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Abstract—A fast solution for rigorously deriving and calcu-
lating spatial-domain dyadic Green’s functions for the planar
multilayers of uniaxial media has been established based on the
modified fast Hankel transform (MFHT) method. The kDB coor-
dinate system is exploited and integrated with the wave iterative
technique to obtain the spectral-domain Green’s function. This
algorithm relies on the accurate expressions of unbounded dyadic
Green’s function and scattered Green’s function in uniaxial
media, which can be classified into the ordinary and extraordi-
nary waves. The newly developed MFHT method is then employed
for the calculation of the dyadic Green’s function in the planar
multilayered uniaxial anisotropic media. The validity of the al-
gorithm thus developed and the efficiency of the MFHT method
are verified through numerical examples. The spatial-domain
Green’s function can, for the first time, deal with the multilayered
uniaxial anisotropic media, and more importantly, the influence of
material’s anisotropy upon the Green’s function is demonstrated.
It provides a promising tool to analyze the integrated microwave
circuits and optical devices when complex materials are involved.

Index Terms—Dyadic Green’s function, kDB coordinate system,
modified fast Hankel transform (MFHT) method, multilayered
structure, spatial domain, uniaxial anisotropic media.

I. INTRODUCTION

I NTEGRAL equation methods have been a versatile
and valuable tool for the electromagnetic analysis of

microwave integrated circuits and microstrip antennas imple-
mented in planar multilayered substrates [1]–[4]. The electric
and magnetic fields in the multilayered structures can be easily
derived from the dyadic Green’s function and the computational
efficiency is strongly dependent on the calculation of the dyadic
Green’s function. Consequently, a large amount of research
has been dedicated to the calculation of the dyadic Green’s
functions in the multilayered isotropic media over the last
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decades [5]–[13]. Due to the emergence of practical applica-
tions of complex media in multilayered geometries [14]–[17],
the accurate and expedient calculation of the multilayered
Green’s function in both the spectral and spatial domains is
highly necessary and important as a characterization tool.
Several effective methods [18]–[20] have been proposed for
the derivation of the spectral-domain Green’s function in the
multilayered uniaxial anisotropic media, e.g., the cylindrical
vector eigenfunction expansion technique [21] and wave itera-
tive technique [22], [23]. A brief review of the two methods is
given below.

The main idea of the cylindrical vector eigenfunction expan-
sion technique is to expand the unbounded Green’s function in
terms of the solenoidal and irrotational cylindrical vector wave
functions according to the Ohm–Rayleigh method [24], [25] and
the scattered dyadic Green’s function is thereafter derived by
applying the principle of scattering superposition. The cylin-
drical vector eigenfunction expansion technique is straightfor-
ward. However, the coefficients of the scattered dyadic Green’s
function cannot be analytically expressed by explicit formula-
tions for an arbitrary number of planar layers. Although the
calculation of scattering coefficients is still possible when the
medium is composed of one or two layers, it becomes a cum-
bersome step for the case of multilayered media. Therefore, it
is difficult, if not impossible, to employ the cylindrical vector
eigenfunction expansion technique for the systematic derivation
of dyadic Green’s function for multilayered uniaxial anisotropic
media.

The wave iterative technique employs the kDB coordinate
system to obtain the characteristic field vectors and the Fourier
transform to derive the unbounded Green’s function. Subse-
quently, based on the boundary condition and wave iterative
technique, the scattered Green’s function in the spectral domain
is derived. The spectral-domain Green’s functions are expressed
in terms of ordinary and extraordinary waves and the deriva-
tion process is straightforward and flexible. However, there is
one primary problem for the derivation of the spectral-domain
Green’s function in [23]. In the derivation of the Green’s func-
tion in the total field, the vertical position of one interface re-
lated with the source layer has to be set to zero. This implies
that, whenever the source position is changed, the whole co-
ordinate system should be reset, which, in turn, will introduce
particular complexity in the implementation of the numerical
computation. Therefore, the theoretical formulas in [23] are not
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able to efficiently treat general multilayered problems with ar-
bitrary positions of the source.

