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Magnetoelectrically chiral media are studied in this paper as potential materials to realize double negative
materials and negative refractive characteristics. The behaviors of the negative refractive index, the backward
eigenwaves, and the impedance of these eigenmodes of this particular type of chiral media are examined in
detail. We consider longitudinal and transverse propagation separately. Among the wave numbers obtained, we
find that two of them are backward propagating waves in certain frequency bands. The helicity and polarization
states are shown. We further study the impedance of these backward eigenmodes, which have potential appli-
cations in impedance matching, subwavelength resonator cavities and high-directivity antennas. Due to the
off-diagonal gyrotropic parameters, a negative refractive index can be achieved when the material parameters
and frequency are properly chosen. A study of the zero index of refraction for magnetoelectrically chiral media
is carried out, and potential applications are proposed.
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I. INTRODUCTION

Recently, metamaterials �with simultaneously negative
permittivity and permeability in a frequency band�, as a kind
of novel artificial material, have received considerable inter-
est within the scientific community. Metamaterials possess a
lot of exotic properties, such as a negative index of refrac-
tion, reversal Doppler shift and Vavilov-Cerenkov effect,1 a
reversed circular Bragg phenomenon,2 and the superlens.3

Although perfect lenses are difficult to realize, subwave-
length imaging can still be achieved when the lens is slightly
lossy.4 Other potential applications of metamaterials have
been explored, including periodical dipole arrays,5 leaky
wave antennas,6 and subwavelength cavity resonators.7 Since
the negative-refractive-index materials were experimentally
verified by Shelby et al.8 and Houck et al.,9 some researchers
have further studied tensor-parameter retrieval using quasi-
static Lorentz theory,10 S-parameter retrieval using plane
wave incidence,11 and constitutive relation retrieval using the
transmission line method.12–14 In addition, some new
structures15,16 have been proposed. As for the realization of
negative-refractive-index materials, there are several ap-
proaches, including transmission line grids or composite
structures,17 optically resonant materials,18 uniaxially aniso-
tropic structures,19 and photonic crystals.20

In one recent paper,21 negative refraction was studied in
gyroplasma chiral media �with magnetoelectric coupling
present only in electric displacement�, where the spatial dis-
persion approach was applied in the analysis of a chiral me-
dium’s response in the vicinity of the longitudinal frequency.
More recently, the Green’s dyadics and some potential appli-
cations of negative refraction in the quantum vacuum have
been studied,22 and a study on the constitutive relations of
magnetoelectric materials has also been carried out.23 Unlike
the work reported above, in this paper, we will focus on the
electromagnetic propagation properties of backward waves,
impedance matching, and the realization of equivalent per-

mittivity and/or permeability associated with the negative re-
fraction of backward waves in magnetoelectrically chiral me-
dia. We will also discuss the possibility of achieving zero
refractive index with a positive wave impedance, and its ap-
plications. As is known, little attention has been paid so far
to possible backward wave propagation in chiral media since
it is believed that both of the two eigenwaves are forward
propagating due to a parameter restriction.24 Actually, it was
proved by Tretyakov et al.25 that this restriction is not nec-
essary, and some other studies also show that backward
waves can propagate in chiral media.26,27 Note that, in na-
ture, the chiral parameter is not big for chiral media. Hence,
a chiral medium with small permittivity or permeability fa-
vors the realization of backward waves and negative refrac-
tion. Chiral nihility is a special case which holds only near
the resonant frequency. Therefore, the main contribution of
this paper are as follows. �i� A negative index of refraction in
a magnetoelectrically chiral medium can be realized with
fewer restrictions �e.g., a chiral medium requires a small per-
mittivity at a working frequency so as to obtain a negative
refractive index�. �ii� Two backward eigenwaves are found
due to the effects of the gyroelectric and gyromagnetic pa-
rameters. �iii� All parameters in the permittivity and perme-
ability tensors as well as the chirality admittance can be posi-
tive when negative refraction occurs. These three points
represent also the advantages of the presently considered
magnetoelectrically chiral materials over normal chiral or bi-
isotropic materials. Furthermore, we also propose the physi-
cal conditions for realizing backward waves and demonstrate
how to fabricate superlenses by the use of magnetoelectri-
cally chiral materials, matching the impedances and choos-
ing an appropriate frequency. In addition, it is found that a
zero refractive index associated with a positive impedance
can be achieved, which will have great potential applications
in antenna directivity enhancement and phase conservation.
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II. BACKWARD PROPAGATING WAVES
AND THEIR IMPEDANCE

