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We propose a method for adaptive waveguide bends using homogeneous, nonmagnetic, and isotropic materials,
which simplifies the parameters of the bends to the utmost extent. The proposed bend has an adaptive and compact
shape because of all the flat boundaries. The nonmagnetic property is realized by selecting OB0=OC ¼ 0:5. Only two
nonmagnetic isotropic dielectrics are needed throughout, and the transmission is not sensitive to nonmagnetic iso-
tropic dielectrics. Results validate and illustrate these functionalities, which make the bendmuch easier to fabricate
and apply, owing to its simple parameters, compact shape, and versatility in connecting different waveguides.
© 2011 Optical Society of America
OCIS codes: 230.7370, 160.1190, 130.5296.

Reaching beyond making objects invisible by coordinate
transformation [1–4], finite embedded transformation [5]
is employed to design beam shifters and splitters. This
finite embedded approach is further utilized in conjunc-
tion with the design process of waveguide bends [6–10]
by use of inhomogeneous and anisotropic materials.
Conventional waveguide bends unfortunately suffer

from reflection and also result in the distortion of the
guided modes. A few methods have been proposed to ob-
tain waveguide bends of low reflection and minimized
mode distortion, such as photonic bends [11], micro-
prism bends [12], and plasmonic bends [13]. Compared
to these bends based on photonic crystals and plasmonic
guiding modes, the disadvantages of the bends based on
finite embedded transformation are obvious, i.e., the use
of inhomogeneous, magnetic, and anisotropic metama-
terials in the bending part [8], because the involved
metamaterials are difficult, if not impossible, to realize
in practice.
Therefore, in order to remove the magnetism in the ma-

terial, simplified parameters are proposed [6]; however,
the nonmagnetic material in the bending region is still an-
isotropic and inhomogeneous along the radial direction
[6]. To further remove the inhomogeneity, the inhomoge-
neous profile of εr (along the radial direction) has been
discretized into N homogeneous layers [6], i.e., a contin-
uous profile of εr replaced with N constant values. To en-
sure that the discretization is valid,N has to be sufficiently
large. However, it should be noted that the material in the
bender is still anisotropic in the Cartesian coordinate, and
it will thus have N different anisotropic materials in the
bender [6]. To further remove the anisotropy in each layer
in [6], another discretization is proposed along the azi-
muth direction [10] by three alternating isotropic dielec-
trics for an individual layer, resulting in 3N different kinds
of dielectrics in total. Nevertheless, the material from the
identical coordinate transformation [6,10] is inherently in-
homogeneous and anisotropic in Cartesian coordinates.
To summarize, the transformation optical waveguide
bend [6,10] implies that: (i) the bender can connect only

twowaveguides of equalwidth and the bender can be only
of annular shape; (ii) the material in the bender is inher-
ently inhomogeneous and (or) anisotropic in Cartesian
coordinate even after some simplifications; (iii) the dis-
cretization along radial direction [6] leads to nonplanar
interfaces between layers, while discretization along azi-
muth direction [10] in each layer leads to titled planar in-
terfaces between dielectrics, which greatly increases the
fabrication complexity; and (4) the isotropic structure [10]
based on 3N (where N denotes the initial number of dis-
cretized layers) kinds of dielectrics has physical restric-
tions on the length of the waveguide (original space)
and thebending angle of the bentwaveguide (transformed
space).

In this connection, a distinguished transformation
method is presented here, which demonstrates an inter-
esting advance in the design of waveguide bends based
on transformation materials. Compared to the previous
waveguide bends [6–10], the bends proposed in this Let-
ter are constructed with homogeneous materials, and
they can connect two waveguides of arbitrary widths,
while perfect wave tunneling can still be achieved. In ad-
dition to the homogeneity, isotropy and nonmagnetism
are furthermore introduced into the adaptive bend,
which requires only two kinds of isotropic dielectrics
for either region throughout. The proposed method
can also enable us to shrink the area of the bending re-
gion by making the sharp turn obtuse. More interestingly,
those shrunken designs are inherently desirable, because
they lead us to our utmost aim: homogeneous, nonmag-
netic, and isotropic bends. Therefore, our approach pro-
vides a much easier but more advantageous recipe for
the practical realization of adaptive waveguide bends
based on coordinate transformation.