The fast Hankel transform (FHT) method was employed
as a fast solution to the computation of Green’s functions for
isotropic multilayers [26]. The main idea of the FHT method
is to transform the Sommerfeld integral into a linear discrete
convolution and the convolution results can be regarded as the
system response of a digital filter. However, based on the FHT
filter technique, it can be difficult to obtain accurate dyadic
Green’s function because of the branch-cut singularity and the
surface wave poles singularity. Although the singularities can
be completely avoided through deforming the integration path
of the Hankel transform from the real axis, the argument of
the integral kernel becomes a complex number, and thus the
FHT algorithm is not directly applicable. The modified fast
Hankel transform (MFHT) algorithm [27] has been proposed to
overcome this problem by deforming the integration path from
the real axis to the quadrant so as to avoid the singularities.
Subsequently the Bessel function with a complex argument
can be expressed as a sum of products of two Bessel functions,
respectively, with the real part and imaginary part of the orig-
inal complex argument. The FHT filter technique can then be
applied to each expansion term.

The MFHT method successfully extends the applicability
of the conventional FHT method to general multilayered
geometries and it is an attractive alternative to the rigorous,
but computationally expensive numerical integration method.
Compared with the well-known two-level discrete complex
image method (DCIM), the MFHT method also shows superior
efficiency when the vertical position of the source point or
observation point needs to be changed frequently. Based on
the newly developed MFHT method, the fast solutions of
dyadic Green’s functions used in the electric/magnetic field
integral equation are, for the first time, obtained for the planar
multilayered uniaxial anisotropic media. The robustness of the
algorithm thus developed and the accuracy and efficiency of the
dyadic Green’s function will be validated. Finally, the influence
of material anisotropy on the dyadic Green’s function will be
illustrated.

II. UNBOUNDED DYADIC GREEN’S FUNCTION FOR A

UNIAXIAL ANISOTROPIC MEDIUM

In this section, we will derive the dyadic Green’s function for
an unbounded uniaxial anisotropic medium. By using the
coordinate system and the Fourier transform method, the elec-
tric field Green’s function will be derived, and then the electric
and magnetic fields can be obtained for an arbitrarily distributed
electric current source. The fields are assumed to be time–har-
monic, and for convenience, the associated factor will
not be expressly included in this paper. A uniaxial anisotropic
medium is characterized by scalar magnetic permeability and
electric permittivity tensor . When the optic axis of the uniaxial
anisotropic medium is in the -direction, the permittivity tensor
is

(1)

In the coordinate system, the constitutive relations in the
uniaxial anisotropic medium are

(2)

(3)

where

(4)

(5)

is the impermittivity tensor. It is known that there are two
distinct characteristic waves, ordinary wave and extraordinary
wave, for the uniaxial anisotropic medium [28]. Their dispersion
relations are

(6)

for the ordinary wave and

(7)

for the extraordinary wave. The solutions to (6) and (7) include
the roots and , respectively. The sub-
scripts and denote the ordinary wave and extraordinary wave,
respectively, and the subscripts and refer to the upward prop-
agating wave and downward propagating wave, respectively. By
using the system, the electric and magnetic fields in the

coordinate system can be represented as

(8)

(9)

where

(10)

(11)

(12)

represents the two components of projected onto the
coordinator system. Considering the roots of the disper-

sion relations (6) and (7), we can write the characteristic field
vectors as follows:

(13)

(14)

where

(15)
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and ; . In the Fourier spectral domain, the
electric field ( ) can be expressed as a super-
position of ordinary and extraordinary waves

(16)

The primed and unprimed parameters correspond to the source
and observation points, respectively. In this study, we assume
that the electric current point source is arbitrarily oriented,
which is expressed by

(17)

where is an arbitrary unit vector. In order to obtain the un-
known values of amplitudes , we employ the spec-
tral-domain wave equation to formulate the electric field

(18)

where

(19)

is the dyadic Helmholtz operator for the uniaxial
anisotropic medium

(20)

