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 Materials and Methods 

S1. APT-symmetric system for convective heat transfer 

The temperature distribution T(x,t) in a one-dimensional background with velocity v satisfies the 

convective-diffusion equation (26) 

𝜕𝑇

𝜕𝑡
= 𝐷

𝜕2𝑇

𝜕𝑥2
− 𝑣

𝜕𝑇

𝜕𝑥
,                                                      (S. 1) 

where D = /c is the diffusivity, is the thermal conductivity,  and c are the density and heat 

capacity of the media. The material properties are all assumed to be temperature-independent for 

simplicity. This equation is dissipative, due to the first-order time-derivative. However, the 

advection term introduces a wave-like behaviour given that, for D = 0, Eq. (S. 1) reduces to a first-

order wave (advection) equation. The eigenfrequencies of this system can be obtained by 

substituting 𝑇(𝑥, 𝑡) = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡), which results in: 

   𝜔 = −𝑖𝐷𝑘2 + 𝑣𝑘.                                                       (S. 2) 

For an arbitrary v, the system is dissipative with a complex eigenvalue, while the advection term 

gives rise to real eigenfrequencies with a linear dispersion (Fig. 1E). 

For the coupled two channel case, we write the plane-wave solution to Eq. 1 in the main text 

  (
𝑇1(𝑥, 𝑡)

𝑇2(𝑥, 𝑡)
) = (

𝐴1
𝐴2
) 𝑒𝑖(𝑘𝑥−𝜔𝑡).                                             (S. 3) 

Thus, we have the eigenvalue problem  𝜔 (
𝐴1
𝐴2
) = 𝐻 (

𝐴1
𝐴2
) , which leads to the effective 

Hamiltonian 

 𝐻 = (
−𝑖(𝑘2𝐷 + ℎ) + 𝑘𝑣 𝑖ℎ

𝑖ℎ −𝑖(𝑘2𝐷 + ℎ) − 𝑘𝑣
).                               (S. 4) 

As easily seen, H is APT-symmetric with the parity operator defined as 

𝒫 = (
0 1
1 0

),                                                             (S. 5) 

which swaps the two channels, while the time reversal operator 𝒯 represents complex conjugation.  
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For 𝑘2𝑣2 < ℎ2 , 𝜔±  are purely imaginary with eigenvectors 𝒖± = (𝐴1
±, 𝐴2

±)
𝑇
= (𝑘𝑣/ℎ ±

𝑖√1 − (𝑘𝑣/ℎ)2, 𝑖)
𝑇
. The fields in the two channels only differ by a phase, i.e., |𝐴1

±| = |𝐴2
±|. This 

scenario can be labeled as exact APT regime, given that under a proper normalization the 

eigenvectors preserve the symmetry of the Hamiltonian, i.e., 𝒫𝒯𝒖± = −𝒖± . Here, the 

eigenvectors can be written as 𝒖− = 𝑖(𝑒𝑖(𝜋−𝜙) 2⁄ , 𝑒−𝑖(𝜋−𝜙) 2⁄ )
𝑇
 and 𝒖+ = 𝑖(𝑒

−𝑖𝜙/2, 𝑒𝑖𝜙/2)
𝑇
 with 

𝜙 = sin−1(𝑘𝑣 ℎ⁄ ). The eigenstates can be gauged real by combining the forward and backward 

solutions:  (𝑇1, 𝑇2)
𝑇 = 𝑒−𝑖𝜔𝑡𝑒𝑖(𝜋−𝜙)/2[𝐴𝒖(𝑘)𝑒𝑖𝑘𝑥 + 𝐵𝒖(−𝑘)𝑒−𝑖𝑘𝑥]. When 𝐴 = 𝐵 = 1 , we get 

the two standing-wave solutions  

(𝑇1, 𝑇2) = 2𝑒
−𝑖𝜔𝑡(cos 𝑘𝑥 , ± cos(𝑘𝑥 ± 𝜙)).                                  (S. 6) 

The system reaches the exceptional point for 𝑘2𝑣2 = ℎ2 associated with the critical velocity 

