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Photon momentum transfer in inhomogeneous dielectric
mixtures and induced tractor beams

Cheng-Wei Qiu1,2, Weiqiang Ding3, M.R.C. Mahdy1, Dongliang Gao1, Tianhang Zhang1,2, Fook Chiong Cheong4,
Aristide Dogariu5, Zheng Wang6 and Chwee Teck Lim2,7

The determination of optical force as a consequence of momentum transfer is inevitably subject to the use of the proper momentum

density and stress tensor. It is imperative and valuable to consider the intrinsic scheme of photon momentum transfer, particularly

when a particle is embedded in a complex dielectric environment. Typically, we consider a particle submerged in an inhomogeneous

background composed of different dielectric materials, excluding coherent illumination or hydrodynamic effects. A ray-tracing method

is adopted to capture the direct process of momentum transfer from the complex background medium, and this approach is validated

using the modified Einstein–Laub method, which uses only the interior fields of the particle in the calculation. In this way, debates

regarding the calculation of the force with different stress tensors using exterior fields can be avoided. Our suggested interpretation

supports only the Minkowski approach for the optical momentum transfer to the embedded scatterer while rejecting Peierls’s and

Abraham’s approaches, though the momentum of a stably moving photon in a continuous background medium should be considered to

be of the Abraham type. Our interpretation also provides a novel method of realizing a tractor beam for the exertion of negative force that

offers an alternative to the use of negative-index materials, optical gain, or highly non-paraxial or multiple-light interference.
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INTRODUCTION

Following the pioneering work of Marston1 in acoustics, optical ‘tractor

beams’ have attracted considerable interest by virtue of their unusual

mechanism for micromanipulation.2–13 Generally speaking, a tractor beam

is a customized light beam that exerts a negative scattering force (NSF) on a

scatterer and pulls it opposite to the propagation direction of the light, in

contrast to conventional pushing forces.14 Optical pulling forces provide a

novel approach to gradientless optical manipulation techniques distinct

from optical tweezers,15–17 optical conveyors13,18,19 and nanooptomecha-

nical systems.20,21 Recently, various types of tractor beams have been

experimentally demonstrated using a Gaussian beam with an optical mir-

ror (involving the interference of incident and reflected light beams in

certain limited regions)8 and using dodecane droplets sitting on a dielectric

interface.22 However, in the presence of a high-powered laser, hydrodyn-

amic effects (uneven heat dissipation, particle absorption, temperature

gradients, liquid convection, surface energy wells, etc.) may also contribute.

Moreover, the stability criteria for tractor beams, which are very important

for practical application, have not yet been investigated.

Although the mechanical effect has been demonstrated22 to be an

overall consequence of all possible contributing factors, the mechanism

of the optical momentum transfer from a mixed bi-medium back-

ground (air and water) to a partially submerged particle remains

unclear, particularly regarding the issue of the proper stress tensor

and force law to be adopted for non-vacuum backgrounds. Indeed,

there are various forms of photon momentum, and various stress ten-

sors, but why can only the Minkowski momentum be applied in this

case? What stress tensor and force law should be adopted for non-

vacuum and inhomogeneous backgrounds? These questions motivate

us to investigate the fundamental physics governing the momentum

transfer from light to a particle within an inhomogeneous (mixed)

background medium, which invokes the Abraham–Minkowski contro-

versy.23–30 In general, both Minkowskian24,28,29 and non-Minkow-

skian10,30 formulations have been proposed for the measurement of

the optical momentum transfer from a homogeneous background to

an embedded particle. After a century of debate, it is not yet known

which stress tensor (ST), force law and photon momentum scheme in

matter are most appropriate to use in this scenario (e.g., Table I in Ref.