After algebraic manipulations, (20) can be recast in the fol-
lowing form:

(21)

By using the Fourier transform and (16), the expression of
can be written as [23]

(22)

Substituting (21) and (22) into (18), we can obtain

(23)

The solutions to the four unknowns ( )
need four independent equations. Subsequently, we substitute

and premultiply (23) by the characteristic field vec-
tors . Finally, we get four independent equations for the

solutions of . Considering the uncoupled relationship be-
tween the ordinary wave and extraordinary wave, we write the
four equations as

(24)

(25)

where

(26)

(27)

(28)

(29)

(30)

Solving (24) and (25) yields

(31)

with

(32)

Substituting (31) into (16) and casting it in a matrix form, we
obtain

(33)
where

(34)

The electric field in the spatial domain is then expressed by
applying the inverse Fourier transform to

(35)

When , the above formulation for the electric field does
not exhibit the proper singular behavior. This singular behavior
can be captured from the asymptotic behavior of when

, which is given by

(36)

Thus, the complete expression for the electric field in the un-
bounded uniaxial anisotropic medium is represented by

(37)
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Since the electric field in an unbounded medium relates the
dyadic Green’s function to the current via

(38)

the formulations of the dyadic Green’s function in the un-
bounded uniaxial anisotropic medium can be derived from (37)
in the following explicit form.

For ,

(39)

For ,

(40)

where

(41)

(42)

III. DYADIC GREEN’S FUNCTION FOR THE PLANAR

MULTILAYERED UNIAXIAL ANISOTROPIC MEDIUM

In this section, based on the boundary condition and the wave
iterative technique, the complete and generalized formulations
of the spectral-domain Green’s function in the planar multi-
layered uniaxial anisotropic media are explicitly expressed for
three cases: viz. , , and , where and
denote the layers that the source point and observation point are
located inside, respectively. The geometry of the general planar
multilayered uniaxial anisotropic medium is depicted in Fig. 1.

A. Local Reflection and Transmission Matrices

To satisfy the boundary conditions of the continuity of the tan-
gential electric and magnetic fields, the tangential components
of and along the and directions are matched at the
interface of two layers

(43)

(44)

where is the local reflection matrix and is the local
transmission matrix. The character for
and for

(45)

(46)

(47)

(48)

Fig. 1. Geometry of the general planar multilayered uniaxial anisotropic
medium.

is the local reflection coefficient when the incident plane
wave is in region ; is the local transmission coefficient
from region to region .

Derived from the (43) and (44), the reflection and transmis-
sion matrices can be expressed as

(49)

(50)

B. Global Reflection and Transmission Matrices

Due to multiple reflections and cross-polarization effects, the
electric field in an arbitrary layer is represented in terms of up-
ward propagating and downward propagating waves as follows:

(51)

which can be cast in the following matrix form:

(52)

where

(53)

(54)

(55)

(56)
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represents the upward propagating wave expressed in
the coordinate system. The first component on the
diagonal of is along and the second component
on the diagonal is along . Similarly, represents
the downward propagating wave expressed in the
coordinate system. In the layer , the electric field vector is
expressed by

(57)
At the interface of layer and layer , the upward global

reflection and transmission matrices are related with the fields
by the following relationships:

(58)

(59)

where and are the global reflection matrix and global
transmission matrix from layer to layer , respectively. It
is noted that the downward propagating wave in the layer is a
consequence of the transmission of the downward propagating
wave in the layer in combination with the reflection of the
upward propagating wave in the layer . Thus, at the interface

, the constraint condition is

(60)

By using the expression of from (58), we can write (60) as

(61)

Next, we notice that the upward propagating wave in the layer
is a superposition of the reflection of the downward propa-

gating wave in the layer and the transmission of the upward
propagating wave in the layer . At the interface ,
we have the constraint condition

(62)

Substituting the expression of from (58), we can write
(62) as

(63)

From (61) and (63), we finally get the following recursive
expression for the upward global reflection matrix:

(64)

Similarly, the recursive formulation of the downward global
reflection matrix is derived as follows:

(65)

