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established. It is able to deal with arbitrary parameters ��r�r�, �r�r�, �t�r�, and �t�r�� of a radially anisotropic
inhomogeneous shell. The general cloaking condition is proposed from the wave relations, in contrast to the
method of transformation optics. Spherical metamaterial cloaks with improved invisibility performance are
achieved with optimal nonlinearity in transformation and core-shell ratio.
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I. INTRODUCTION

Coordinate transformation �1–4� for the design process of
the cloaking devices has received great attention. The
cylindrical/spherical cloaking idea proposed by Pendry �1� is
to employ radial anisotropic materials whose parameters are
determined from the topological variation between the origi-
nal and transformed spaces, based on the invariance of Max-
well’s equations throughout a specific coordinate transforma-
tion �3�. The idea of cylindrical cloaking was confirmed by
analytical/full-wave methods �5–7� and verified by an experi-
ment using artificial metamaterials with inclusions of metal-
lic split-ring resonators �SRRs� �8�. So far, significant
progress has been made on the study of cylindrical invisibil-
ity cloaks. It reveals that the simplified parameters for cylin-
drical cloaking still allow wave interactions with the cloaked
object �9� and the invisibility performance of a cylindrical
cloak is very sensitive to the geometrical perturbation of its
interior boundary �10�, which can be both fixed by introduc-
ing perfect electric conducting �PEC� or perfectly magnetic
conducting �PMC� linings onto the inner surface of the shell
�4,11�. Since it is challenging to synthesize the magnetic re-
sponse in optical regime, nonmagnetic cylindrical cloaks
have been proposed by using quadratic transformation �12�
and the general high-order transformation for nonmagnetic
cylindrical cloaks in optical frequency is addressed more re-
cently �13�. Nevertheless, it is still difficult to realize the
position-dependent cylindrical cloak due to the limited re-
source of natural materials exhibiting radial anisotropy �14�.
In view of this, Cai et al. proposed a multilayered cylindrical
cloak by dividing the original position-dependent cloak into
many thin coatings in which the material parameters become
homogeneous �15�. Furthermore, the cylindrical cloak has
been theoretically realized by a concentric cylinder of isotro-
pic homogeneous multilayers �16�. Arbitrary-shaped two-
dimensional �2D� cloaks have been investigated theoretically
and numerically �17–19�.

However, for spherical invisibility cloaks there are still a
lot of unknowns to be explored because of the complexity in
analysis and simulation of scattering properties. Anisotropic
and position-dependent ideal spherical cloaks based on the
linear transformation were suggested by Pendry �1�, and it
has been shown that spherical cloaks are less sensitive to the
perturbation than cylindrical cloaks �10�, which is math-
ematically proven �20�. There are several main streams
studying linear first-order spherical invisibility cloaks, whose
the required materials and the corresponding methods are
distinct. The first approach is the classic cloak �1�, which is
linear, anisotropic, and inhomogeneous. In this connection,
explicitly electromagnetic fields have been formulated �21�
and it is further confirmed that the wave cannot interact with
the concealed object �22�. The second is to utilize a homo-
geneous anisotropic metamaterial cover to achieve electro-
magnetic invisibility �23� via the core-shell system. The third
is the implementation of isotropic plasmonic materials as the
cloak based on cancellation scheme �24,25�. The fourth is to
substitute the Pendry’s classic cloak with alternating thin
multishells, and each shell is homogeneous and isotropic
�26�. Each approach mentioned above has its own advan-
tages and restrictions. For instance, the first approach �1�
requires higher complexity in material parameters, and the
analysis is situated toward a particular anisotropy ratio,
which is addressed in �26�. The second approach �23� re-
moves the requirement of material inhomogeneity, in which
parameters are position independent. However, its cloaking
property is quite reliant on the core-shell ratio, and the same
feature is possessed by the third approach �cancellation
scheme�. The fourth method has less restrictions on materials
but needs a lot of coatings that are sufficiently thin compared
with the wavelength. The high-order term in the refractive
index of an inhomogeneous spherical lens is discussed and
its possibility of realizing a spherical cloak without paramet-
ric singularity is addressed �27�. The critical material singu-
larity is thus transformed into the geometrical singularity,
which is less demanding �28�.