𝑣EP = ℎ |𝑘|⁄ , where the two eigenstates coalesce to 𝑖(𝑒−𝑖𝜋 4⁄ , 𝑒𝑖𝜋 4⁄ )
𝑇
. When 𝑘2𝑣2 > ℎ2, anti-PT-

symmetry is broken, and the eigenvalues exhibit a finite real part according to Eq. 3 in the main 

text, which is now rewritten as 𝜔± = −𝑖(𝑘
2𝐷 + ℎ) ± √𝑘2𝑣2 − ℎ2. The corresponding eigenstates 

are 𝒖± = 𝑖(𝑒−𝑖𝜋 4⁄ 𝑒±𝜓 2⁄ , 𝑒𝑖𝜋 4⁄ 𝑒∓𝜓 2⁄ )
𝑇

, where 𝜓 = sgn(𝑘) cosh−1(|𝑘|𝑣 ℎ⁄ ) . Opposite to the 

previous case, there is a contrast between the eigenvector intensities in the two channels: while 

one eigenvector is mostly located in one channel, the other is located at the other channel. In 

addition, the two eigenstates involve a constant 𝜋 2⁄  phase difference between the two channels. 

We note that the APT symmetry of the eigenvectors is lost since the APT operation interchanges 

the eigenvectors: 𝒫𝒯𝒖± = −𝒖∓. The eigenstate of H is no longer an eigenstate of the PT operator 

and APT-symmetry is broken. One significant outcome of entering this symmetry-broken phase is 

that the eigenstates cannot be gauged to be real any longer, due to the rescaling coefficient 𝑒𝜓: if 

we still adapt the same gauge 𝐴 = 𝐵 = 1, which gives a real solution of T1, the eigenstate becomes  
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(𝑇1, 𝑇2) = 𝑒
−𝑖𝜔𝑡(2 cos(𝑘𝑥) , 𝑒−𝜓𝑒𝑖(𝑘𝑥+𝜋/2) + 𝑒𝜓𝑒−𝑖(𝑘𝑥+𝜋/2)),                 (S. 7) 

where in channel 2 the opposite waves have reciprocal amplitudes. The opposite waves in both 

channels cannot be balanced simultaneously. With the nonzero Re() or eigenfrequency, no 

standing-wave solution exists and movement of temperature profile can be found in at least one 

channel. 

It is worth noting the advantage of heat convection in studying APT symmetry: Re(𝜔±) and 

Im(𝜔±) are independently determined by the diffusive term (containing D) and advective term 

(containing v). Therefore, adjusting D and v allow independent control of the symmetric (non-

Hermitian) and anti-symmetric (Hermitian) parts of the Hamiltonian. The two channels with 

opposite direction of flow, have v’s with opposite signs. This is reminiscent of the simultaneous 

presence of both positive and negative energy solutions in relativistic quantum mechanics, where 

the negative energy solution may be considered as moving backward in time (31). Although 

moving media also introduce positive or negative frequency shifts on propagating waves (28, 32), 

these effects are not directly useful due to the originally nonzero frequency. Effects of moving 

media on heat conduction have been studied (29), but they have been mostly used to spatio-

temporally modulate the density and thermal conductivity, which induces non-reciprocity. We also 

note that in the relativistic regime, PT-symmetry breaking for electromagnetic waves in moving 

media has been considered (33), but the mechanism (34, 35) is different from ours. 

S2. Two-dimensional simulations of eigenmodes 

Eq. 1 in the main text is a simplified model for the 2D system in Fig. 1C. In a 2D Cartesian 

coordinate (x, y) with origin at the centre of the interface of thickness d and diffusivity Di, the full 

equation can be written as (26): 
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𝜕𝑇

𝜕𝑡
=

{
 
 
 

 
 
 𝐷 (

∂2𝑇1
𝜕𝑥2

+
∂2𝑇1
𝜕𝑦2

) − 𝑣
𝜕𝑇1
𝜕𝑥

,                   
𝑑

2
≤ 𝑦 ≤ 𝑏 +

𝑑

2

𝐷𝑖 (
∂2𝑇𝑖
𝜕𝑥2

+
∂2𝑇𝑖
𝜕𝑦2

),                              −
𝑑

2
< 𝑦 <

𝑑

2

𝐷 (
∂2𝑇2
𝜕𝑥2

+
∂2𝑇2
𝜕𝑦2

) + 𝑣
𝜕𝑇2
𝜕𝑥

,      − 𝑏 −
𝑑

2
≤ 𝑦 ≤ −

𝑑

2

, (S. 8) 

where Ti is the temperature field on the interface. The matching conditions is: 