The description of magnetoelectrically chiral media can
be obtained by generalizing the scalar constitutive relations
for isotropic chiral media:

D = �̄ · E + i�cB , �1�

H = i�cE + �̄−1 · B , �2�

where �c denotes the chirality admittance and

�̄ = � � − ig 0

ig � 0

0 0 �z
� , �3�

�̄ = �� − iw 0

iw � 0

0 0 �z
� . �4�

The generalized medium studied in this paper can be re-
duced to �i� a chiroplasma consisting of chiral objects em-
bedded in a magnetically biased plasma, or �ii� a chiroferrite
obtained by immersing chiral objects into magnetically bi-
ased ferrite.28 At this moment, there has been no report about
fabricated materials with these kinds of gyrotropies in both
permittivity and permeability. The most recent progress in
manufacturing technology, however, suggests that this kind
of material will be very likely realized in a short time frame
from various potential composites, especially when nanos-
caled particles, ferrites, and plasmas are mixed together us-
ing advanced molding, design, and fabrication techniques.
Some new fabrication facilities available elsewhere in the
world have made it possible to manufacture such complex
composites by adopting some new molding and filling tech-
niques in the optical frequency region. Thus, the appearance
of such media is greatly anticipated, and theoretical study
always goes ahead of experiments for design guidance. Nev-
ertheless, generality in such media can also be useful, be-
cause the present theorem can be directly applied to either
the chiroplasma or the chiroferrite case. These two subsets
are still of great potential, as compared to conventional
plasma or ferrites, due to the existence of magnetoelectric
coupling.

The constitutive relations of the material dicussed in this
paper are of Boys-Post type. It is also worth noting that our
material is a generalization of gyrotropic �chiral� media with-
out the assumption of H :H=B.29 Throughout the paper, the
time dependence e−i�t is suppressed and the time-harmonic
Maxwell equations in the source-free case will be used:

� � E = i�B , �5�

� � H = − i�D . �6�

Substituting the constitutive relations into above equations,
we have

� � ��̄ · � � E� − 2��c � � E − �2�̄ · E = 0, �7�

where

�̄ = �̄−1 = ��t − �a 0

�a �t 0

0 0 �z
� �8�

and

�t =
�

�2 − w2 , �9�

�a = − i
w

�2 − w2 , �10�

�z =
1

�z
. �11�

A. Wave propagation inside a magnetoelectrically
chiral medium

Assume that a plane wave is propagating along the z axis
inside a magnetoelectrically chiral medium and its form is
given by ei�k·r−�t�. There are two approaches for obtaining the
eigenmodes and wave numbers, namely, �i� starting from Eq.
�7� and obtaining the nontrivial solutions of the wave number
matrix, and �ii� starting from the constitutive relations di-
rectly, listing all the relations of the field components, and
solving the final equation consisting of wave numbers and
parameters only. Here we choose the second, which is less
cumbersome and gives more insight into the physical prop-
erties of the electromagnetic waves inside the medium.

If the plane waves are confined to propagate along the z
axis, we have Ez and Hz equal to zero for the nontrivial
solutions. Since E and H have only transverse components
and the parameter is in gyrotropic form, Dz and Bz vanish.
Thus we have the following relations:

�Hx

Hy
� = i�c�Ex

Ey
� + ��tBx − �aBy

�aBx + �tBy
� , �12�

�Dx

Dy
� = ��Ex − igEy

igEx + �Ey
� + i�c�Bx

By
� . �13�

For plane wave propagation, we can further put �= ik, which
results in the relations of the Maxwell equations as follows:

�− kzEy

kzEx
� = ��Bx

By
� , �14�

� kzHy

− kzHx
� = ��Dx

Dy
� . �15�

From Eqs. �12�–�15�, we finally arrive at two equations
�lengthy intermediate steps have been suppressed�:

	 kz

�
�t −

�

kz
�
Ey = i	2�c +

�

kz
g +

kz

�
�
Ex, �16�

i	2�c +
�

kz
g +

kz

�
�
Ey = 	�

kz
� −

kz

�
�t
Ex, �17�

where �=w / ��2−w2�.
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In view of Eqs. �16� and �17�, we can get four roots of the
wave numbers. To give more physical insight into those four
roots, we reorganize them by taking into account the direc-
tion of energy propagation and the polarized states:

kp± = �
±�c + ��c

2 + ��t � ���� ± g�
�t � �

, �18�

ka± = �
��c − ��c

2 + ��t ± ���� � g�
�t ± �

, �19�

where p and a represent the parallel and antiparallel direction
of energy flow �i.e., the real part of the Poynting’s vector�
and the 	 signs refer to right-circular polarization �RCP� and
left-circular polarization �LCP�, respectively. One should
note that the material in this paper is a generalization of
Landau’s model29 of Boys-Post type instead of using the Tel-
legen relations.30 Note that kp− and ka− could represent the
wave numbers for backward eigenwaves under some situa-
tions, which will be discussed in detail later.

