. This series of integrals is a key step in theoretically
formulating the dyadic Green’s functions for composite materials
with bianisotropic properties (i.e., ���, ���, ���, and ��� , where ��� and ��� are
magnetoelectric pseudo-dyadics). Hence, due to the existence of
off-diagonal elements, the Ohm-Rayleigh method can not be applied
dierctly. When we use the vector eigenfunction expansion technique
[1] for bianisotropic materials, the following integral consisting of
spherical Bessel functions will be encountered:

H
(�)
l;l

(�; �0) =

1

0

jl(�r)jl (�
0

r)r��+1
dr (1)

where jl(�r) denotes the spherical Bessel function of the first kind
and l, l0 and � are three integer numbers which may and may not be
the same.
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These integrals consisting of two Bessel functions are important and
critical not only for engineers who calculate the electromagnetic fields
and conduct antenna designs such as loop and aperture antennas, an-
tenna radomes and radiation of antennas [7], [8] associated with the
spherical layered structures [9], but also for physicists of atomic re-
search who wish to characterize the periodic lattices of spheres [10],
atomic interactions such as collisions, scatterings and quadrupole mo-
ments [11], [12]. In previous literature, due to the simplicity of the ma-
terial parameters, these identities of integrals have not been envisaged.
However, for the formulation of DGFs for bianisotropic media and for
the antenna design involving bianisotropic metamaterials, these inte-
grals have to be properly solved because Ohm-Rayleigh method can
not be applied directly and all the exsiting integral identities are inca-
pable to evaluate the current problem.

Hence, these integrals investigated in our paper are significantly
important for the research of obtaining the dyadic Green’s functions
of composite materials with bianisotropic effects, characterizing the
macroscopic performance of bianisotropic metamaterials, and studying
of multipole moments of two- or three-body systems such as 6He
and 6Li. The � will be varied in order to cater for the different types
of the particles considered. Finally, we gave the corrected solution to
the integral H(0)

l;l
(�; �0) in [13] [the starting point of analyzing (1)],

extended to a generalized problem, and made further explanation on
[14]. In Section II, we made further derivation based on the results of
Whelan. In the following section, proper solutions and generalization
are presented.

Although Watson has discussed the integral 1

0

J�(at)J�(bt)t�� dt, it actually bears the similar form as in
(1). Its validity is only under the following convergence conditions:

Re(� + � + 1) > Re(�) > �1; a 6= b

Re(� + � + 1) > Re(�) > 0; a = b.

Moreover, most of the solutions in [14] were expressed in terms of
hypergeometric functions, where the continuity (or discontinuity) has
not been stated clearly and the Delta functions’ presence (or absence)
did not appear in all the derivations. This paper will not, therefore,
follow directly Watson’s results. Instead, we will revisit the integral in
(1) when � = 0 and consider the Delta impulse and continuity. Based
on that, (1) when � = 1; 2; . . . can be calculated subsequently.

II. IMPROPER SOLUTIONS IN [13]

A general integral consisting two spherical Bessel functions and a
power function as defined in (1) can be reduced to the following form:

H
(�)
l;l

(�; �0) =

1

0

jl(�r)jl (�0r)r��+1dr

=
p

 L�p(�; l; �0; l0)

�
1

0

r��+1dr

1

�1

jl(hr)h��Pp(�)d�

=
p

 L�p(�; l; �0; l0)

�
1

�1

Pp(�)

h2
d�

1

0

j�(t)t��+1dt (2)

where the Pp(�) denotes a Legendre function of the first kind and
of the order p, h = 2��0(� � �) and � = (�2 + �02)=2��0 , and
 L�p(�; l; �0; l0) is a function defined in [15].