In this paper, a more general high-order nonlinear trans-
formation will be considered for spherical cloaks. We first*cwq@mit.edu
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propose a general algorithm to study the electromagnetic
scattering by a particle coated by a radially inhomogeneous
shell whose anisotropic parameters can be arbitrary. We dis-
cretize the shell into multiple spherical shells, each of which
is homogeneous and anisotropic. Also, we propose a class
of nonlinear transformation based �NTB� spherical cloaks,
whose anisotropy ratio is position dependent and also too
complicated to be treated by any mentioned methods. By
utilizing the established general scattering algorithm, the in-
visibility performance and its dependence on the nonlinear
transformation are investigated. Finally, the numerical results
suggest a particular type of nonlinear spherical cloak provid-
ing better invisibility than Pendry’s linear spherical cloak �1�.

II. SCATTERING ALGORITHM FOR A GENERAL
RADIALLY ANISOTROPIC METAMATERIAL CLOAK

Figure 1 illustrates the configuration of the cloak struc-
ture, i.e., the inner and outer radii are denoted by a and b,
respectively; innermost region is filled by an isotropic dielec-
tric material characterized by ��1� and ��1�; intermediate re-
gion is occupied by a general spherical metamaterial cloak
characterized by ε and �

ε = �r�r�er � er + �t�r�It, � = �r�r�er � er + �t�r�It,

�1�

where �r and �r are the radial permittivity and permeability,
�t and �t are the transversal material parameters, It=I−er
� er=e� � e�+e� � e� is the projection operator onto the
plane perpendicular to the vector er, I is the unit three-
dimensional dyad, and unit vectors er, e�, and e� are the basis
vectors of the spherical coordinates.

In this section, the scattering theory of multilayer aniso-
tropic spherical particles is provided and applied to study a

cloak. We suppose that the arbitrary field distribution of the
incident monochromatic wave interacts with the two-layer
sphere.

Using the separation of variables, the solution of Max-
well’s equations in spherical coordinates �r ,� ,�� can be pre-
sented as

E�r,�,�� = Flm��,��E�r�, H�r,�,�� = Flm��,��H�r� ,

�2�

where the designation E�r� means that the components of the
electric field vector depend only on the radial coordinate r as
Er�r�, E��r�, and E��r� �however, the vector itself includes
the angle dependence in the basis vectors�, and the second-
rank tensor in three-dimensional space Flm serves to separate
the variables �l and m are the integer numbers�. It can be
written as the sum of dyads,

Flm = Ylmer � er + Xlm � e� + �er � Xlm� � e�, �3�

where Ylm�� ,�� and Xlm�� ,�� are the scalar and vector
spherical harmonics, the orthogonality of which has been
well described in �29�. Tensor functions Flm are very useful
because they completely describe the angle dependence of
the spherical electromagnetic waves and satisfy the orthogo-
nality conditions

�
0

� �
0

2�

Fl�m�
+ ��,��Flm��,��sin �d�d� = I�l�l�m�m, �4�

where the superscript + stands for the Hermitian conjugate.
From the commutation of ε, �, and Flm, it follows that

the electric and magnetic fields obey the set of ordinary dif-
ferential equations

er
�dH

dr
+

1

r
er

�H −
i�l�l + 1�

r
e�

�H = − ik0ε · E ,

er
�dE

dr
+

1

r
er

�E −
i�l�l + 1�

r
e�

�E = ik0� · H , �5�

where k0=� /c is the wave number in vacuum, and � denotes
the circular frequency of the incident electromagnetic wave.
Quantity n� is called the tensor dual to the vector n �30�. It
results in the vector product, if multiplied by a vector a as
n�a=na�=n�a.