If we assume that the plane waves are propagating trans-
versely, we can rewrite Eq. �7� as follows by inserting E
=E0ei�kxx̂+kyŷ� into Eq. �7�:

kt � ��̄ · �kt � E0�� + 2i��ckt � E0 + �2�̄ · E0 = 0,

�20�

where the transverse wave number kt=kxx̂+kyŷ.
Then we put the above equation into a matrix form, with

one column of field components and another 3�3 matrix.
When we try to get the nontrivial solutions as was done in
Eq. �7�, we find it impossible to simultaneously solve explic-
itly for kx and ky. Instead, we can solve for the magnitude of
the transverse wave vector kt=�kx

2+ky
2, which leads to

kt
4 − �2��v�z + �z/�t + 4�c

2�z/�t�kt
2 + �4�v�z�z/�t = 0,

�21�

where �v �i.e., ��2−g2� /�� and 1/�t are the Voigt permittivity
and permeability, respectively. Finally, we arrive at

kt± =
�

2
�����v�z + ��z/�t�2 + 4�c

2�z/�t

± ����v�z − ��z/�t�2 + 4�c
2�z/�t� . �22�

Due to the rotational symmetry in the transverse plane at z
=0, the magnitude of the wave vector kt can be obtained by
setting the determinant of the Helmholtz equation �i.e., Eq.
�20�� to zero. This shows that the magnetoelectrically chiral
medium favors two elliptically polarized eigenwaves with
the coefficients kt±.

B. Wave impedance

As mentioned previously, one parallel LCP �i.e., kp−� and
one antiparallel LCP �i.e., ka−� can be backward propagating
with opposite directions of phase and energy velocity. The
directions of the energy velocities are identical with those of
the Poynting vectors, which can be verified directly from the
Maxwell equations together with the constitutive relations:

Sp+ = ẑ
�E0�2

2
1
, �23�

Sa− = − ẑ
�E0�2

2
1
, �24�

Sp− = ẑ
�E0�2

2
2
, �25�

Sa+ = − ẑ
�E0�2

2
2
, �26�

where 
1 and 
2 denote the wave impedances of the positive
and negative helicities, respectively.

In view of the above equations, the z-axis component of
the Poynting vector can be shown as

Sz =
1

2
�ExHy

* − EyHx
*� �27�

where the transverse magnetic fields can be obtained from
Eqs. �12�–�15�:

�Hx

Hy
� = �i	�c +

kz

�
�
Ex −

kz

�
�tEy

i	�c +
kz

�
�
Ey +

kz

�
�tEx

� . �28�

Before we can solve for 
1 and 
2, one condition should be
noted, derived from Eqs. �16� and �17�,

	2�c +
�

kz
g +

kz

�
�
2

= 	�

kz
� −

kz

�
�t
2

. �29�

Substituting Eq. �28� into Eq. �27� with the aid of the solu-
tion in Eq. �29�, we finally obtain


1 =
1

��c
2 + ��t − ���� + g�

=
1

��c
2 +

� + g

� + w

, �30�


2 =
1

��c
2 + ��t + ���� − g�

=
1

��c
2 +

� − g

� − w

. �31�

Alternatively, by applying the Beltrami fields,31 �± and �± of
the eigenmodes can also be obtained as

�± =��c
2 +

� ± g

� ± w
±�c�� ± w�

+ ���c�� ± w��2 + �� ± g��� ± w�� , �32�

�± =� � ± w

�c
2�� ± w� + � ± g

±�c�� ± w�

+ ���c�� ± w��2 + �� ± g��� ± w�� . �33�

Thus, the wave impedances of those eigenmodes can be veri-
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fied by using 
±=��± /�±, which agree with results for 
1
and 
2, respectively.

These findings are of importance in phase compensation
and compact resonators,7 since good impedance matching
can be achieved at the interface between a magnetoelectri-
cally chiral slab and the adjacent spaces. Note that the ele-
ments in the permittivity and permeability tensors involve
frequency, plasma frequency, electron gyrofrequency, gyro-
magnetic response frequency, and saturation magnetization
frequency,32,33 and the realization of a backward wave de-
pends on the frequency selection. Within certain frequency
ranges, kp− and ka− could be the wave numbers of a back-
ward wave simultaneously, or only one of them might be.
Configurations of conventional and subwavelength cavity
resonators are proposed using magnetoelectrically chiral
slabs, when the working frequency is properly chosen to ar-
rive at a negative refractive index.