In order to rewrite (2) more compactly, some identities will be
introduced

1

0

j�(t)t��+1dt =
�

2

1

0

J�+ (t)

t��
dt (3a)

1

0

J�(t)

t���+1
dt =

�(�=2)

2���+1�(� � �=2 + 1)
(3b)

where jl(t) and J�(t) stand for the spherical Bessel function of order
l and cylindrical Bessel function of order � , respectively. After some
manipulations, we can rewrite (2) as follows:

H
(�)
l;l

(�; �0) =

1

0

jl(�r)jl (�0r)r��+1dr

=
1

��0
p

 L�p(�; l; �0; l0)Qp(�)

�
p
�

2��(� + 1=2)
(4)

where Qp(�) denotes the Legendre function of the second kind, and it
satisfies the following form:

Qp(�) =
1

2

1

�1

Pp(�)

�� �
d�: (5)

When � = 0, we note that

 L0p(�; l; �0; l0) =
1

2
�pl�pl (6)

which has been given by [15]. Substituting (6) into (2), we obtain

H
(0)
l;l

(�; �0) =
0; l 6= l0;
1

2��
Qn(�); l = l0 = n

(7)

which is yielded from Whelan’s solution. Let us first introduce some
classical identities as follows:

@jn(�r)

@�

= � jn(�r)

2�
+

r

2
[jn�1(�r)� jn+1(�r)] (8a)

@jn(�r)

@r

=
�

2n + 1
[njn�1(�r)� (n + 1)jn+1(�r)] (8b)

@ [rjn(�r)]

@r

=
�r

2n + 1
[(n + 1)jn�1(�r)� njn+1(�r)] (8c)

jn(�r)

=
�r

2n + 1
[jn�1(�r) + jn+1(�r)] (8d)

1

0

jn(�r)jn(�0r)r2dr

=
��(�� �0)

2��0
: (8e)
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If we consider H(1)
n;n(�; �

0) and utilize (7) with (8), we have

H(1)
n;n(�; �

0) =

1

0

jn(�r)jn(�
0r)dr

=
�

2n+ 1
�

1

0

jn�1(�r)jn(�
0r)rdr

+

1

0

jn+1(�r)jn(�
0r)rdr

=
�

2n+ 1
H

(0)
n�1;n(�;�

0) +H
(0)
n+1;n(�; �

0)

= 0 (9)

which is obviously incorrect because 1

0
jn(�r)jn(�

0r)dr is not nec-
essarily zero [14].

It can be observed that there is a limitation of rewriting (2) from inte-
gral form into the summation form [15], that is, � can not be zero. The
mistake in previous work resides in applying (6) in (2). Since there is
no other report discussing this problem and this problem is important
in formulation of dyadic Green’s functions for bianisotropic metama-
terials, it thus motivates our objective of proposing a new method to
evaluate H�

l;l (�; �
0) from � = 0.

III. PROPER SOLUTIONS TO THE INTEGRAL OF H
(0)
l;l (�; �

0)

In this section, we show the significant differences of the solutions
to the integral H(0)

l;l (�; �
0) when l� l0 is even or odd. The results then

fall into five categories:
1) l = l0 = n;
2) l � 1 = l0;
3) l + 1 = l0;
4) Even l � 1� l0 but l � 1 6= l0: a) l � 1 > l0; b) l + 1 < l0; and

c) l � 1 < l0 < l + 1; and
5) Odd l � 1 � l0 where (l 6= l0).
Before the subsequent exact derivation, we consider the following

identity, which will be employed in the near future:

Il;l (�; �
0) =

1

0

jl(�r)jl (�
0r)r2dr: (10)

Although this integral does not converge into a finite value, it can be
expressed in terms of distributions, in particular, step functions and
Dirac delta functions. Starting from [14], we consider Icl;l (�; �

0) with
a convergence factor c which can be sufficiently small so as to evaluate
Il;l (�; �

0)

Icl;l (�; �
0)

=

1

0

jl(�r)jl (�
0r)r2�cdr

=
�

2
p
��0

1

0

Jl+ (�r)Jl + (�0r)r1�cdr

=
2�c��l<

�l +3�c
>

� [(l+ l0 + 3� c)=2]

�(l0 + 3=2)� [(l� l0 + c)=2]

� 2F1
l+l0+3�c

2
;
l�l0�c

2
+1; l0+

3

2
;
�2<
�2>

(11)

where �> = max(�; �0) and �< = min(�; �0).
� > �0 > 0 is assumed to maintain the convergence and 2F1 is

the hypergeometric function [16]. Using those important properties of
Icl;l (�; �

0) and hypergeometric functions formulated in Appendix, we
can rewrite (10), for even l � l0, given for l l0 as follows:

Il;l (�; �
0)

=
gl;l (�; �

0)U(���0)+ �
2��

(�1)(l�l )=2�(���0)

gl ;l(�
0; �)U(�0��)+ �

2��
(�1)(l �l)=2�(���0)