Equation �5� results from variable separation in Max-
well’s equations, and includes two algebraic scalar equa-
tions; therefore, two field components, Hr and Er, can be
expressed by means of the rest four components. This can be
presented in terms of the matrix link between the total fields
H=Ht+Hrer and E=Et+Erer, and their tangential compo-
nents Ht and Et,

FIG. 1. �Color online� The geometry of the spherical cloak
structure. Incident plane wave is propagating along z direction and
its electric field is polarized along x direction. The subscripts 0 and
1 denote the parameters of the host and cloaked media, respectively.
The anisotropic ε and � presents the parameters of the cloak shell.
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�H�r�
E�r�

� = V�r��Ht�r�
Et�r�

� ,

V�r� =	 I
�l�l + 1�
�r�r�k0r

er � e�

−
�l�l + 1�
�r�r�k0r

er � e� I 
 . �6�

Excluding the radial components of the fields from Eq. �5�,
we arrive at a set of ordinary differential equations of the
first order for the tangential components, which can be inter-
connected by a four-dimensional vector W�r� as

dW�r�
dr

= ik0M�r�W�r� , �7�

where

M = �A B

C D
�, W = �Ht

Et
� � 	

H�

H�

E�

E�


 ,

A = D =
i

k0r
I, B = �t�r�er

� −
l�l + 1�

�r�r�k0
2r2e� � e�,

C = − �t�r�er
� +

l�l + 1�
�r�r�k0

2r2e� � e�. �8�

Since Ht and Et are continuous at the spherical interface,
they can be used for solving the scattering problem. Now, we
analyze the situation of r-dependent permittivities and per-
meabilities, which arise from the spherical cloaking. Exclud-
ing the � components of fields from Eq. �7�, we derive the
differential equation of the second order for the vector w�

=e�W= �H� ,E��:

w�� +
2

r
w�� −	

�t�

�t

0

0
�t�

�t


w�� + �k0
2�t�t −

1

r	
�t�

�t

0

0
�t�

�t



−

l�l + 1�
r2 	

�t

�r
0

0
�t

�r



w� = 0, �9�

where the prime denotes the derivative with respect to r.
Further we will apply one condition on the medium param-
eters, which is usually used for the spherical cloaks: �r�r�
=�r�r� and �t�r�=�t�r� due to the impedance matching.
Then the equations for H� and E� coincide and can be written
in the form

w�� + �2

r
−

�t�

�t
�w�� + �k0

2�t
2 −

�t�

r�t
−

l�l + 1�
r2

�t

�r
�w� = 0.

�10�

This equation can be solved analytically only in very few
cases. As an example, we can offer a case of �t=�t=a1 /r and
�r=�r=a2 /r, where a1,2 are arbitrary values. However, such
dependencies do not provide the cloak properties. Another
solvable case in Eq. �10� is just Pendry’s cloak, that is, �t
=�t=b / �b−a� and �r=�r�t�r−a�2 /r2.

Although analytical solutions cannot be found for all situ-
ations, the general structure of solutions can be studied. The
solution of two differential equations in second order �Eq.
�9�� contains four integration constants c1, c2, c1�, and c2�. The
constants can be joined together into a couple of vectors c1
=c1e�+c1�e� and c2=c2e�+c2�e�. � components of the field
vectors H� and E� are expressed in terms of the � compo-
nents, which have been already determined. The relation be-
tween � and � components follows from Eq. �7�. Summing
up both components, the resultant field can be presented as

W = S�r�C, S�r� = �	1�r� 	2�r�

1�r� 
2�r�

�, C = �c1

c2
� ,

�11�

where 	1,2 and 
1,2 are the two-dimensional blocks of the
matrix S�r�. �	1 ,
1 ,c1� and �	2 ,
2 ,c2� denote the first and
second sets of the independent solution of Eq. �9�, respec-
tively. Therefore, the general solution can be decomposed
into two terms as W=W�1�+W�2�, where

W�1� = �Ht1

Et1
� = �	1


1
�c1, W�2� = �Ht2

Et2
� = �	2


2
�c2.