In Fig. 1, it can be seen that, if a plane wave propagates in
the direction perpendicular to the interfaces at a certain fre-
quency range, its phase is increased in the conventional me-
dium and can be decreased by the magnetoelectrically chiral
medium. This falls into the backward wave region. It is noted
that the backward eigenmodes possess two impedances.
Hence, by properly controlling the parameters and the exter-
nal biased fields, 
+=
0 or 
−=
0 can be chosen to match
the wave impedance 
0 of the air, which means two kinds of
cavity resonator can be created as shown in Figs. 2 and 3.

The resonance condition for a cavity takes the form7

n2

�2
tan�n1k0d1� +

n1

�1
tan�n2k0d2� = 0, �34�

where the subscripts 1 and 2 correspond to the layers on the
left- and right-hand sides, respectively. For the case shown in
Fig. 2 when 
+ is matched, it turns out to be a conventional
cavity resonator, and thus Eq. �34� becomes

n+d2 + d1 =
m

2
�0, m = 0,1,2, . . . , �35�

where �0 is the wavelength in the air.
Of particular and practical interest is the case of subwave-

length cavity resonators, in which the arguments in the tan-
gential functions can be assumed small. If 
− is matched, the
resonant condition in Eq. �34� is reduced to

d1

d2
�

��−�
��0�

. �36�

It can be observed that it is not necessary to satisfy the above
condition to have simultaneously negative permittivity and
permeability, since only the first term in the Taylor expansion
in the tangent function is kept for a thin layer on metal sur-
faces. The definition of n± will be given in the following
section.

FIG. 1. Compact resonator formed by a two-layer structure con-
sisting of air and magnetoelectrically chiral medium backed by two
ideally conducting planes.

FIG. 2. Configuration of one-dimensional �1D� conventional
cavity resonator.

FIG. 3. Configuration of 1D subwavelength cavity resonator.
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III. NEGATIVE REFRACTION

kp− and ka− are of particular interest since they will rep-
resent the properties of backward waves under specific cases
as shown in Table I. The quantities � and g are given in Ref.
32 as follows:

� = �0	1 −
�p

2�� + i�ef f�
���� + i�ef f�2 − �g

2�

 , �37�

g = �0
�p

2�g

���� + i�ef f�2 − �g
2�

, �38�

where �p, �g, and �ef f are the plasma frequency, electron
gyrofrequency, and collision frequency of the electrons, re-
spectively.

It should also be noted that the positive �negative� helicity
is defined as right-�left-�handedness to the positive �negative�
z axis. The helicity and polarized states can be found by
inserting Eqs. �18� and �19� into Eq. �7�. When kp− or ka−
becomes a backward wave, the handedness changes.

A collisionless case is considered here �i.e., �ef f =0�. First
we introduce two quantities

�c1 =
1

2
�− �g + ��g

2 + 4�p
2� , �39�

�c2 =
1

2
��g + ��g

2 + 4�p
2� . �40�

As shown in Table I, in order to realize the backward eigen-
mode ka−, we can see that �+g�0 should be satisfied �i.e.,
0����c1 should hold�. To form the backward eigenmode
kp−, g�, which means �g����c2. Note that if

�p � �2�g

is satisfied, there is no overlapping of the two intervals re-
garding the frequency �. If we choose

�p  �2�g,

then both kp− and ka− are backward wave numbers, and two
impedances will be present in any one layer of a slab in Fig.
1. In that case, it would be impossible to match those two
impedances simultaneously at the material-air interface.
However, we can choose one impedance equal to that of air,
and correspondingly the backward wave associated with that
impedance can propagate through the slabs as shown in Figs.
2 and 3. From the definitions given below:

�p
2 =

Nee
2

m�0
, �41�

�g =
e

me
Bdc, �42�

where the subscript dc represents the dc electromagnetic
field applied to induce the gyrotropy in both the permittivity
and permeability tensors. It can be seen that nonoverlapping
or overlapping can be achieved by adjusting the number of
electrons or the dc field. For simplicity, we can further split
the field into two parts as

Bdc = �0�Hdc + Mdc� , �43�

where M denotes the magnetic moment in the whole volume
occupied by a magnetoelectrically chiral material and the H
field has taken into account the demagnetizing field. Then the
permeability tensor can be characterized as33

� = �0	1 −
�0�M

�2 − �0
2
 , �44�

w =
��M

�2 − �0
2 , �45�

where

�0 =
e

me
�0Hdc, �46�

�M =
e

me
�0Mdc. �47�

Therefore, it can be shown that the restriction �w � �� �as
stated in Table I� can be maintained by choosing a proper
external dc magnetic field and number of electrons.