From (59) and (63), the recursive expression for the upward
global transmission matrix is given by

(66)

Similarly, the downward global transmission matrix can be
expressed as

(67)

C. Dyadic Green’s Function for the Case

For the case where the source and observation points are in
the same layer , based on the Fourier transform, the electric
field can be expressed as

(68)

where

(69)

(70)
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Based on (37), can be cast as follows:

(71)

where

(72)

In an arbitrary layer , the electric field is written as

(73)

where two unknown vectors, and , need to be determined.
For ,

(74)

where the first term represents waves propagating upward and
the second term represents waves propagating downward. At the
interface , the downward propagating waves are
related to the upward propagating waves by the upward global
reflection matrix

(75)

Similarly, for ,

(76)

(77)

Solving for and from (75) and (77), we obtain

(78)

(79)

where

(80)

(81)

Substituting (78) and (79) into (73), we get the following ex-
pression for the electric field:

(82)

Here, for and for . Based on (38)
and (82), the dyadic Green’s function in the planar multilayered
uniaxial anisotropic medium is given in the Appendix for the
case of .

D. Dyadic Green’s Function for the Case

First, the case is considered. The source point is lo-
cated inside the layer and the observation point is located
inside the layer . The electric field in the layer is expressed
as

(83)

where

(84)

In the layer , the electric field can be represented as
follows:

(85)

At the interface , the downward propagating
wave is related to the upward propagating wave by the upward
global reflection matrix . This yields

(86)
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At the interface , the upward propagating wave
in the layer is related to the upward propagating wave
in the layer by the upward global transmission matrix ,
i.e.,

(87)

which yields

(88)

Thus, the electric field in the layer is represented as

(89)

Finally, the electric field in an arbitrary layer above the
source layer is given by

(90)

where is the global transmission matrix from the layer
to the layer and its expression is given by

(91)

Hence, substituting the formulation of , we get the
explicit expression of for the case of ,

(92)

Fig. 2. Deformed SIP.

For the case of , following the same derivation process
as employed earlier for the case of , we get the expression
for the electric field in the layer as follows:

(93)

A complete and generalized set of the dyadic Green’s func-
tion in the planar multilayered uniaxial anisotropic media has
been derived in the spectral domain. The important point to note
is that the formulations of Green’s function are independent
of the choice of the coordinate system. Hence, they are appli-
cable to general multilayered structures without any accompa-
nying requirement for coordinate change, which is the primary
shortcoming in [23]. Similar expressions can be easily obtained
for the dyadic Green’s function for the magnetic field
due to an arbitrary oriented electric current point source and the
dyadic Green’s functions for the electric field and the
magnetic field due to an arbitrary oriented magnetic
current point source. From the three formulations (111), (118),
(123), it is clearly shown that the dyadic Green’s functions in
the spatial domain are expressed in terms of the cumbersome
Sommerfeld integrals. To expedite the calculation of the Som-
merfeld integrals, the newly developed MFHT method is em-
ployed to calculate the dyadic Green’s functions.

IV. MFHT METHOD

In this section, an MFHT filter algorithm is introduced to cal-
culate the dyadic Green’s function for general multilayered ge-
ometries. In order to move away from the surface wave poles
and the branch points to obtain the smooth spectrum of Green’s
function, the Sommerfeld integration path (SIP) is deformed
from the real axis to the fourth quadrant, as shown in Fig. 2.
The Sommerfeld integral can then be written as

(94)
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where is a real number. The first integral can be efficiently
calculated by the adaptive Simpson quadrature method with a
computational time quite small compared with the total com-
putational time. The second integral is evaluated by the MFHT
method and it can be written as

(95)

with

(96)

(97)

where and the input function is a complex function of
the real argument . Although the input function of this integral
becomes a smooth function along the deformed integration path,
the argument of the Bessel function becomes complex. Since
the FHT filters developed thus far only permit the argument of
Bessel function in the Hankel integral to be real, the traditional
FHT method is not directly applicable here.