�12�

Electric and magnetic fields of each independent wave are
related by means of impedance tensor � as Etj =� jHtj�j
=1,2�. Thus, the impedance tensor equals

� j�r� = 
 j�r�	 j
−1�r� . �13�

Vectors c1 and c2 can be expressed by means of
the known tangential electromagnetic field W�a� as C
=S−1�a�W�a�. Thus Eq. �11� can be rewritten as follows

W�r� = �a
rW�a�, �a

r = S�r�S−1�a� , �14�

where the evolution operator �transfer matrix� �a
r connects

tangential field components at two distinct spatial points, i.e.,
r and a. One can obtain the complete solution of the fields
E�r� and H�r� by summing over l and m in the subsequent
tensor product of Flm�� ,�� describing angle dependence �Eq.
�3��, matrix Vl�r� restoring the fields with their tangential
components �Eq. �6��, and tangential field vectors �Eq. �11��,

�H�r�
E�r� � = �

l=0




�
m=−l

l �Flm��,�� 0

0 Flm��,�� �
�Vl�r��	1

l �r� 	2
l �r�


1
l �r� 
2

l �r�
��c1

lm

c2
lm � . �15�

In general, the solutions cannot be studied in the closed
form for nonlinear spherical cloaks. Therefore, the approxi-
mate method of numerical computations is applied. An inho-
mogeneous anisotropic spherical cloak a�r�b is equally
divided into N homogeneous anisotropic spherical layers,
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i.e., replaced with a multilayer structure. The number of the
layers strongly determines the accuracy of calculations. The
jth homogeneous shell is situated in the region between r
=aj−1 and r=aj, where j=1, . . . ,N, a0=a, and aN=b. Wave
solution of the single homogeneous layer can be represented
in the form of the evolution operator �aj−1

aj . The solution for
the whole inhomogeneous shell is thus the subsequent prod-
uct of the elementary evolution operators,

�a
b = �aN−1

b
¯ �a1

a2�a
a1. �16�

The solution of Eq. �9� in one layer with constant permit-
tivities �r, �t, and permeabilities �r, �t is expressed by
means of a couple of independent spherical functions g�

�1�

and g�
�2�,

�H��r�
E��r� � = �g�1

�1��ktr�c1 + g�1

�2��ktr�c2

g�2

�1��ktr�c1� + g�2

�2��ktr�c2�
� , �17�

where kt=k0
��t�t, �1=�l�l+1��t /�r+1 /4−1 /2, �2

=�l�l+1��t /�r+1 /4−1 /2, which applies to both uniaxial
anisotropic and bianisotropic media �28,31,32�. Functions
g�

�1,2� of the order of � can be spherical Bessel functions,
modified spherical Bessel functions, or spherical Hankel
functions.

Blocks 	 and 
 introduced in Eq. �11� are the tensors

	1,2 = g�1

�1,2�e� � e� −
i

�tk0r

d�rg�2

�1,2��

dr
e� � e�,


1,2 = g�2

�1,2�e� � e� +
i

�tk0r

d�rg�1

�1,2��

dr
e� � e�, �18�

which can be presented as two-dimensional matrices for
computation purposes.

Now we turn to the scattering of electromagnetic waves
from the cloaking structure depicted in Fig. 1. We suppose
that electromagnetic fields Hinc�r� and Einc�r� are incident on
the coated spherical particle from air ���0�=1, ��0�=1�. Wave
solutions in each of the N layers can be written using the
general solution equation �Eq. �15��, which is already known.
Scattered field propagating in air can be presented by the
superposition of diverging spherical waves, which are math-
ematically described by spherical Hankel functions of the

first kind h�
�1��x�. Let us first introduce 	̃ and 
̃, which corre-

spond to the tensors 	 and 
 in Eq. �18� when Hankel func-
tions replace Bessel functions. Then we obtain the scattered
fields

�Hsc�r�
Esc�r� � = �

l=0




�
m=−l

l �Flm 0

0 Flm
�Vsc

l �r�� I

�̃l�r�
�

�	̃l�r��	̃l�b��−1Hsc
lm�b� , �19�

where �̃l= 
̃l�	̃l�−1 is the impedance tensor of the lth scat-
tered wave, and Hsc

lm�b� is the tangential magnetic field at the
outer interface r=b. Applying the evolution operator �a

r , the
electromagnetic field in the shell takes the form

�Hsh�r�
Esh�r�

� = �
l=0




�
m=−l

l �Flm 0

0 Flm
�Vsh

l �r��a
r� I

�1
l �a�

�H1
lm�a� ,

�20�

where �1
l =
1

l �	1
l �−1 is the impedance tensor of the lth wave

inside the inner sphere �region 1�, and H1
lm�a� is the tangen-

tial magnetic field at the inner interface of the shell r=a.
By projecting the fields onto the outer interface r=b and

integrating over the angles � and � with the help of orthogo-
nality condition equation �4�, we derive the boundary condi-
tions

