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Abstract. Based on the concept of the cloak generating function, we propose
an implicit transformation-independent method for the required parameters
of spherical cloaks without knowing the needed coordinate transformation
beforehand. A non-ideal discrete model is used to calculate and optimize the
total scattering cross-sections of different profiles of the generating function. A
bell-shaped quadratic spherical cloak is found to be the best candidate, which is
further optimized by controlling the design parameters involved. Such improved
invisibility is steady even when the model is highly discretized.
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1. Introduction

Recently, great progress has been made in both the theory of, and experiments on, invisibility
cloaks [1]–[4]. Wide applications have been found in the microwave spectrum [5]–[10], optical
regime [11]–[16], elastodynamics [17, 18], quantum mechanics [19, 20] and in acoustics
[21]–[24]. One approach to achieve an invisibility cloak is to employ transformation optics
(TO) to allow electromagnetic waves to be directed around the concealed region and to
be smoothly recovered afterwards. The anisotropic parameters of such a cloak are derived
from the coordinate transformation. This approach was generalized from the cloaking of
thermal conductivity [25] and then widely applied in many other areas, providing new
approaches for concealment of passive/active objects [26, 27], invisible to external observation.
The fundamental idea is the invariance of Maxwell’s equations under a space-deforming
transformation if the material properties are altered accordingly; i.e. a specific spatial
compression is equivalent to a variation of the material parameters in the flat space. Based
on the TO concept, much effort has been devoted to the study of two-dimensional (2D)
cloaks (cylindrical [31], elliptical [32] and arbitrary cross-section [33]) due to the simplicity
of the numerical simulations. Inspired by the classic spherical cloak [1], the expressions of
electromagnetic fields were explicitly presented in terms of spherical Bessel functions via
Mie theory [26]. However, this analytical scattering theory for classic spherical cloaks cannot
work if the anisotropic ratio (see the original definition in [34]) is anything other than that
in [26]. Two solutions to overcome this problem were proposed: (i) multilayers of alternating
isotropic layers [35]; and (ii) the discrete model of the inhomogeneous anisotropic shell, in
which each layer is radially anisotropic but homogeneous [36]. Then, the spherical invisibility
cloak is near-perfect. Another non-TO route to cloaking of a canonical shape is to use a
homogeneous anisotropic [28, 29] or isotropic plasmonic [30] coating. However, in this method
the effectiveness and properties of the cloak depend on the object to be cloaked, as well
as its size, which needs to be small compared to the wavelength. Usually, with TO-based
spherical cloaks we need to know the prescribed transformation functions first, and the required
parameters can thus be obtained by constructing the explicit transformation matrices. As
reported in what follows, there exists an implicit way to derive the needed cloaking parameters,
bypassing the traditional procedure mentioned.
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In this paper, we propose a new recipe for designing spherical invisibility cloaks, in which
we do not need to know or use the coordinate transformation. By virtue of the cloak-generating
function, all the parameters a radially anisotropic spherical cloak needs can be determined
analytically and uniquely. Nevertheless, the corresponding coordinate transformation can be
found by the calculation of those material parameters. Therefore, the traditional way to design
a cloak is reversed. In addition, this reversed and implicit transformation-independent method
provides us with an easy way to investigate the role of the parametric profiles in achieving
invisibility. Certainly, those sets of parameters from various generating functions are ideal, and
all should give zero scattering theoretically. However, in actual situations, one has to consider a
discrete multilayered model so that the invisibility performance of different generating functions
can be distinguished. The general method developed in [36] is adopted to calculate the far-
field scattering. Our numerical results reveal that the power quadratic bell-shaped cloak yields
the lowest scattering under the same discretization, which is still pronounced when the ideal
cloaking shell is highly discretized.

This paper is organized as follows. Section 2 proposes the reversed design method based on
the implicit transformation-independent process, from which the spherical cloak’s parameters
are determined without knowing specific coordinate transformations. Section 3 addresses the
bell-shaped profile of the generating function outperforming the others, including the linear one
that corresponds to the classical spherical cloak. Section 4 compares different profiles which
give rise to bell-shaped profiles. Section 5 discusses the optimization of bell-shaped quadratic
cloaks where the steady improvement in invisibility performance is verified.