In order to use the FHT method, a Bessel function with a
complex argument can be expressed as [29]

(98)

The two arguments, and , can be arbitrary values and the
Bessel functions with complex arguments in (95) are expanded
by the sum

(99)

so that (95) can be written as

(100)

where

(101)

The modified Bessel function is a monotonic increasing
function. Each expansion term in (100) can be efficiently and ac-
curately evaluated by the traditional FHT method. In this paper,
we choose the optimized FHT filter method proposed by [30] to
calculate the Hankel integrals since the FHT coefficients for the
Hankel transform with an arbitrary order can be easily obtained.

In the optimized FHT filter technique, we introduce two func-
tions, which are related via the functions in (100)

(102)

(103)

Each expansion term in (100) can then be rewritten as

(104)

Equation (104) is transformed to a linear convolution-type
integral by using the substitutions and

(105)

where is the input function related with the spectral-domain
Green’s function, is the output function related with the spa-
tial-domain Green’s function, and the product in the bracket is
the filter-response function of the linear system. The continuous
convolution in (105) is discretized to obtain the linear convolu-
tion in a general form

(106)

where

(107)

(108)

(109)

where is the linear digital-filter response, is the
sampling interval, is the number of samples per decade,

is the approximation of , is the interpolation func-
tion, and is the smoothness parameter. The filter coefficients

may be calculated by using the convolution theorem.
is obtained at discrete points as a discrete convolution be-

tween the samples of and . Based on the characteristic
of the input function and a scheduled truncation tolerance
parameter, the sampling interval and the length of digital filter
coefficients can be determined. In order to adequately capture
the behavior of the input function near the singularities, is
chosen as 350 in this paper. in the deformed integration path
is set to be 0.015 and the number of expansion terms is se-
lected as 27. The smoothness parameter is set as 8.3764 10
for the numerical examples.

V. NUMERICAL EXAMPLES AND DISCUSSIONS

Various examples will be considered in this section in order
to investigate the accuracy and efficiency of the proposed algo-
rithm through the calculation of the dyadic Green’s function for
the planar multilayered structure depicted in Fig. 3 where the
uppermost layer is taken to be free space while the lowermost
layer is PEC. The operating frequency is 3 GHz for all exam-
ples.

A. Comparison of Numerical Results in the Spectral Domain

In the case of isotropic medium, it is known that the formula-
tion of the correlation between the Green’s function in the elec-
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Fig. 3. Geometry of a four-layer medium.

Fig. 4. Magnitude of � versus � for the four-layer isotropic medium with
the following parameters: � � � mm; � � ���� mm; layer 2: � � ���� ;
layer 3: � � ���� ; layer 4: � � ���� . The solid lines correspond to results
obtained by the presented algorithm while the dots correspond to results from
the MPIE.

tric-field integral equation (EFIE) and that in the mixed-poten-
tial integral equation (MPIE) is given by

(110)

where represents the dyadic Green’s functions for mag-
netic vector potential and represents the Green’s function
for electric scalar potential. It should be noted that the formula-
tions of the dyadic Green’s function used in the MPIE have been
well documented [31]. Here, one element of the dyadic Green’s
function obtained by the presented algorithm are compared with
the corresponding results from the Green’s function used in the
MPIE for a four-layer planar isotropic medium, as shown in
Fig. 3. Fig. 4 depicts the spectrum of corresponding to
Bessel function . It is evident from the resultant plots that the
spectral-domain Green’s functions obtained by the proposed al-
gorithm agree very well with the existing results from the MPIE
when reduced to the isotropic case. The accuracy of the dyadic
Green’s function in the spectral domain has been validated.