 

{
 
 

 
 𝑇1 = 𝑇𝑖, 𝜅

𝜕𝑇1
𝜕𝑦

= 𝜅𝑖
𝜕𝑇𝑖
𝜕𝑦

,    𝑦 =
𝑑

2

𝑇2 = 𝑇𝑖, 𝜅
𝜕𝑇2
𝜕𝑦

= 𝜅𝑖
𝜕𝑇𝑖
𝜕𝑦

,    𝑦 = −
𝑑

2

 (S. 9) 

where i is the thermal conductivity of the interface. It is obvious that the effective Hamiltonian 

corresponding to Eq. (S. 8) and (S. 9) is also APT symmetric, when the parity operator 𝒫 is defined 

as the inversion in y-direction. The full equation is reduced to Eq. 1 in the main text by assuming 

that the temperature variance in y, i.e., ∂2𝑇/𝜕𝑦2 is negligible in the system. The boundary heat 

conduction following Eq. (S. 9) can be treated as a heat source term hs in the two channels. Thus 

 

𝜕𝑇

𝜕𝑡
=

{
 
 

 
 𝐷

∂2𝑇1
𝜕𝑥2

− 𝑣
𝜕𝑇1
𝜕𝑥

+
ℎ𝑠1
𝜌𝑐
,                   

𝑑

2
≤ 𝑦 ≤ 𝑏 +

𝑑

2

𝐷
∂2𝑇2
𝜕𝑥2

+ 𝑣
𝜕𝑇2
𝜕𝑥

+
ℎ𝑠2
𝜌𝑐
,      − 𝑏 −

𝑑

2
≤ 𝑦 ≤ −

𝑑

2

. (S. 10) 

The heat comes from the heat flux q normal to the y = ±d/2 boundary. When the channel width b 

is small, we can simply assume that the heat source is uniformly distributed along the channel 

width: hs = q/b, where 

 
𝑞1 = −𝜅

𝜕𝑇1
𝜕𝑦

= −𝜅𝑖
𝜕𝑇𝑖
𝜕𝑦

,    𝑦 =
𝑑

2

𝑞2 = 𝜅
𝜕𝑇2
𝜕𝑦

= 𝜅𝑖
𝜕𝑇𝑖
𝜕𝑦

,           𝑦 = −
𝑑

2

 (S. 11) 

Since the Ti is linear with y, we have ∂𝑇𝑖 𝜕𝑦⁄ = (𝑇1|𝑦=𝑑 2⁄ − 𝑇2|𝑦=−𝑑 2⁄ )/𝑑. Eq. (S. 10) turns out 

to be 
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𝜕𝑇

𝜕𝑡
=

{
 
 

 
 𝐷

∂2𝑇1
𝜕𝑥2

− 𝑣
𝜕𝑇1
𝜕𝑥

+
𝜅𝑖
𝜌𝑐

𝑇2 − 𝑇1
𝑏𝑑

,                 
𝑑

2
≤ 𝑦 ≤ 𝑏 +

𝑑

2

𝐷
∂2𝑇2
𝜕𝑥2

+ 𝑣
𝜕𝑇2
𝜕𝑥

+
𝜅𝑖
𝜌𝑐

𝑇1 − 𝑇2
𝑏𝑑

,    − 𝑏 −
𝑑

2
≤ 𝑦 ≤ −

𝑑

2

, (S. 12) 

where we assume little difference between T1 (T2) at the y = d/2 (y = −d/2) boundary and inside 

the upper (lower) channel, due to the small channel width. Eq. (S. 12) is just Eq. 1 in the main text 

if we define the heat exchange rate h = i (c)-1(bd)-1. 

Finite-element simulations were performed using COMSOL Multiphysics®. The medium is 

assumed to have the diffusivity 𝐷 = 100 mm2/s, which is much larger than common materials 

for convenience in studying and observing the transient behaviour of the system. The density and 

heat capacity are set as = 1000 kg/m3, and c = 1000 J/kg·K. The thin interface has thermal 

conductivity i = 1 W/m·K. The dimensions are set as 𝑎 = 100 mm, 𝑏 = 5 mm, and 𝑑 = 1 mm. 