Figure 1 shows the scheme to design waveguide bends
by transforming triangles AOB and BOC in virtual space
ðx; y; zÞ into AOB0 (region I) and B0OC0 (region II) in real
space ðx0; y0; z0Þ, respectively. It should be noted that the
coordinates of points A, B, C, B0, and C0 are constants and
can be expressed as ðxA; yAÞ, ðxB; yBÞ, ðxC; yCÞ, ðxB0 ; yB0 Þ,
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and ðxC0 ; yC0 Þ, respectively. The transformation equations
from the triangle AOB to region I (denoted by the triangle
AOB0) can be expressed as

x0 ¼ a11xþ b11yþ c11;

y0 ¼ a12xþ b12yþ c12;

z0 ¼ z; ð1Þ

where ½a11; b11; c11�T ¼ Q−1
1 ⋅½xA; 0; xB0 �T , ½a12; b12; c12�T ¼

Q−1
1 ⋅½yA; 0; yB0 �T , and Q1 ¼ ½xA; yA; 1; 0; 0; 1; xB; yB; 1�.
Based on transformation optics [1,2], the permittivity

and permeability of region I can be obtained εI ¼
μI ¼ Λ1⋅ΛT

1 =detðΛ1Þ, where Λ1 ¼ ½a11; b11; 0; a12; b12;
0; 0; 0; 1� and detðΛ1Þ ¼ a11b12 − a12b11.
Region II denoted by triangle B0OC0 is transformed

from the triangle BOC, and the transformation equations
can be expressed as

x0 ¼ a21xþ b21yþ c21;

y0 ¼ a22xþ b22yþ c22;

z0 ¼ z; ð2Þ

where ½a21; b21; c21�T ¼ Q−1
2 ⋅½xB0 ; 0; xC0 �T , ½a22; b22; c22�T

¼ Q−1
2 ⋅½yB0 ; 0; yC0 �T , and Q2 ¼ ½xB; yB; 1; 0; 0; 1; xC; yC; 1�.

The parameters of region II thus become εII ¼
μII ¼ Λ2⋅ΛT

2 =detðΛ2Þ, where Λ2 ¼ ½a21; b21; 0; a22; b22;
0; 0; 0; 1� and detðΛ2Þ ¼ a21b22 − a22b21.
It can be seen that the constitutive parameters are

homogeneous in the two regions of the bender, which
greatly enhances the realizability of sharp waveguide
bender in practice. Full-wave simulations based on the
finite-element method are performed under TM and TE
polarization. The waveguide boundaries are assumed
to be a perfect electric conductor. First, let us consider
a sharp bend designed by the proposed method, which
connects two different waveguides. In Fig. 1(a), the
widths of the two waveguides are chosen to be a ¼
10 cm and b ¼ 2 cm, with their cutoff frequencies at
1:5 GHz and 7:5 GHz, respectively. Figure 2 shows the
snapshots of the total electric fields at the working fre-
quency of f ¼ 10 GHz, when a TE wave is incident from
port 1. If no transformation material is placed in the junc-
tion, we can observe that there is nearly no transmission
shown in Fig. 2(a). Nevertheless, based on the proposed
method, two homogeneous media can be designed and

embedded into respective regions of the bend, as in
Fig. 2(b). Then electromagnetic waves can be guided
from one waveguide to the other without any reflection.
Note that those two homogeneous media in Fig. 2(b) are
different, magnetic, and anisotropic.

Then we propose an advanced design in Fig. 3 [based
on Fig. 1(b)] to achieve the utmost aim, i.e., a homoge-
neous, nonmagnetic, and isotropic bend. In addition, this
interesting design has a smaller area in the bend and
makes the sharp corner obtuse. The symmetry of the ten-
sors εI and εII ensures that a rotation transformation can
map such symmetric tensors into diagonal tensors, from
which the effective isotropic media can be derived
[14,15]. The permittivity tensor for regions I and II in
the bend could be expressed as εi ¼ diag½ζxi ; ζyi ; ζzi �,
where ζxi ¼

h
εxxi þ εyyi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεxxi − εyyi Þ2 þ ð2εxyi Þ2

q i
=2, ζyi ¼

h
εxxi þ εyyi −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεxxi − εyyi Þ2 þ ð2εxyi Þ2

q i
=2 and ζzi ¼ εzzi

(i ¼ I or II). Based on the effective media theory, the
anisotropic media could be easily realized through alter-
nating layered isotropic media. Because the ideal aniso-
tropic material is homogeneous and identical in both
regions, the whole bend now can be composed of only
two types of isotropic materials in a planarly layered pat-
tern: medium A and medium B. All isotropic dielectric

Fig. 1. (Color online) Schematic illustration of coordinate
transformation in the design of advanced waveguide bends:
(a) bend connecting two waveguides of different widths
and (b) bend connecting two waveguides with nonmagnetic
materials.

Fig. 2. (Color online) Snapshots of the total electric fields for
Fig. 1(a) when a ¼ 10 cm and b ¼ 2 cm: (a) field distribution
without transformationmaterials in bending region and (b) field
distribution with homogeneous transformation materials in the
bend.