2. Transformation-independent design method for arbitrary spherical cloaks

We start with the well-known expressions for the relative permittivity and permeability tensors
in the physical space transformed from vacuum

¯̄ε =
¯̄J ·

¯̄J T / det( ¯̄J ), ¯̄µ =
¯̄J ·

¯̄J T / det( ¯̄J ), (1)

where ¯̄J is the Jacobian matrix with elements Ji j = ∂ri/∂r ′

j [7] (i.e. the derivative of the i th
transformed coordinate with respect to the j th original coordinate, both of which run from
1 to 3).

We consider that the parameters of the spherical cloak are only dependent upon the radial
position of the spherical coordinates, i.e. (r ′, θ, ϕ) → (r, θ, ϕ). Supposing r ′ as radial coordinate
in virtual (original) space and r as that of the physical (transformed) space, one concludes that
dielectric permittivity and magnetic permeability tensors, in terms of impedance matching, are

¯̄ε(r) = ¯̄µ(r) =

εr(r) 0 0
0 εt(r) 0
0 0 εt(r)

 =

λr/λ
2
t 0 0

0 1/λr 0
0 0 1/λr

, (2)

where εr(r) and εt(r) are the radial and transverse dielectric permittivities (they coincide with
the radial and transverse magnetic permeabilities, respectively). Note that equation (2) appeared
first in [37]. In the virtual (original) space the light propagates in the sphere of vacuum
0 < r ′ < b. It is evident that if an air sphere is in the vacuum itself, the light goes through it
without scattering. After transforming to the physical (transformed) space, the initial sphere
becomes the spherical layer a < r < b and the light goes through it without impinging on the
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inner core (0 < r < a). So the inner region becomes concealed, while equation (2) determines
the permittivity and permeability tensors of such a cloaking shell. The derivation process of
equations (1) and (2) can be found in [38].

Dimensionless parameters λr and λt appear as the Jacobian matrix diagonal elements:
λr, λθ = λt, and λϕ = λt. They are defined as

λr =
dr

dr ′
, λt =

r

r ′
. (3)

From the above expressions we derive a set of equations

dr

dr ′
=

1

εt(r)
,

r

r ′
=

1
√

εr(r)εt(r)
. (4)

Manipulating equation (4), we arrive at a differential equation to relate radial and transverse
permittivities as

d(r
√

εr(r)εt(r))

dr
= εt(r). (5)

It should be noted that equation (5) is transformation independent, which alone directly
displays the expression that dielectric permittivities of a spherical cloak have to satisfy. This
approach is an inverse approach. The direct method is to find the dielectric permittivities from a
known function of the coordinate transformation. The inverse approach derives the coordinate
transformation from the known radial and transverse dielectric permittivities. Equation (5) can
be easily integrated:

r
√

εt(r)εr(r) = C +
∫ r

a
εt(r1) dr1, (6)

where C is the integration constant. The left-hand side of equation (6) is identical to r ′ as
suggested in equation (4). Hence, there are still two boundary conditions to be used. From the
first boundary condition (r ′

= 0 at r = a) we can determine the integration constant: C = 0.
From the second boundary condition (r ′

= b at r = b), we obtain the normalization condition
for the transverse dielectric permittivity

b =

∫ b

a
εt(r1) dr1. (7)

Therefore we can take any function for the transverse dielectric permittivity normalized
according to (7). The radial dielectric permittivity can be found from equation (6). The
normalization can be taken into account automatically, if the cloak generating function g(r)

is introduced. The generating function is defined as follows. It is proportional to the transverse
dielectric permittivity, i.e. g(r) = C0εt(r), where C0 is a constant. The constant is automatically
canceled using the normalization condition (7):

C0 =
1

b

∫ b

a
g(r1) dr1. (8)

Then transverse dielectric permittivity can be presented via the cloak-generating function
g(r):

εt(r) =
bg(r)∫ b

a g(r1) dr1

. (9)
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The dimensionless generating function is an arbitrary one. The limitations for g(r) are
connected to the experimental realization of a cloak, i.e. with the non-infinite values of the
permittivities and permeabilities.