For the convenience of study, we impose periodic boundary conditions at the two ends of the 

system and focus on the fundamental wave 𝑘 = ±𝑘0 = ±2𝜋/𝐿 = ±𝑎
−1, which corresponds to the 

smallest Im() or decay rate. Critical velocity is calculated as vEP = h/|k| = i (c)-1(bd)-1|k|-1 = 

2.0 cm/s.  

The post processing of the eigenstates was carried out as follows. In COMSOL, two 

eigenstates will be found for each eigenvalue, which are linearly independent vectors in the space 

spanned by the forward and backward solutions with wave numbers ±𝑘. Therefore, we can obtain 

a standing-wave solution for T1 (2𝑒Im(𝜔)𝑡 cos 𝑘𝑥) by finding the appropriate linear combination 

of the two numerical solutions. The gauged results can then be compared with the analytical 

solutions Eq. (S. 6) and (S. 7) in the symmetric and symmetry broken phase, respectively. 

S3. Three-dimensional simulations of transient evolutions 
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The interior and exterior radii of the rings are R1 = 100 mm and R2 = 110 mm, respectively. The 

velocity of the upper (lower) channel is r (r), where is the angular velocity and r is the 

distance to the centre of ring in the xy-plane. Each channel has a height of 5 mm and the thickness 

of the interlayer is 1 mm. Therefore, the temperatures along the upper and lower interior edges of 

the rings follow almost the same condition as T1 and T2 in the two-dimensional model, with v = 

R1. Two different initial conditions are adopted. One is the even mode that T = T0 + Cy for the 

entire system, where T0 = 293.15 K is the average temperature and C = 0.5 K/mm is the temperature 

gradient. The other is the odd mode that T = T0 ± Cy in the upper and lower channels, while T = 

T0 in the interlayer. Each simulation was performed until the maximum temperature dropped close 

to T0 (within 0.1 K).  

S4. Experimental observation of transient evolutions 

Ring 1 and Ring 2 are made of polycaprolactam (PA6) with thermal conductivity 1.2 W/m·K and 

diffusivity 0.73 mm2/s (c = 1.64 106 J/m3·K). The thickness, interior and exterior radius of the 

rings are b = 1 mm, R1 = 50 mm and R2 = 55 mm, respectively. Both rings are connected to 

aluminium frames to be rotated. Small wood blocks (thermal conductivity 0.15 W/mK) are used 

to thermally insulate the rings from the frames. The grease layer has thermal conductivity i = 0.11 

W/m·K and thickness around d = 0.5 mm. According to the derivation following Eq. (S. 12), the 

heat exchange rate is h = i (c)-1(bd)-1 = 0.13 s-1. Therefore, the critical rotation speed should be 

vEP/R1 = h/(k0R1) = h = 1.27 rpm. To generate temperature gradient, the bottom of the copper plate 

was immersed in 70 °C hot water, while the top was covered by an ice bag. The temperature fields 

and their evolutions were measured with a Fotric 233s infrared camera, whose imaging resolution 

and measurement precision are 160 × 120 pixel and 0.1 °C, respectively.  
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The infrared images were post processed to extract quantitative data about the temperature 

field. We firstly deformed the images to restore the ring to circular shape, according to which we 

found the centre and region of the ring in the deformed images. Since the experimentally measured 

temperature field contains noisy points such as temperature on the wood blocks and the frames, 

the maximum temperature point max(T1) used to analyse numerical results drifts drastically in the 

experiments and is no longer a good choice. We then introduce the concept of temperature dipole 

𝒑𝑇(𝑡) = 𝐴
−1∫ 𝑇(𝒓, 𝑡)𝒓d𝑠, where A is the area of the ring, r is the position vector from the ring 

centre, and ds is the area element. The integral is carried out on the whole ring. Similar as the 

electric dipole, pT characterizes how much the temperature field is unevenly distributed on the ring. 