Winc
lm + � I

�̃l�b�
�Hsc

lm�b� = �a
b� I

�1
l �a� �H1

lm�a� , �21�

where

Winc
lm = �

0

� �
0

2� �Flm
+ ��,��IHinc�b,�,��

Flm
+ ��,��IEinc�b,�,��

�sin �d�d� .

�22�

Equation �21� represents the system of four linear equa-
tions for four components of the vectors Hsc

lm and H1
lm. Fi-

nally, one can derive the amplitude of the scattered electro-
magnetic field �see Appendix�

Hsc
lm�b� = − ���1

l �a� − I��b
a� I

�̃l�b�
��−1

����1
l �a� − I��b

aWinc
lm � . �23�

The scattered field in far zone can be characterized by the
differential cross section �power radiated to er direction per
solid angle do�

d�

do
= r2 �Hsc�r��2

�Hinc�r��2
. �24�

In our notations, the differential cross section averaged over
the azimuthal angle � �over polarizations� normalized by the
geometrical cross section �g=�b2 takes the form

d�

�g sin �d�

=
1

�g�Hinc�2
�

m=−



 � �
l=�m�




i−l−1Flm��,0�	̃l
−1�b�Hsc

lm�b��2

.

�25�

From the point of view of the scattering theory, it is
straightforward to define a cloak as one specially matched
layer that provides zero scattering for arbitrary materials in-
side. In �21� zero scattering was proven analytically for the
Pendry’s spherical cloak. Here, we have proposed a more
general scattering algorithm for radially anisotropic materi-
als, which is useful in studying the scattering of spherical
cloaks based on complex �e.g., high-order, nonlinear, etc.�
transformations. From the proposed scattering theorem, we
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can determine the invisibility condition �zero scattering�
specified by the condition Hsc

lm�b�=0, which in turn can be
rewritten using Eq. �23� as follows

��1
l �a� − I��b

aWinc
lm = 0. �26�

Arbitrary incident electromagnetic field Winc
lm can be ex-

cluded from this expression. In fact, zero scattering can
be obtained for the trivial situation: electromagnetic field is
scattered by a “virtual” air sphere at radius b. This assump-
tion can be presented in the form analogous to Eq. �26�:

��0
l �b� − I�Winc

lm = 0, �27�

where �0
l is the impedance tensor of the lth wave in the

virtual air sphere. Hence, we have the relation

��1
l �a� − I��b

a = ��0
l �b� − I� . �28�

Impedance tensor �1
l contains material parameters ��1�

and ��1� of the sphere inside the cloaking shell. At the
same time, zero scattering should be held for arbitrary ��1�

and ��1� of the inner core. It implies that the partial deri-
vative of Eq. �28� with respect to ��1� needs to be zero
for arbitrary ��1� to satisfy the zero scattering condition.
Note that only the impedance tensor �1

l contains ��1�,
and therefore, the right-hand side of Eq. �28� vanishes

after the differentiation, which results in
���1

l �a� −I�
���1� �b

a

+ ��1
l �a� − I����b

a /���1��= �
��1

l

���1� 0��b
a=

��1
l

���1� �I 0��b
a=0. It is

now straightforward that we need the relation to be satisfied,
i.e., �I 0��b

a=0.
By multiplying this equation by �1

l �a� and subtracting
it from Eq. �28�, we arrive at the equation: �0 I��b

a

= �−�0
l �b� I�, which does not contain the material parameters

of the inner sphere. Finally, we derive the evolution operator
of the cloaking layer,

�b
a = � 0 0

− �0
l �b� I

� . �29�

This condition defines the cloak and can be satisfied for
the specially chosen evolution operator �b

a of the cloaking
shell. The evolution operator is the degenerate block matrix,
whose inverse matrix is not defined. It should be noted that
relation equation �29� is independent on the material of the
inner sphere. On the other hand, the derived relation con-
nects the wave solutions in the cloak �evolution operator �b

a�
with wave solutions in the “equivalent” homogeneous air
sphere �impedance tensor �0

l �. Therefore, it effectively per-
forms the coordinate transformation for the solutions but not
for the material parameters as usual.