Radial dielectric permittivity can be expressed from equation (6) as

εr =
b

(∫ r
a g(r1) dr1

)2

r 2g(r)
∫ b

a g(r1) dr1

. (10)

We will further classify spherical cloaks in terms of the generating function g(r). Pendry’s
classic spherical cloak corresponds to the constant generating function g(r) = 1: substituting
g(r) = 1 into equations (9) and (10) one can easily derive transverse dielectric permittivity εt =

b/(b − a) and radial dielectric permittivity εr = b(r − a)2/r 2(b − a). There are many nontrivial
cloak designs, e.g. linear, quadratic, cubic, sinusoidal, etc, some of which will be studied in this
paper.

3. Bell-shaped generating function for cloak optimization

Starting from this section we consider non-ideal cloaks since we use a discrete model to compute
and compare the far-field scattering. If ideal cloaks are considered, each of the cloak designs is
equivalent, leading to zero scattering. Realistic cloaks can be made of multiple homogeneous
spherical layers, which replace the inhomogeneous cloaking shell. In this case, the scattering is
not zero, but noticeably reduced, and such a cloak realization is called non-ideal (see figure 1).
In this section, we will find the best non-ideal cloak, providing the lowest cross-section among
all the designs investigated.

We will consider some typical generating functions (for transverse dielectric permittivities)
which exhibit different types of profiles. The simplest generating functions are constant, linear
and quadratic ones. Which of them provides the best cloaking performance?

The constant generating function produces the dielectric permittivities of Pendry’s classic
spherical cloak as has been demonstrated in the previous section. The linear generating function
can be generally written as g(r) = r − p, where p is a constant parameter. In this case, the
transverse (9) and radial (10) dielectric permittivities become

εt(r) =
2b(r − p)

(b − a)(b + a − 2p)
, (11)

εr =
b(r − a)2(r + a − 2p)2

2r 2(r − p)(b − a)(b + a − 2p)
. (12)

Parameter p can take any value except (a + b)/2. It controls the slope of the transverse
permittivity function. If p < (a + b)/2, εt(r) increases linearly, and otherwise it decreases
monotonically.

The quadratic generating function has the general form g(r) = (r − p)(r − d) + s, where
p, d and s are tunable parameters. The expressions for the permittivities in the quadratic case
can be deduced as

εt(r) =
b[(r − p)(r − d) + s]

P(b)
, (13)

εr =
bP2(r)

r 2[(r − p)(r − d) + s]P(b)
, (14)
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Figure 1. Illustration of the cloaking shell covering the object to be concealed.
We consider the spherical cloak in free space with the inner radius k0a = π and
the outer radius k0b = 2π . The core material is glass (ε(co)

= 1.452 and µ(co)
= 1).

These quantities are used throughout the whole paper. The material parameters
¯̄ε and ¯̄µ are determined by applying the proposed implicit transformation-
independent method to an arbitrary cloak-generating function. The cloaking shell
is divided equally into N layers (each layer is homogeneous and anisotropic),
and the scattering theory in [36] is used to compute the far-field diagrams.

where

P(r) =
r 3

− a3

3
− (p + d)

r 2
− a2

2
+ (pd + s)(r − a). (15)

The quadratic transverse permittivity is a parabola when represented by a graph. The parabola
can have a minimum (i.e. s > s0) or maximum (i.e. s < s0), where s0 = −(b2 + ab + a2)/3 + (p +
d)(a + b)/2 − pd.

Using these generating functions, some typical situations depicted in figure 2 are
presented. Profile 5 demonstrates the permittivities for the constant generating function g(r) = 1
corresponding to Pendry’s cloak. Linear generating functions are presented in Profile 4 (g(r) =

r − a) and Profile 6 (g(r) = r − b). The other profiles are produced using quadratic generating
functions.