Therefore, it is a suitable quantity that represents the temperature profile. For the ideal linear 

temperature fields, the direction of pT coincides with the direction of the temperature gradient. In 

practice, since the infrared images are pixelized, the directions of pT can be simply calculated from 

the temperature-weighted averages of position vectors for pixel points on the ring. 
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Supplementary Text 

S1. Dispersion relation 

We can study the dispersion relation of the system according to Eq. 2 of the main text. For different 

v, the theoretical dispersion relation is plotted in Fig. S1. It is immediately seen that with an 

increasing wavenumber k, the system undergoes an APT-symmetry breaking similar to the v 

dependence in the main text. 

 

Fig. S1. Dispersion of the APT heat convection system. (A) Decay rate. (B) Eigenfrequency. 

The phase transition is clearly observed by rescaling the three-dimensional model while 

maintaining the same background velocity. Therefore, we performed simulations with inner the 

radius R1 = 125 mm and 66.7 mm and fixed v = 2.0 cm/s, the corresponding wavenumber at the 

EP is k0 = 10 m-1. The wavenumber of the temperature profiles is changed with the circumferences 

to be k = 8 m-1 and 15 m-1. The corresponding trajectories of maximum temperature are plotted in 

Fig. S2. The familiar contrast between rest and motion is obvious. By performing studies with 

different wavenumbers, we also reconfirmed that APT symmetry is achieved in full band. 
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Fig. S2. Trajectories of max(T1) and max(T2) for different circumferences of the channels.  

S2. Counter-flow propagation and direction reversal 

Since the initial conditions are symmetric, the motion of fields maintains symmetry after swapping 

the channels and applying a spatial reflection. We can break this symmetry by using a different 

initial condition that the amplitude in channel 2 is smaller. We adopt the initial condition T = T0 + 

C1y in channel 1 and the interlayer while T = T0 – C2x in channel 2, where C1 = 0.5 K/mm and C2 

= 0.3 K/mm. At v = 2.5 cm/s in the symmetry broken phase (Fig. S3A), we see that the chiral 

symmetry is also broken and the fields in both channels move in the clockwise direction, keeping 

a phase difference , which vibrates in a range from 0.45 to 0.6 with time (Fig. S3B). This 

observed behaviour can be well explained by the analytical eigenstates. Back to the one-

dimensional model, we have an eigenstate of combined forward and backward waves 

(𝑇1, 𝑇2)
𝑇 = 𝑒−𝑖𝜔𝑡𝑒−𝑖𝜋/4 𝑒−𝜓/2[𝐴𝑒𝑖𝑘𝑥𝒖+(𝑘) + 𝐵𝑒

−𝑖𝑘𝑥𝒖+(−𝑘)],                   (S. 13) 

where 𝒖+(𝑘) = 𝑖(𝑒−𝑖𝜋 4⁄ 𝑒𝜓 2⁄ , 𝑒𝑖𝜋 4⁄ 𝑒−𝜓 2⁄ )
𝑇

 and 𝜓 = sgn(𝑘) cosh−1(|𝑘|𝑣 ℎ⁄ ) . By taking the 

real part, we get 

𝑇𝑗 = 𝑒
Im(ω)𝑡{𝐴𝑗 cos[𝑘𝑥 − Re(𝜔)𝑡 + 𝜙𝑗] + 𝐵𝑗 cos[𝑘𝑥 + Re(𝜔)𝑡 + 𝜙𝑗]},            (S. 14) 
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where 𝑗 = 1, 2, 𝐴1 = 𝐴, 𝐴2 = 𝐴𝑒−𝜓, 𝐵1 = 𝐵,𝐵2 = 𝐵𝑒𝜓, 𝜙2 − 𝜙1 = 𝜋/2 . The maximum points 

can be calculated from ∂𝑇𝑗/𝜕𝑥 = 0 → tan[𝑘𝑥𝑗(𝑡) + 𝜙𝑗] = tan[Re(𝜔)𝑡] (𝐴𝑗 − 𝐵𝑗)/(𝐴𝑗 + 𝐵𝑗). In 

the 3D system, the time-dependent phase difference of maximum points is 𝜙(𝑡) = 𝑘[𝑥1(𝑡) −

𝑥2(𝑡)]. Therefore 

𝜙(𝑡) = 𝜙0 + tan
−1 {

𝑀 tan[𝑅𝑒(𝜔)𝑡]