Substitution of the cloaking condition Hsc
lm�b�=0 into Eq.

�21� results in

�b
aWinc

lm = � I

�1
l �a�

�H1
lm�a� . �30�

From Eq. �29�, it becomes clear that H1
lm�a�=0 and E1

lm�a�
��1

l �a�H1
lm�a�=0. Thus one may conclude that both electric

and magnetic fields equal zero at the boundary r=a, and
therefore, there is no field at any spatial point inside the inner
sphere. In the cloaking shell, the fields equal zero at the inner

boundary r=a �owing to the continuity of the tangential
fields� and equal incident fields at the outer boundary r=b.
Then, the field inside the cloak must obey �see Eq. �20��

�Hsh�r�
Esh�r�

� = �
l=0




�
m=−l

l �Flm 0

0 Flm
�Vsh

l �r��b
rWinc

lm . �31�

III. NONLINEAR TRANSFORMATION BASED
SPHERICAL CLOAKS

Now, let us consider a class of the NTB spherical cloak,
whose electromagnetic �EM� interaction can be characterized
by the proposed scattering theorem. Figure 1 can be regarded
as the compressed space �r� from the original space �r��, i.e.,
an air sphere 0�r��b. We propose a nonlinear transforma-
tion function

r� =
bx+1

�b − a�x�1 −
a

r
�x

, �32�

which obviously satisfies the transformation �when r=a, r�
=0, and when r=b, r�=b�. The value of “x” is a factor to
control the nonlinearity degree in the transformation, which
can be arbitrary from 0 to 
.

Due to the invariance of Maxwell’s equation under coor-
dinate transformations from the original space to transformed
space, the parameters �ε, �� in the shell of Fig. 1 can be
expressed in terms of those parameters in the original space,
i.e., ε�=1 and ��=1,

ε = AAT/det�A�, � = AAT/det�A� , �33�

where A is the Jacobian matrix with elements Aij =�ri /�rj�.
One can see that the proposed prescribed function equa-

tion �Eq. �32�� is only dependent on radial position r. Then it
is easy to find that the Jacobian matrix is diagonal, and Eq.
�33� can thus be rewritten as

ε = � = diag��r
2,��

2,��
2 �/�r���� = diag� �r

����

,
��

�r��

,
��

�r��
� ,

�34�

where the principal stretches of the Jacobian matrix are

�r =
�r

�r�
=

�b − a�xrx+1

xabx+1�r − a�x−1 , �� = �� =
r

r�
=

�b − a�xrx+1

bx+1�r − a�x .

�35�

Finally, one can obtain the parameters of the NTB cloak
�a�r�b� in Fig. 1

�r = �r =
bx+1�r − a�x+1

xa�b − a�xrx+1 ,

�� = �� = �� = �� =
xabx+1�r − a�x−1

�b − a�xrx+1 . �36�

Such ideal NTB spherical cloak is difficult to be fabri-
cated in practice. However, to some extent, it can be allevi-
ated by dividing the inhomogeneous cloak shell into N ho-

ELECTROMAGNETIC INTERACTION OF ARBITRARY… PHYSICAL REVIEW E 80, 016604 �2009�

016604-5



mogeneous multilayers. The case for cylindrical cloaks has
been studied and it shows that only several optimized layers
can achieve the invisibility �33�. Here, the optimization is out
of the scope of this paper. Our paper is to reveal some NTB
spherical cloaks, which provides better invisibility perfor-
mance than Pendry’s classic one, based on the proposed gen-
eral scattering theory. The realistic NTB cloaks can be pro-
duced using sputtering techniques so that a number of
discrete layers should be applied over the spherical core. To
demonstrate the capability of the proposed spherical cloaks,
we present the differential cross sections normalized by the
geometric cross section of the cloak �see Eq. �25��.

