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Supplementary Note 1 

Effective thermal conductivity of the rotating fluid 

We assume a simple velocity field v(r) = r and consider the following diffusion advection 

equation: 
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which can be attempted with a variable separation T2(r,) = F(r)G(). The subscript 2 means the 

temperature distribution in the region R1 ≤ r ≤ R2. Inserting it to equation (1) gives: 

(𝑟2𝐹′′ + 𝑟𝐹′)/𝐹 = (
Ω

𝐷
𝑟2𝐺′ − 𝐺′′) /𝐺.                                       (2) 

Since G is periodic in  and varis slowly in our condition, we assume G = exp(i) where i is the 

imaginary unit. This provides a valid solution to equation (2) where F satisfies: 

𝑟2𝐹′′ + 𝑟𝐹′ − (
𝑖Ω

𝐷
𝑟2 + 1)𝐹 = 0.                                             (3) 

By performing a change of variable 𝑟 = √𝐷/Ω𝑥 equation (3) is modified to the standard form: 

𝑥2𝑓′′ + 𝑥𝑓′ − (𝑖𝑥2 + 1)𝑓 = 0,                                              (4) 

whose solution is the first order Kelvin’s function1: f(x) = ber1(x) + ibei1(x). In the limit of large 

velocity, x is also large. We assume an argument 𝜙(𝑥) in the solution, which gives 𝑇2(𝑟, 𝜃) =

𝑀1[𝑥(𝑟)] cos(𝜃 − 𝜙[𝑥(𝑟)]), where 𝑀1(𝑥) is the magnitude of f(x). According to the asymptotic 

expansions of f(x) at large x, the temperature gradient ∂𝑇2/𝜕𝑟 = √Ω/D𝑀1 cos(𝜃 − 𝜙 + 𝜋/4). At 

the boundary r = R2, the matching condition is: 

𝑇2|𝑟=𝑅2 = 𝑇3|𝑟=𝑅2
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At the boundary r = R3, because of the cloaking effect, clearly we have 𝑇3|𝑟=𝑅3 = 𝐸 cos(𝜃), 

∂𝑇3/𝜕𝑟|𝑟=𝑅3 = 𝐹 cos(𝜃), where E and F are constants. Considering equation (5), there should be 
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deviation of the azimuthal distributions of temperature (containing cos(𝜃 − 𝜙) at r = R2) and 

temperature gradient (containing cos(𝜃 − 𝜙 + 𝜋/4)  at r = R2) along the two boundaries of 

region 3. At very large rotation speed, the temperature gradient is the dominant term. According 

to the principle of minimum entropy production, the deviation of temperature gradient should be 

minimized. Therefore it turns out that 𝜃 − 𝜙[𝑥(𝑅2)] + 𝜋/4 = 𝜃, or 𝜙[𝑥(𝑅2)] = 𝜋/4, which is 

confirmed by simulation results. We thus obtain the form of T2 at r = R2 as  

𝑇2|𝑟=𝑅2 = 𝑀1[𝑥(𝑅2)] cos(𝜃 + 𝜋/4).                                          (6) 

𝜕𝑇2
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|
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= √Ω/D𝑀1[𝑥(𝑅2)] cos(𝜃).                                          (7) 

On the other hand, if the fluid is replaced with solid material of thermal conductivity 2
eff, 

the temperature distribution has the following form in the first order of : 

𝑇2
eff(𝑟, 𝜃) = (𝐴2𝑟 + 𝐵2/𝑟)cos(𝜃),                                             (8) 

where A2 and B2 are constants. We also have a temperature distribution in the inner most region r 

≤ R1. In the first order , T1
eff(r,) = A1rcos() if we approximate the interior with an uniform 

homogeneous material of thermal conductivity 1. At the boundary r = R1, the two distributions 

should match: 
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Therefore 𝑇2
eff(𝑟, 𝜃) = (𝐴2𝑟 + 𝐵2/𝑟)cos(𝜃), which gives: 

𝐴2 = (1 +
𝜅1

𝜅2
eff)

𝐴1

2


𝐵2 = (1 −
𝜅1

𝜅2
eff)

𝐴1𝑅1
2

2

 .                                                      (10) 

Therefore: 
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In order to generate a similar temperature field as the thermal zero-index cloak outside the device, 

the temperature and heat flux distribution at the outer boundary r = R2 had better meet: 
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Looking back at equation (6) and (11), we see that the first condition is not achievable. We 

should modify it to a weaker version of minimized differenc: 

min [∫ (𝑇2|𝑟=𝑅2 − 𝑇2
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2
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2)].              (14) 

The minimum is reached when 𝐶 = √2𝑀1/2. The constant D in equation (12) can than be found 

through its relation with C through A1. The second condition of equation (13) can thereby be 

rewritten as an equation of 𝜅2
eff (written as 𝜅 for simplicity): 

(1 − 𝛼)𝜅2 + (1 + 𝛼)(𝜅1 − 𝜅2√2𝑃𝑒)𝜅 − (1 − 𝛼)𝜅1𝜅2√2𝑃𝑒 = 0,                   (15) 

where 𝛼 = 𝑅1
2/𝑅2

2, and 𝑃𝑒 = Ω𝑅2
2/𝐷 is the Péclet number. In the limit of large velocity, 𝜅1 ≪

𝜅2√2𝑃𝑒 and can be ignored. The solution is then independent of the interior material as expected: 
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Reference: 

1. Olver, F. W. J. & Maximon, L. C. Bessel Functions, in NIST Digital Library of Mathematical 

Functions. http://dlmf.nist.gov/, release 1.0.18 of 2018-03-27. 
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Supplementary Figure 1. Cases when the cloaking effect is absent. a, Without the outer 

complementary layer, the object is just surrounded by a channel filled with rapidly circulating 

water, which deforms the profile as a scatterer with ultra-high conductivity, equivalent to a near-

zero-index material (NZIM). b, With the outer layer, but when the water is at rest, the NZIM 

effects are not triggered. 
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Supplementary Figure 2. Numerical results with an elliptical (a,b) and a square (c,d) object. 

a,c, Temperature (T) profiles, where the white lines are isothermal lines. b,d, Velocity magnitude 

(|v|) profiles, where the red arrows represent the directions of the velocity. The velocity fields are 

driven by a moving outer boundary. The results for objects of other shapes are expected to be 

similar. The shape of the outer layer is kept circular to satisfy the scattering cancellation 

condition, which is enough for all conceivable situations. Other shapes of the outer layer are also 

possible but requires re-calibration of its thermal conductivity. 
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Supplementary Figure 3. Simulated temperature profiles at different rotation speeds of the 

fluid. a,  =   0.1 rad/s. b,  =   1 rad/s.  c,  =   5 rad/s. White lines are isothermal 

lines. d, Temperature distribution along the x = −8.8 cm line (indicated as dashed black lines in 

a-c).  
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Supplementary Figure 4. Experimentally measured infrared images at different input 

voltages. The temperature profile outside the device is gradually restored as the input voltage 

increases. 
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Supplementary Figure 5. Simulation of the more realistic experimental setup with the 

nonisothermal turbulent flow model. a, Temperature distribution on the upper surface. b, 

Normal conductive heat flux on the side boundaries of the fluid field. c, Turbulence heat 

dissipation inside the fluid field. The white colour tubes are isothermal lines. 