1+𝑁 tan2[𝑅𝑒(𝜔)𝑡]
},                                     (S. 15) 

where 

𝑀 =
𝐴1−𝐵1

𝐴1+𝐵1
−
𝐴2−𝐵2

𝐴2+𝐵2
, 𝑁 = (

𝐴1−𝐵1

𝐴1+𝐵1
) (

𝐴2−𝐵2

𝐴2+𝐵2
).                                 (S. 16) 

Eq. (S. 15) represents a vibration with the frequency 2Re()and average 0, which should be 𝜙2 −

𝜙1 = 𝜋/2  according to the theory. The simulation results fit well with this expectation, and 

provide a fit 0 = 0.52, close to the theoretical prediction. We can calculate the ratio 

√(𝐴1/𝐵1)/(𝐴2/𝐵2) =  1.947 with the fitted parameters. On the other hand, according to the 

theory, we have  

√(𝐴1/𝐵1)/(𝐴2/𝐵2) = 𝑒𝜓 = 𝑣/𝑣EP +√(𝑣/𝑣EP)2 − 1 = 2,                     (S. 17) 

which is in good agreement.  

A series of simulations were performed with the same initial condition for v from 0 to 2.9 

cm/s. By fitting the time-dependent phase differences of results at v = 2.05 to 2.9 cm/s with Eq. (S. 

15), we can obtain a fitted value of Re() and 0 for each v. For v from 0 to 2.0 cm/s, the phase 

differences  for the stationary fields eventually reached is directly obtained. We rename 0 for v > 

2.0 cm/s as and plot its value in the full range of v in Fig. S3C. The result is compared with the 

theory that arcsin(v/vEP) for v < vEP and for v > vEP. The phase difference calculated 

from the eigenstates for the two-dimensional model is also plotted. In the symmetry broken region, 

we plot the Re() according to the theory, which is directly simulated for the two-dimensional 
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model along with the fitted values in Fig. S3D. Both figures show a good agreement among the 

three results. It is confirmed that an APT-symmetry breaking phase transition indeed happens, and 

the critical velocity is v = 2.0 cm/s. 

Although a similar case can be obtained for v from 2.05 to 2.9 cm/s (v = 2.0 + 0.002t (cm/s)), 

we can observe another change of chirality when v is dynamically increased as in Fig. S3E. The 

dynamically changed parameter would not allow an adjustment of gauge for the system and results 

in a U-turn of the field in channel 2 at t = 31 s. This direction reversal phenomenon is a clear 

demonstration of the effect of dynamically evolving non-Hermitian Hamiltonian, which may 

become quite different than the one in the adiabatic case (36–40).  

 

 

Fig. S3. Results with asymmetric initial condition. (A) The temperature profiles in both channels 

move clockwise, one following while one against the background motion. The trajectories are 

plotted for v = 2.5 cm/s. (B) The phase difference between two profiles is relatively stable and 
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varies in a small range between 0.45 to 0.6 with a frequency which should be two times the 

eigenfrequency of the system according to theory. The phase evolution can be fitted to theory well 

and can help determine the phase difference between forward waves in each channel as well as the 

eigenfrequency in the APT-symmetry broken phase. (C) The phase differences show a clear 

pattern of phase transition, similar to the pattern of the Im(). Those obtained from transient 

results of the three-dimensional system are almost precisely on the curve obtained from the 

eigenstates of the two-dimensional system. They are also close to the theoretical prediction. (D) 

Nonzero eigenfrequency emerges after crossing the critical velocity. Again, the two results are in 

good accordance with each other and the theory. (E) Dynamically increasing v from 2.0 to 3.0 

cm/s, a direction reversal from clockwise to counter clockwise motion occurs for the profile in 

channel 2 as indicated with the light grey arrowed curve. 
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Fig. S4. Photos of the experimental setup. (A) Launching the temperature gradient. (B) 

Performing measurements. 
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Movie S1. 

Evolution of temperature profiles on Ring 1. The left parts are the results of the system. The right 

parts are the result of the reference (simply an uncoupled Ring 1). The rotation speeds of the Rings 

are 0.5 rpm. 

Movie S2. 

Same as Movie S1. Rotation speeds are 1.0 rpm. 

Movie S3. 

Same as Movie S1. Rotation speeds are 1.5 rpm. 
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