(12)

where the function of gl;l (�; �
0) has also been given in Appendix so

that gl ;l(�
0; �) can be obtained straightforwardly by exchanging l with

l0 and �with �0, and the functionU(���0) denotes a unit step function
defined by

U(�� �0) =
1; � > �0

0; � < �0.
(13)

On the other hand, the form of the result of Il;l (�; �
0) for l� l0 odd is

given below

Il;l (�; �
0) = gl;l (�; �

0)U(�� �0) + gl ;l(�
0; �)U(�0 � �): (14)

The factor of (�1)(l�l )=2 is due to the asymptotic assumptions for
large arguments of Bessel functions [17] when � is very close to �0 and
the detailed procedures of this near-region method were well presented
by Qiu et al. [18]. In addition, the identity of (8d) will be widely used
in the following derivations.

A. Integral for l = l0 = n

Substituting (8d) into (1), we have

H(0)
n;n(�; �

0) =
�

2n+ 1
In�1;n(�;�

0) + In+1;n(�; �
0) : (15)

After some manipulations, we arrive at

H(0)
n;n(�; �

0)

=
�

2n+ 1
gn�1;n(�;�

0) + gn+1;n(�; �
0) � U(�� �0)

+ gn;n�1(�
0; �) + gn;n+1(�

0; �) � U(�0 � �) : (16)

B. Integral for l � 1 = l0

Substituting (8d) into (1), we have

H
(0)
l;l (�; �

0) =
�

2l+ 1
Il�1;l�1(�; �

0) + Il+1;l�1(�; �
0) : (17)

Using the identities given in this section, we arrive at

H
(0)
l;l (�; �

0) =
�

2l+ 1
gl+1;l�1(�; �

0)U(�� �0): (18)

In Fig. 1, one can see that the value of integral of H(0)
4;3(�; 3) is de-

caying along �. If � � �0 , it is zero which can be seen from (18).
It is also obvious that (7), which is the results in Whelan’s work, is

wrong since the value is not zero when l 6= l0.

C. Integral for l + 1 = l0

Substituting (8d) into (1), we have

H
(0)
l;l (�; �

0) =
�

2l+ 1
Il�1;l+1(�; �

0) + Il+1;l+1(�; �
0) (19)
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Fig. 1. An example of H (�; 3) versus �.

Using the identities given in this section, we obtain

H
(0)
l;l (�; �

0) =
�

2l+ 1
gl+1;l�1(�

0; �)U(�0 � �): (20)

D. Integral for Even l � 1 � l0 but l � 1 6= l0

Substituting (8d) into (1), we have

H
(0)
l;l (�; �

0) =
�

2l+ 1
Il�1;l (�; �

0) + Il+1;l (�; �
0) : (21)

1) l � 1 > l0: Expanding (21) in this condition, we have

H
(0)
l;l (�; �

0) =
�

2l+ 1
gl�1;l (�; �

0)U(�� �0)

+(�1)(l�1�l )=2�(�� �0)

+gl+1;l (�; �
0)U(�� �0)

+(�1)(l+1�l )=2�(�� �0)

=
�U(�� �0)

2l+ 1

� gl�1;l (�; �
0) + gl+1;l (�; �

0) : (22)

Note that the two parts of delta functions cancel each other.
2) l + 1 < l0: Expanding (21) under this condition, we obtain

H
(0)
l;l (�; �

0) =
�

2l+ 1
gl ;l�1(�

0; �)U(�0 � �)

+(�1)(l �l+1)=2�(� � �0)

+gl ;l+1(�
0; �)U(�0 � �)

+(�1)(l �l�1)=2�(�� �0)

=
�U(�0 � �)

2l+ 1

� gl ;l�1(�
0; �) + gl ;l+1(�

0; �) : (23)

3) l� 1 < l0 < l + 1: This category is actually the l = l0 that has
been discussed in Section III-A.