The performances of different cloaks can be compared in terms of their scattering
cross-sections. The best cloaking design possesses the lowest cross-section because of the
reduced interaction of the electromagnetic wave with the spherical particle. The inhomogeneous
anisotropic spherical cloaking shell is divided into N homogeneous anisotropic spherical layers.
An experimental realization of this multilayer cloak can be the sputtering onto the spherical core.
Throughout the whole paper we use N = 30.

In figure 3, the total scattering cross-sections resulting from different generating functions
are shown. The definitions of the scattering cross-sections are given in the appendix. Detailed
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Figure 2. Transverse εt and radial εr dielectric permittivities corresponding to
different profiles of generating function. Profiles 1–9 are described as follows:
(1) quadratic generating function with p = 0, d = b, s = b2/4; (2) quadratic
generating function with p = a, d = b, s = (b − a)2/4 + 0.1; (3) quadratic
generating function with p = a, d = 2b − a, s = (b − a)2; (4) linear generating
function with p = a; (5) constant generating function; (6) linear generating
function with p = b; (7) quadratic generating function with p = a, d = 2b − a,
s = 0; (8) quadratic generating function with p = a, d = b, s = 0; and (9)
quadratic generating function with p = 0, d = b, s = 0.

information on the computational algorithm can be found in [36, 39]. In figure 3, some
profiles are approximately equivalent, for example, 1–3, or 4 and 6, or 7 and 9. Profiles
1–3 are characterized by concave-up transverse dielectric permittivity εt

′′ > 0. According to
figure 3 they give rise to the worst results. The flat-curvature profiles 4–6 characterized by
εt

′′
= 0 are much better. Pendry’s cloak (number 5) stands out against the other zero-curvature

profiles. However, the most effective cloak design is the case where concave-down transverse
permittivity εt

′′ < 0. Profiles 7–9 are better than profiles 4–6, respectively, by approximately
4.8 dB. The quadratic cloak with concave-down transverse permittivity is shown to be the best
candidate.

The maximum of εt in profile 8 is in the middle position of the cloaking shell. Shifting
the maximum of such a bell shape towards the limit at the outer boundary (i.e. profile 7) or
inner boundary (i.e. profile 9), the cloaking performance is monotonically degraded as shown in
figure 3. If parameter s is extremely large in the quadratic generating function (s → ∞), the
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Figure 3. Total scattering cross-sections for profiles of permittivities shown in
figure 2. The number of discrete layers forming the cloak equals N = 30.

cloak permittivities coincide with those of Pendry’s cloak. Thus, the increase of s improves
cloak 2 and degrades cloak 8.

The approach proposed to find the cloak which interacts less with the incidence is not
undertaken from a strictly mathematical point of view. However, it is simple and robust enough
to take into account the significance of the cloak’s profile shapes. We suppose that one of the
reasons that the quadratic generating function provides the best performance is discretization
into layers of equal thickness. It is possible that another type of discretization will correspond
with another cloak shape with minimal interaction.

4. The general class of bell-shaped cloaks

From the previous section, it is concluded that the bell-shaped profile of the transverse dielectric
permittivity leads to the optimal non-ideal cloaking performance. In the present section, we will
consider the general class of bell-shaped cloaks and choose the best type.

Apart from the quadratic cloak, another three simple bell-shaped profiles will be
considered: Gaussian, Lorentzian and Sech. All of them have a single parameter T , which sets
the width of the profile. We take the maxima of such transverse permittivities in the middle of
the cloaking shell region (at the point (a + b)/2) to compare with the quadratic cloak.

The Gaussian cloak has the generating function g(r) = exp [ − (r − (a + b)/2)2/(4 T 2)].
The permittivity functions are

εt =
b

2
√

πT Erf[(b − a)/(4 T )]
e−[(r−(a+b)/2)2/4 T 2],

εr =

√
πT b (Erf[(b + a − 2r)/(4 T )] − Erf[(b − a)/(4 T )])2

2r 2 Erf[(b − a)/(4 T )]
e[(r−(a+b)/2)2/4 T 2].