Fig. 3. (Color online) Magnetic field distribution of the bend
designed using homogeneous and nonmagnetic materials for
a ¼ 10 cm, with or without anisotropy: (a) vacuum bend, (b)
ideal anisotropic transformation media filled in the bend, (c)
layered isotropic dielectrics filled in the bend and θ0 ¼ 58°,
and (d) average power outflow at port 2.
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layers are parallel to each other, and the angle between
any region I or II layer and the line OB0 is θ0 ¼
π
4 −

1
2 tan

−1
�

2εxyI
εxxI −εyyI

�
, where − π

2 < tan−1
�

2εxyI
εxxI −εyyI

�
< π

2. The ma-

terial parameters of isotropic medium A and medium B

are defined as εAi ¼ ζxi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζxi Þ2 − ζxi ζ

y
i

q
and εBi ¼ ζxi −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðζxi Þ2 − ζxi ζ
y
i

q
, respectively. The effective isotropic pa-

rameters can be found εAI ¼ εAII ¼ 5, εBI ¼ εBII ¼ 0:2, and
μI ¼ μII ¼ 1 when OB0=OC ¼ 0:5 to cater to the nonmag-
netic requirement.
Figures 3(a) and 3(b) correspond to the nonmagnetic

bender with and without transformation media, when a
TMwave is incident form port 1 at the working frequency
f ¼ 2 GHz. Clearly, in Fig. 3(a), strong reflection and se-
vere mode distortion will be present. In Fig. 3(b), EM
waves completely pass through the bender with homoge-
neous, nonmagnetic and ideal anisotropic transformation
media. Figure 3(c) presents the magnetic field distribu-
tion inside the homogeneous, nonmagnetic, and isotropic
bend at OB0=OC ¼ 0:5, which is believed to be the most
advanced. The anisotropy in Fig. 3(b) has been removed
by replacing the identical anisotropic material in regions
I and II with two isotropic dielectrics εAI ¼ εAII ¼ 5,
εBI ¼ εBII ¼ 0:2, and μI ¼ μII ¼ 1. In Fig. 3(d), it is clear that
the advanced bend is as perfect as the ideal case. More
importantly, in each region, the homogeneous, nonmag-
netic, and isotropic dielectrics are in planarly layered
geometry, and one needs just two kinds of dielectrics
for one region, in contrast to the complex configuration
and totally 3N kinds of different isotropic dielectrics
in [10].
Because the dielectric medium B εB will have positive

permittivity below 1, it is necessary to investigate the loss
effect in εB. In Fig. 4(a) we plot the average power out-
flow exiting from port 2 when medium B εB has the loss
tangent of 0.001, 0.01, and 0.1. It is expected that the aver-
age power outflow decreases as the loss increases. An
interesting phenomenon is that the power is zero at x ¼
0 m and very low at x ¼ 0:1 m for the hollow bend, but
the power transmission has been significantly enhanced
near those two boundaries when the lossy isotropic di-
electrics are filled in the bend. To provide guidelines

to the practical implementation, Fig. 4(b) outlines the
material parameters as a function of OB0=OC. It reveals
that all of εA, εB, and μ vary slightly when OB0=OC is not
quite small, which make such design insensitive to the
mismatch between the parameters and the bend shape
(OB0=OC). One can also design a 90° bender (i.e.,
OB0=OC ¼ 1); the effective permittivities of the two iso-
tropic dielectrics are identical to the case of OB0=OC ¼
0:5 in Fig. 3(c), but the bender will be magnetic, i.e., μI ¼
μII ¼ 0:5 and θ0 ¼ 32°.

In conclusion, we have proposed an advanced wave-
guide bending mechanism exploiting homogeneous, non-
magnetic, and isotropic materials, which is more feasible
and closer to future realization. In terms of the configura-
tion of isotropic structures, the current model also out-
performs the previous designs, because it supports
different waveguides and involves much fewer isotropic
dielectrics and easier positioning for individual isotropic
dielectrics. The full-wave simulation validates the pro-
posed design mechanism, and perfect wave tunneling
is demonstrated for the advanced bend with the elimina-
tion of reflection and mode distortion. The approach de-
veloped here may also find potential applications in
optical devices, because multilayered structures can
now be fabricated accurately in the nanoscale.

This research was supported by grant R-263-000-574-
133 from the National University of Singapore. T. C.
Han is working toward his Ph.D. at National University
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Fig. 4. (Color online) (a) Average power outflow at port 2
when isotropic medium B εB is with the loss tangent of
0.001, 0.01, and 0.1 at OB0=OC ¼ 0:5 to comply with the non-
magnetic condition. (b) Parameters of two isotropic media ver-
sus OB0=OC.
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