E. Integral for Odd l � 1 � l0

Expanding (21) under this specific condition, we have

H
(0)
l;l (�; �

0)=
�

2l+ 1
gl�1;l (�; �

0)+gl+1;l (�; �
0) U(���0)

+ gl ;l�1(�
0; �)+gl ;l+1(�

0; �) U(�0��) : (24)

Now, all the situations of the integral H(0)
l;l (�; �

0) have been con-
sidered, and their respective solutions are obtained. The forms of
H

(0)
l;l (�; �

0) are obviously different from the expression in [13]. If
l = l0 = n, according to the (A-6) and (12), we will arrive at

In;n(�;�
0) =

�

2��0
�(�� �0) (25)

which agrees with that in (8e). This result in delta’s form is also
identical with the proof in Mathematica of Wolfram Research, Inc.
Hence, the correctness of our present results can thus be verified
once again. By using the new solution of this paper, we can treat
1

0
jl(�r)jl (�

0r)rn dr with arbitrary values of l, l0, �, �0, and n.

IV. GENERALIZATION FROM H
(0)
l;l (�; �

0) TO H
(�)
l;l (�; �0)

After obtaining H
(0)
l;l (�; �

0) under different circumstances, we are

now able to evaluate the H
(�)
l;l (�; �0) in (1). By employing (8d), we

can move a step further as follows:

H
(�+1)
l;l (�; �0) =

1

0

jl(�r)jl (�
0r)r�(�+1)+1dr

=

1

0

� [jl�1(�r)+jl+1(�r)]

2l+1
jl (�

0r)r��+1dr

=
�

2l+1
H

(�)
l�1;l (�; �

0)+H
(�)
l+1;l (�; �

0) : (26)

Therefore, once the solution of H(0)
l;l (�; �

0) as an initial value is given
in Section II, we can evaluate subsequently (1) with an arbitrary pos-
itive non-zero �, in an iterative procedure. The details are suppressed
here due to the length restriction of the paper.

V. CONCLUSION

This paper presents a new evaluation of the integralH(0)
l;l (�; �

0)with
the delta impulses extracted out and considers all the cases with re-
spect to l and l0. Through evaluation of the integral H(0)

l;l (�; �
0), it

is found that the integral I0(�; l; �0; l0; 0) in [13] was incorrectly ob-
tained, mainly due to the limitation of the value of �. It is realized that
there exists a limitation of � � 1 in (2) and (3a). Although this condi-
tion was pointed out in [19], however, Whelan mis-adopted the solution
of Seaton in [15] where � could be zero, when evaluating the integral.
With the correct solutions of H(0)

l;l (�; �
0), we can obtain the integral

1

0
jl(�r)jl (�

0r)rndr when n � 0 using the procedures given in
Section IV, which will be of great use in DGF formulation and atomic
research as indicated in the introduction.

APPENDIX

In (11), letting c approach 0+, we can obtain the expressions for
Il;l (�; �

0)

Il;l (�; �
0) =

��l<

�l +3
>

� [(l+ l0 + 3)=2]

�(l0 + 3=2)� [(l� l0)=2]

�2F1
l+ l0 + 3

2
;
l � l0

2
+ 1; l0 +

3

2
;
�2<
�2>

: (A-1)

Note that the hypergeometric function 2F1 will encounter a complex
infinity when � = �0. That’s why the delta function is included in
final form of Il;l (�; �

0) even if l 6= l0 as in (12). Subsequently, the
expression for gl;l (�; �

0) can be formulated:

gl;l (�; �
0) = Il;l (�; �

0); � 6= �0 (A-2)
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Based on some special properties of hypergoemtric as stated in [20],
we further express the 2F1 in terms of Legendre polynomial and �
functions

2F1

l + l0 + 3

2
;
l0 � l

2
+ 1; l0 +

3

2
; z2

=
2(�1)l � 3

2
+ l0 �(p)�(p+ 1)p

�(1� z2)p�(q)�(q+ 1)
� dl

d(z2)l

� 2F1 p+ 1;
3

2
� p;

3

2
; z2 (1� z2)q (A-3)

where

p =
l� l0 + 1

2
; q =

l+ l0 + 1

2
; z =

�<
�>

(A-4a)

2F1 p+ 1;
3

2
� p;

3

2
; z2

= �
� p+ 1

2
�[2p� 1]�[1� p]

z
p
��[2p+ 1]

� d

dz
P2p�1(z): (A-4b)

Note that when l = l0 = n (namely, p = 1=2) we have

d

dz
P0(z) = 0: (A-5)

Hence, we have

gn;n(�; �
0) = 0 (A-6)

which results in the conclusion of (25).
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