B. Comparison of Numerical Results in the Spatial Domain

The MFHT method is employed for the approximation of the
spatial-domain Green’s functions for a four-layer planar uni-
axial anisotropic medium, as shown in Fig. 3. Fig. 5 depicts the

Fig. 5. Magnitudes of � versus � for the four-layer structure with
the following parameters. Case 1: � � ���� mm, � � ���� mm,
� �� � ���; Case 2: � � � mm, � � ���� mm,
� �� � ��	; Case 3: � � ���� mm, � � ���� mm,
� �� � ���. The solid lines correspond to results obtained by the
MFHT method, while the dots correspond to results obtained by the numerical
integration and DCIM.

magnitude of the element of the dyadic Green’s function.
In the three cases of Fig. 5, the following parameters are kept
unchanged: , , and . The
parameters that are changed for the three cases are as follows.
In the first case, , mm, mm,
and . In the second case, , ,

mm, mm, and . In the
third case, , , mm, mm,
and . The solid lines represent the results
obtained by the MFHT method, while the reference results ob-
tained by numerical integration are represented by the discrete
points in the plots. The DCIM-based numerical results are repre-
sented by the symbol . Clearly, the MFHT-based results are in
excellent agreement with the numerical integration results and
DCIM-based results. The results appear to confirm that based on
the MFHT method, the dyadic Green’s function for the planar
multilayered uniaxial anisotropic medium can be calculated ac-
curately.

Table I shows the computational time for calculating the
dyadic Green’s function based on the direct numerical in-
tegration (DNI), two-level DCIM, and MFHT technique,
respectively. We have used the same 2.8-GHz PC to run all
these numerical experiments (based on FORTRAN). Compared
with the computational time taken by DNI, the time of the
MFHT method listed in the fifth line of Table I is very short
for calculating the Green’s function at one observation point.
Fig. 5 shows there is excellent agreement between the results
of DNI and that of the MFHT method. From the comparison of
accuracy and efficiency between the two methods, it can be de-
duced that the MFHT method could be an attractive alternative
to the rigorous, but computationally expensive DNI technique.
The third and fourth lines in Table I show the computational
times for the three cases in Fig. 5 based on the two-level
DCIM and MFHT method, respectively. It is observed that the
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TABLE I
COMPARISON OF THE CPU TIME FOR COMPUTING DYADIC

GREEN’S FUNCTION IN SPACE DOMAIN (BASED ON

INTEL DUO CORE2 2.8-GHz PC RUNNING FORTRAN)

MFHT method requires less time than the DCIM for the three
experiments. Here, in order to adequately sample the spectrum
of the Green’s function, the number of sampling points on each
level of the DCIM is 1024. 1024 is one of the best choices
for the accuracy of the GPOF technique, which is used in the
DCIM method. The maximum relative truncation error of the
MFHT method is set to be 10 , in order to obtain accurate
results in a wide field area. With similar accuracy criteria, it
seems that the MFHT method performs better than the DCIM
in terms of efficiency. Moreover, it is worth mentioning that
the forms of the numerical results calculated by the DCIM and
MFHT are totally different. The closed-form Green’s function
is obtained by the DCIM, while the MFHT method is employed
to compute the Green’s function on discrete points. Table I
also lists the computational time for 200 different numerical
experiments, based on the two-level DCIM and MFHT method.
In 200 experiments, the position of the source point is fixed
and the vertical position of the observation point is changed. It
is clearly demonstrated that the closed-form Green’s function
obtained by the DCIM offers no apparent superiority and the
computational efficiency of the MFHT method is almost 65
times higher than that of the DCIM. In the practical applications
of multilayered medium, such as a microstrip antenna, when
the vertical position of the feeding point or field point needs to
be changed frequently, the MFHT method can be a powerful
tool for the calculation of the multilayered Green’s functions.

C. Influence of Material Anisotropy

For the final example considered in this paper, we seek to
examine another aspect of the proposed algorithm’s accuracy
as well as to investigate the influence of material anisotropy on
the dyadic Green’s function. The accuracy of this algorithm has
not been sufficiently validated since the closed-form Green’s
functions used in the EFIE in the planar multilayered uniaxial
anisotropic media have not been derived thus far. However, we
can validate the accuracy implicitly through numerical exam-
ples. Fig. 6 shows the magnitude of with mm
and mm. Fig. 7 shows the magnitude of with

mm and mm and Fig. 8 shows the mag-
nitude of with mm and mm. For
the three figures, , , ,
and . Clearly, the closer

Fig. 6. Magnitudes of � versus � for the four-layer structure with the
following parameters: � � � � �; � � ���� mm; � � ���� mm;
layer 2: � � ���� ; layer 3: � � ���� ; layer 4: � � ���� ;
� �� � ��������	���	���.