(16)
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Figure 4. (a) Profiles of transverse dielectric permittivity for quadratic (profile
No. 8 in figure 2), Gaussian, Lorentzian and Sech cloaks and (b) total cross-
sections of these cloaks. Parameter T equals (b − a)/4

√
2 ln 2 for Gaussian,

(b − a)/(2
√

2) for Lorentzian and (b − a)/(2
√

2 ln(
√

2 + 1)) Sech cloaks. The
number of discrete layers forming each cloak equals N = 30.

The generating function of the Lorentzian cloak is g(r) = 1/[1 + (r − (a + b)/2)2/T 2]. The
transverse and radial permittivities for this cloak are of the form

εt =
b

2T [1 + (r − (a + b)/2)2/T 2] arctan[(b − a)/(2T )]
,

εr =
T b(arctan[(b + a − 2r)/(2 T )] − arctan[(b − a)/(2 T )])2

2r 2 arctan[(b − a)/(2 T )]
(17)

×

(
1 +

(r − (a + b)/2)2

T 2

)
.

The Sech cloak generating function depends on the radial coordinate as g(r) = sech2[(r −

(a + b)/2)/T ]. The permittivities are as follows:

εt =
b sech2[(r − (a + b)/2)/T ]

2 T tanh[(b − a)/(2T )]
,

εr =
T b(tanh[(2r − b − a)/(2 T )] − tanh[(b − a)/(2 T )])2

2r 2 sech2[(r − (a + b)/2)/T ] tanh[(b − a)/(2T )]
.

(18)

We choose equal 3 dB bandwidths for various transverse permittivity profiles to compare
different cloaks. The parameters T that are tuned to provide identical 3 dB bandwidth for each
cloak are given in the caption of figure 4. In this figure, we show the total cross-sections of
quadratic, Gaussian, Lorentzian and Sech cloaks. Profiles of Gaussian, Lorentzian and Sech
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Figure 5. (a) Profiles of transverse dielectric permittivity for Gaussian cloaks
with different parameters T and (b) total cross-sections versus parameter T . The
number of discrete layers forming the cloak equals N = 30.

cloaks are very closely aligned, resulting in similar scattering cross-sections. The influence of
permittivity functions on cloak performance is difficult to measure among these three cloaks.
However, it is shown that the quadratic cloak in figure 4 provides better invisibility when its
transverse permittivity vanishes at the inner and outer boundaries of the cloaking shell.

Since the shapes of the Gaussian, Lorentzian and Sech cloaks are similar, we can just
select one of them (e.g. Gaussian) to investigate the significance of the profile, which can be
varied by the parameter T . The results are demonstrated in figure 5. The total cross-section
has a minimum, but this does not provide better cloaking than the quadratic. The cross-section
minimization is achieved approximately at T = 0.3a. This profile is shown in figure 5(a), along
with profiles for other T parameters. According to this figure the minimization profile has a
3 dB bandwidth equal to (b − a)/2. Such a profile is neither too narrow nor too wide because
narrow profiles (T → 0) need extremely high discretization and wide profiles (T → ∞) tend
toward the limit of Pendry’s cloak as shown in figure 5(b). It should be noted that cloaks with
narrow profiles interact more strongly than the Pendry cloak, and we conclude that bell-shaped
cloaks provide the best results only when appropriately wide.

Thus the bell-shaped quadratic cloak is preferred for non-ideal cloak design, having the
lowest cross-section among all the bell-shaped cloaks considered in this section. The near fields
of the Pendry (classic) cloak and the quadratic cloak are compared in figure 6. For the quadratic
cloak, the intensity of the field is concentrated in the center of the cloaking shell, because the
transverse permittivity and permeability become maximal therein. Although the near fields of
the discretized Pendry and quadratic spherical cloaks seem similar (they should be), there is still
some distinction between the two kinds, i.e. the field intensity of the quadratic spherical cloak
(figure 6(b)) is more squeezed and concentrated in the intermediate region of the shell furthest
from the core. Therefore it leads to less interaction with the core compared to the pattern of
figure 6(a) in which high field intensity is seen more close to and inside the inner core. This
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(b)(a)

-1

1

0

Figure 6. Real part of electric field scattered by (a) Pendry’s and (b) quadratic
cloaks. The incident plane wave moves from bottom to the top. Parameters:
k0a = π , k0b = 2π , N = 30. The inner core is filled with glass whose refractive
index is 1.45.

results in an improvement in radar cross-section (RCS) reduction in the far field of quadratic
spherical cloaks under the same discretization applied to classical linear spherical cloaks. In the
following section, we will show how the quadratic cloak results can be improved.