In Fig. 2, we analyze the dependence on the total number
of the layers N dividing the cloaking shell. The increase in
the layer number gives rise to more accurate approximation
of the original inhomogeneous model in Fig. 1, and the de-
crease of the scattering cross section is expected with the
increase of the number N. If one uses the present scattering
method with N=50 to divide both Pendry’s linear cloak and
a specific NTB cloak at x=1, the forward scattering is ap-
proximately the same, but over the whole range of scattering
angles Pendry’s cloak presents better invisibility. The follow-
ing discussion will address the importance of this nonlinear
factor x in beating the classic linear cloak.

The parameter x is a convenient tool to control the quality
of the NTB spherical cloak. We assume the number of ho-
mogeneous sublayers N=50 for all following simulations. In
Fig. 3 the differential cross sections at different x are dem-
onstrated. If x is less than unity, the cross section is inversely
proportional to x, which is not desired in the sense of invis-
ibility. For NTB spherical cloaks with x�1, the cloaking
performance is degraded due to the abrupt increase of the
transverse dielectric permittivity �t near the inner interface
r=a of the clad �see Fig. 4�.

The abrupt change of the material parameters is undesir-
able not only for invisibility performance but also for the
realization point of view. The radial dielectric permittivity
behaves in a similarly monotonic way for all values of x. The

dependence appears to be mainly linear for small parameters
x. The dependence of the transverse dielectric permittivity is
more complicated. One particular NTB cloak is realized at
the parameter x=2 when the transverse permittivity in the
cloak becomes nonmonotonic and eventually returns to �t
=2 at r=b, which provides even lower cross section over
whole observation angles than the Pendry’s cloak does. If we
compare the dielectric permittivities of the proposed NTB
cloak with that of Pendry’s cloak �Fig. 4�, it can be noted that
the dependence of radial permittivity �r are still quite close
to each other in the cloak region. However, one may ask
whether x=2 is the only choice or not. In Fig. 5, it gives the
answer that, in the sense of total cross section, there is a
range of x in which the proposed NTB spherical cloak out-
performs the classic linear spherical cloak. When “x” in-
creases and jumps out of this optimal region, the cloaking
effects compared with Pendry’s cloak are degraded, which

FIG. 2. �Color online� Differential cross section
d� / ��g sin �d�� of the NTB spherical cloak �x=1� for different
number of the layers N dividing the inhomogeneous coating. Pa-
rameters: ��1�=1.452, ��1�=1.0, k0a=�, and k0b=2�.

FIG. 3. �Color online� Differential cross section of the nonlinear
cloak with different parameters x. Parameters: ��1�=1.452, ��1�

=1.0, k0a=�, k0b=2�, and N=50.

FIG. 4. �Color online� Radial �r and transverse �t dielectric
permittivities of the cloaking shell with different parameters x.
Cloak is extended from k0a=� to k0b=2�.
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can be verified by the bistatic cross section of x=1 and x
=3 in Fig. 3.

Furthermore, we investigate how the transverse permittiv-
ity �t varies near the optimal region of x in Fig. 5. From Fig.
6, it can be observed that: �1� when x is slightly above one,
the requirement of �t near the inner boundary r=a drops
significantly compared to those curves whose x is smaller
than one in Fig. 5; �2� when x becomes larger and larger, the
�t at the outer boundary r=b turns to be more deviated from
that value of its corresponding �r; �3� when x falls into the
optimal region, those curves of transverse permittivities are
nonmonotonic along the radial direction in the cloaking
shell, and their maxima and overall values of �t are smaller
than those whose x becomes further smaller or larger. These
explain why there exist an optimal region for x where the
total scattering cross section can be lower than Pendry’s clas-

sic one. Also, it provides us another way to predict whether a
certain x for a NTB spherical cloak is optimal or not.