Fig. 7. Magnitudes of � versus � for the four-layer structure with the fol-
lowing parameters:� � �;� � 
; � � �mm; � � ����mm; layer 2: � �

���� ; layer 3: � � ���� ; layer 4: � � ���� ; � �� �

��������	���	���.

the value of is progressively decreased to 1.0, the closer
the magnitudes of the dyadic Green’s function are to the re-
sults for the case where . It is worth mentioning
that the results of the field Green’s functions corresponding
to are accurate since the accuracy of the spec-
tral-domain Green’s functions reduced to the isotropic case have
been validated earlier. This serves as an indication that the pre-
sented algorithm for deriving the dyadic Green’s function is
correct. Figs. 9 and 10 depict the 3-D magnitudes of and

, respectively, with , ,
, , , and

. The two plots clearly show the influence of mate-
rial anisotropy on the Green’s functions. It is noted that, as the
value of increases, the values of the dyadic Green’s
function increase in the near field and decrease in the interme-
diate field. This implies that in the multilayered medium, the
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Fig. 8. Magnitudes of � versus � for the four-layer structure with the
following parameters: � � �; � � �; � � ���� mm; � � ���� mm;
layer 2: � � ���� ; layer 3: � � ���� ; layer 4: � � ���� ;
� �� � ��������	���	���.

Fig. 9. 3-D magnitudes of � versus � and permittivity tensor for the four-
layer structure with the following parameters: � � �; � � �; � � � mm;
� � ���� mm; layer 2: � � ���� , � � �� ; layer 3: � � ���� ,

� � � �� � ���� � ���; layer 4: � � ���� , � � �� .

value of electric field increases in the near field and decreases
in the intermediate field as the material anisotropy increases.
The investigation of the material anisotropy’s characteristic can
pave the way for the practical application of multilayered uni-
axial anisotropic media.

VI. CONCLUSION

In this paper, a systematic and fast algorithm has been
presented for the rigorous determination of the dyadic Green’s
functions in the planar multilayered uniaxial anisotropic media.
This algorithm employs the coordinate system to obtain
the characteristic field vectors and uses a Fourier transform
to derive the unbounded Green’s function. One important
contribution of the proposed algorithm is that a complete and
generalized set of the spectral-domain Green’s function in
the planar multilayered uniaxial anisotropic media has been
derived. Based on the MFHT method, the fast solutions of the

Fig. 10. 3-D magnitudes of � versus � and permittivity tensor for the four-
layer structure with the following parameters: � � �; � � �; � � � mm;
� � ���� mm; layer 2: � � ���� , � � �� ; layer 3: � � ���� ,

� � � �� � ���� � ���; layer 4: � � ���� , � � �� .

spatial-domain Green’s function are obtained for the multi-
layered uniaxial anisotropic media. The MFHT technique has
been introduced and its excellent efficiency has been numer-
ically demonstrated. To validate the proposed algorithm and
the accuracy of the dyadic Green’s function, the numerical
examples are implemented in both the spectral domain and
spatial domain. The numerical results have been shown to be
very accurate and computationally efficient. It paves the path
to model emerging microwave and optical devices involving
composite birefringent materials.

APPENDIX

For the case of , the dyadic Green’s function in the
planar multilayered uniaxial anisotropic medium is given by
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(111)

where

(112)

(113)

(114)

(115)

(116)

(117)

is the Bessel function of zeroth order. When the source point
is located above the observation point , in (111) is equal

to . Otherwise, is equal to .
From (92), it is easy to obtain an explicit expression for the

dyadic Green’s function for the case of . This
yields

(118)

where

(119)

(120)

(121)

(122)

Similarly, the explicit expression of the dyadic Green’s func-
tion for the case of is given by

(123)

where

(124)

(125)

(126)

(127)
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