5. Improved quadratic cloaks

The quadratic cloak is characterized by a very simple profile of the transverse dielectric
permittivity. Also, the quadratic cloak has a scattering almost 5 dB lower than that of the
classical spherical one. Our aim in this section is to find a way of creating high-performance
cloaks based on the implicit transformation-independent design method and the bell-shaped
quadratic cloak. The high-performance cloak should be similar to the quadratic one. Transverse
permittivity should have a maximum and vanish at the inner and outer radii of the shell:
εt(a) = εt(b) = 0. These properties can be satisfied for the general generating function of the
form

g(r) = (r − a)(r − b)g1(r). (19)

By choosing function g1(r), we can set the permittivity profile of the cloak. The function
g1(r) can take arbitrary values at the cloak edges r = a and b, although it should provide the
maximum of the transverse permittivity. At first we will consider the maximum at the center
of the cloak r = (a + b)/2, and then the effect of the non-central maximum position will be
studied. For instance function g1(r) can be selected with a Gaussian profile. Then the cloak can
be called Gaussian-quadratic. However, such a design is worse than the simple quadratic shape.
To provide a better design we will focus the quadratic dependence using the g1(r) function

g1(r) = ((r − p)(r − d) + (d − p)2/4 + s)n. (20)

When n = 0, it is the bell-shaped quadratic cloak already discussed. The permittivities at n > 0
are suppressed due to lengthy expressions.

In the generating function set by equations (19) and (20), we can vary the power term n
(the curvature of the transverse permittivity profile at peak), parameters s (the deviation from
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Figure 7. (a) Profiles of transverse permittivity for power quadratic cloaks (s =

18) and (b) total cross-sections of these cloaks versus parameter s. Parameters:
p = a, d = b and N = 30. In (b), only s > 0 is considered for cloaking
purposes because the total cross-sections corresponding to s < 0 are significantly
larger.

the quadratic cloak) and d (the deviation of the permittivity peak from the center of the cloaking
region). At n = 0 the generating function is independent of s and d, so the total cross-section
is the straight line in figure 7 (the solid line), where the other positive values of n are shown as
well. The minima of the cross-sections (the best cloaking performance) occurs for parameter s
at approximately smin ≈ 9n, i.e. linear to the power n. For a larger s parameter, the curves tend
toward the cross-section of the quadratic cloak. For a small and negative s, the shape of the
transverse permittivity may contain the minimum and a couple of maxima, therefore the total
cross-section is substantially increased. In figure 7(b), the cloaking performance is obviously
improved when compared to the quadratic cloak. Let us further study the effect of the peak
position of the profile, which is controlled by the parameter d.

The case d = b indicates that the position of the permittivity maximum is in the center
of the cloaking shell region. If d < b (d > b), the maximum is shifted toward the outer (inner)
radius of the cloaking shell. Figure 8 shows that the central position of the permittivity maximum
is not the optimal choice. The minimization of the cross-section is achieved for d ≈ 0.84b.
This non-central position is expected as a result of the spherically curvilinear geometry
of the cloak.

The improved power performance of the quadratic cloak is notable: the total cross-section
is further decreased from −54.84 to −57.52 dB. The improvement is caused by the shape of the
profile. The profile should be parabolic-like with a slightly deformed shape.

It is also important to consider the differential cross-sections which provide the scattering
intensity at an arbitrary angle. In figure 9, we show the differential cross-sections for some
typical cloaking designs designed by the implicit transformation-independent method and
considered in a non-ideal situation. The common feature of the cloaks is reduced backscattering.
It is seen that the classic spherical cloak is the most visible one. The quadratic cloak (blue dotted
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Figure 8. (a) Profiles of transverse dielectric permittivity for power quadratic
cloaks and (b) total cross-sections of these cloaks versus parameter d.
Parameters: p = a, n = 2, s = 18 and N = 30.