Now we continue to study the dependence of its invisibil-
ity upon the ratio b /a of the particular NTB spherical cloak
with x=2, which is discretized into N=50 layers. We keep
the inner radius a unchanged. In Fig. 7�a�, different ratios of
b /a are considered. Compared with the other three values of
b /a, it seems that b /a=2 provides the best cloaking effects
at nearly all angles �except for the angle at 52°� for the x
=2 NTB cloak. Another interesting finding is that: when
b /a�2, the cross section will be higher than that of b /a
=2 over the whole range of angles; when b /a→1, although
the angle-averaged cross section will still be higher but at
certain angles, its cross section could be lower than that of
b /a=2. From the view of total scattering, it is important to
consider how the ratio b /a should be selected for x=2 NTB
cloak so as to provide improved cloaking. In Fig. 7�b�, one
can clearly see the optimal domain of b /a in which the cross

FIG. 6. �Color online� Variance of transverse permittivity �t

along the radial direction in the region of the cloaking shell �a�r
�b� under different values of x near the optimal range as shown in
Fig. 5. Parameters: k0a=� and k0b=2�.

FIG. 5. �Color online� Scattering cross section versus x for NTB
spherical cloaks. Parameters: ��1�=1.452, ��1�=1.0, k0a=�, k0b
=2�, and N=50. The range of x where scattering cross section
�SCS� is lower than that of Pendry’s spherical cloak is the optimal
region of x for desired NTB spherical cloaks.

FIG. 7. �Color online� The role of core-shell ratio b /a in the cloaking improvement for x=2 NTB spherical cloak: �a� differential cross
section versus angle at selected ratios; �b� scattering cross section versus ratio b /a. Parameters: ��1�=1.452, ��1�=1.0, k0a=�, and N=50.

ELECTROMAGNETIC INTERACTION OF ARBITRARY… PHYSICAL REVIEW E 80, 016604 �2009�

016604-7



section is smaller than Pendry’s spherical cloak. Certainly, all
values x within the desired region for the purpose of im-
proved cloaking in Fig. 5 have their corresponding domain
of optimal b /a.

Let us compare the scattering diagrams for both a bare
glass sphere and a cloaked glass sphere. We take the clad in
the form of the nonlinear cloak with parameter x=2. From
Fig. 8, we see that the cloaking shell noticeably reduces the
scattering. Another general property of the cloaks, i.e., the
exactly diminished backscattering, is also present in the fig-
ure. In what follows, we consider their respective near-field
wave interactions, which correspond to far-field results in
Fig. 8.

The near-field perturbation of the cloaked and noncloaked
glass particles is demonstrated in Fig. 9. Comparing Fig. 9�a�
with Fig. 9�b�, the invisibility performance is well pro-
nounced. In Fig. 9�a� the EM wave travels only through the
clad and takes near zero values in the vicinity of the inner
radius a. The field does not enter the glass core; therefore, it
does not matter which material is situated therein. If the
cloak is less ideal than that shown in the figure, the incident
field will be scattered by the spherical particle and will pen-
etrate the glass core, i.e., the object becomes visible.

IV. CONCLUSION

We have studied the manifold of the nonlinear cloaks dif-
fering in parameter x. Since there is no closed-form solution

for the proposed NTB cloaks, an approximate model by re-
placing an inhomogeneous shell with homogeneous spherical
layers has been numerically analyzed, with the help of the
proposed scattering algorithm for multilayered rotationally
anisotropic shells. The general cloaking condition was de-
rived from the scattering algorithm, which is in contrast to
the method of coordinate transform. We have also demon-
strated that better approximate spherical cloaks can be real-
ized by properly choosing parameters x and b /a. In practical
applications, such a class of NTB spherical cloaks can pro-
vide improved invisibility performance.

APPENDIX

In order to exclude the constant vector H1
lm, one should

multiply Eq. �21� by �b
a= ��a

b�−1,

�b
aWinc

lm + �b
a� I

�̃l�b�
�Hsc

lm�b� = � I

�1
l �a� �H1

lm�a� . �A1�

Then Eq. �A1� is further multiplied by the block matrix
��1

l �a�− I�, and the right-hand side vanishes,

��1
l �a� − I��b

aWinc
lm + ��1

l �a� − I��b
a� I

�̃l�b�
�Hsc

lm�b� = 0.

�A2�

On the other hand, vector H1
lm can be obtained in a similar

way.
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