With the conditions clearly stated, the negative refractive
indices of a magnetoelectrically chiral medium can be ob-
tained, which are of particular interest. Taking into account
Eqs. �18� and �19�, for the respective polarization states and
helicities, we can finally obtain the two refractive indices for
these backward eigenwaves:

n± =
c0

��t � ��
���c

2 + ��t � ���� ± g� − �c� �48�

where the plus and minus signs refer to ka− and kp−, respec-
tively.

TABLE I. Helicity and polarization states of kp− and ka− in three cases, under the conditions of �w � ��
and �c0.

g�−� −��g�� g�

Helicity Polarization Helicity Polarization Helicity Polarization

kp− � LCP � LCP �a RCPa

ka− �a RCPa � LCP � LCP

� �0, �c1� ��g, �c2�
aBackward wave regions.
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It can be seen that n+ will be negative when g�−� and n−
will possess a minus sign when g� �which means that a
backward wave propagates in such a medium�. Equation �48�
also shows that a negative refractive index may easily be
achieved even if the chirality admittance �c is very small.
Note that we can use all positive parameters �i.e., �, g, �, w,
and �c� to achieve a negative index of refraction �i.e., n−�. In
addition, g� can be realized with some advanced technol-
ogy in future based on the theory of off-diagonal parameter
amplification in artificially gyrotropic media.34

In what follows, we analyze Eq. �48� in detail to give an
overview of the possibility of backward waves.

We can further rewrite Eq. �48� as

n± = c0���� ± w�2�c
2 + �� ± w��� ± g� − �� ± w��c� .

�49�

It is found that negative refractive indices may be easily
achieved if �±g�0, and it has been pointed out how the
frequency should be selected so as to give rise to negative
refractive indices in Fig. 1. The case of n±=0 turns out to be
of particular interest �i.e., the case �±g=0�. It follows that
this case can be realized at two specific frequencies as given
below:

�1 = −
�g

2
+�	�g

2

2

+ �p
2, �50�

�2 =
�g

2
+�	�g

2

2

+ �p
2. �51�

�=�1 and �=�2 lead to �+g=0 and �−g=0, respectively.
Therefore this can create an equivalent cover for patch

antennas �see Fig. 4� with zero refractive index and a posi-
tive wave impedance 1/�c, comprised of a magnetoelectri-
cally chiral medium. Only normally incident waves are trans-
mitted into the slab, and the phases in any plane between z
=0 and z=d will remain unchanged. Alternatively, as shown
in Fig. 5, if some sources are placed in a substrate made from
a magnetoelectrically chiral slab with n=0 and finite imped-
ance, all the transmitted waves will be perpendicular to the
upper surface no matter what the form of the source.

Hence, a magnetoelectrically chiral slab may be used as a
radome of antennas, which will greatly enhance the directiv-
ity of the antennas. No reflected waves interfere with the
antennas if impedance matching at the material-air interface
has been done. In addition, the existence of slab has no in-
fluence on the phase of the propagating waves.

In a word, magnetoelectrically chiral media provide us a
very exciting new opportunity to realize negative refraction,
backward wave propagation, and other promising potential
applications.

IV. CONCLUSION

In this paper, we studied important electromagnetic prop-
erties of magnetoelectrically chiral media due to their signifi-
cant potential in the realization of negative-refractive-index
materials. The longitudinal and transverse wave propagation
in a magnetoelectrically chiral medium are considered, and
properties of these eigenmodes such as helicity and polariza-
tion are fully examined in order to find the backward waves.
The impedances for all eigenmodes, including the backward
eigenmodes, are derived and studied. It is also found that the
magnetoelectrically chiral material can be utilized to achieve
negative refraction and to fabricate subwavelength cavities.
For these purposes, impedance matching, gyrotropic param-
eter effects, and working frequency selection have been dis-
cussed. In addition, we show that a zero-refractive-index ma-
terial can be achieved in such a magnetoelectrically chiral
material; its characteristics and potential applications are
studied.
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FIG. 4. Magnetoelectrically chiral slab with n=0 and phase
conservation.

FIG. 5. Special substrate made from magnetoelectrically chiral
slab with zero refractive index but finite impedance.
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