Figure 9. Differential cross-sections for the cloaks derived by the proposed
implicit transformation-independent method. The cloak parameters of each given
design have been selected to provide the best performance. Parameters: T = 0.3a
for Gaussian cloak; s = 18, n = 2, p = a and d = 0.84b for power quadratic
cloak; N = 30.

line) can provide much lower scattering over almost all angles compared to Pendry’s and the
Gaussian bell-shaped cloak. The power quadratic cloak reduces further the scattering for the
quadratic cloak near the forward direction.
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Figure 10. Total cross-sections of different cloak designs versus the number
of spherical layers N . The parameters of the cloaks are the same as those in
figure 9.

However, one may question whether our non-ideal situation may approach the ideal case
when the discretization is high (i.e. N is much larger than 30). If so, each cloak derived
from our proposed reversed algorithm should become increasingly identical. Theoretically, it is
true that provided N → ∞, the scattering patterns of different profiles should be very close
to each other, while the influence of the discretization number N on the optimization result
is still of significant importance in practice as shown in figure 10. If N is a small number
(e.g. N = 10), the continuously varying profile is very roughly approximated by the discretized
system, therefore the scattering is great. If the number of layers is large, the discretized structure
is very close to the ideal cloaking profile. That is why the scattering in this case is reduced
(see the calculated total scattering cross-sections in figure 10). In general, we maintain our
conclusions on the optimization for N = 30, except for that the performance of the Gaussian
cloak matches that of the quadratic cloak at N = 70. When N is small, there is a nonlinear
dependence of scattering reduction on the value of N . When N is greatly increased the curves
become mostly linear as shown in figure 10.

6. Conclusion

We have proposed an implicit transformation-independent method to obtain the required
parameters for a spherical cloak, based on the concept of the cloaking generating function.
It has been found that the bell-shaped cloaks provide the smallest interaction of the cloaking
shell with the electromagnetic radiation under the non-ideal situation (i.e. the cloaking shell
is discretized into N layers). Among the bell-shaped cloaks, we have compared quadratic,
Gaussian, Lorentzian and Sech cloaks. The last three are very similar in profile shape and in
their dependence on the controlling parameters. We have concluded that the best performance
is achieved under the bell-shaped transverse permittivity profiles, which vanish at the inner and
outer radii of the cloaking shell. The simplest such design is the quadratic cloak. Improved
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invisibility performance can be provided by the power quadratic cloak with the maximum of
the permittivity profile slightly shifted towards the outer boundary. The decrease in the cloak’s
overall scattering is about 7.5 dB compared to the classical Pendry design, and the improvement
is steady even when the discretization N is quite high.
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Appendix. Scattered field calculation

We have used the matrix approach developed in [39] for the scattering of electromagnetic
radiation by the multilayer bianisotropic particles. In paper [36], the matrix approach has been
applied to the scattering by a cloaking shell. We refer the reader to these two references for
details.

According to the matrix approach, the electromagnetic field induced at the outer boundary
b of the cladding (cloak) is expressed by means of the evolution operator of this layer �b

a. The
latter can be presented as the product of the evolution operators of each homogeneous layer
an < r < an−1 (n = 0, . . . , N , a = a0, b = aN ):

�b
a = �b

aN−1
�aN−1

aN−2
. . . �a1

a , (A.1)

where N is the number of layers. The evolution operators of the homogeneous layers can be
written in the analytic form and �b

a can be computed.
Then the boundary conditions are solved and the scattered magnetic fields at the outer

boundary b of the cladding are determined. Thus the scattering problem can be solved, because
we can further obtain the near fields or far fields in terms of the scattered magnetic field. The far
fields can be characterized by the differential scattering cross-sections (θ is the scattering angle)
normalized by the geometrical cross-section σg = πb2

D(θ) =
dσ

σg sin θ dθ
(A.2)

or total scattering cross-sections

σ =

∫ 2π

0
D(θ) sin θ dθ. (A.3)
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