24). It appears that because the identification of an adequate ‘particle

momentum’ is quite ambiguous and challenging,31 the recent resolu-

tion of the Abraham–Minkowski dilemma25 still cannot adequately
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address the question of the appropriate ST and force law to be em-

ployed in complex (mixed) backgrounds.31,32

In this context, it is valuable to pursue a simplified optical config-

uration without the limitations or implications discussed above, in

which we can consider the mechanical light–matter interaction in

isolation. For this purpose, we investigate the light momentum trans-

fer and the related optical force on a transparent scatterer floating on a

dielectric liquid-gas interface,33–35 as shown in Figure 1a. Although

Webb et al.10,32 have proposed the Abraham photon momentum

(APM) as the appropriate formulation for the purpose of the optical

momentum transfer from a homogeneous background to an embed-

ded particle, we demonstrate that in our case, it is more appropriate to

consider the optical momentum transfer as a transfer of Minkowski

photon momentum (MPM). Detailed calculations using the ray-

tracing method and the modified Einstein–Laub equations (using

the interior fields only) indicate that a negative pulling force and an

optical tractor beam arise naturally in our scheme. Interestingly, non-

Minkowskian formulations exhibit a pushing force, which contradicts

the experimental observation reported in Ref. 22. However, although

our suggested interpretation supports only the Minkowski approach

for the process of optical momentum transfer to the embedded scat-

terer (near the scatterer and the dielectric interface), the photon

momentum in a continuous background medium should be regarded

as the Abraham type. Because this scheme can be extended to any gas–

liquid interface, we name our tractor beam an ‘interfacial tractor

beam’. The importance of this scheme is that it offers not only a

practically achievable tractor beam, but also clear-cut insight based

directly on the photon momentum, which is beneficial for practical

implementation. Of equal importance is our study of the stability

criteria for such an interfacial tractor beam resulting from photon

momentum transfer, which exhibit distinct behaviors from the

optical-angular-momentum-based approach.36

MATERIALS AND METHODS

The ray-tracing method and the Minkowski stress tensor,

employing background fields

The proposed background mixture is illustrated in Figure 1a. The

scatterer (with a refractive index of n3) is suspended at the interface

of a liquid (e.g., water, with a refractive index of n2) and a gas (e.g., air,

n1). The incident and scattered beams may lie in different media (also

shown in the ray-tracing patterns of Figure 1b and 1c). Therefore, not

only the direction but also the amplitude of the momentum of the light

is changed. Without loss of generality, we restrict the calculation to

two-dimensional (2D) structures for clarity. Generally, an enclosed

integration path should be selected outside the scatterer for the cal-

culation of the optical force. However, there is ambiguity in this

method in the current scenario because the integration path must pass

through different media (the gas and the liquid). To avoid this ambi-

guity, a ray-tracing method is developed for the force calculation.

In the ray-tracing method (see Section 1 in Supplementary

Information for details), the momentum of a photon in each medium

should first be clearly defined. Generally, the momenta p1,2 carried by a

photon in media 1 and 2, respectively, are

p1~a1p0~a1
h�v

c
, p2~a2p0~a2

h�v

c
ð1Þ

where -h, v and c are the reduced Planck constant, the angular fre-

quency, and the speed of light in vacuum, respectively. p05-hv/c is

the momentum of the photon in vacuum. For the material-related

constants a1,2; however, different values have been proposed,24,27,29 such

as a5n for the Minkowski formula,24,27,29 a5n21 for the Abraham

formula24,27,29 and a5(4n17n22n4)/(10n) for the Peierls formula,37,38

and there is long-standing controversy on this issue. Although it is

believed that this controversy was resolved in Ref. 25, the exchange of

momentum between light and matter, and therefore, the forces exerted

on objects, is still dependent on the particularities of the situation.24,27,29

Experimental results suggest that when an interface is present, the

Minkowski formula should be used to correctly obtain the related

optical force14 (see Section 2 in Supplementary Information for details).

As illustrated in Figure 1a, the changes in the momentum of the

light rays from air to water through the scatterer itself can be calculated

by summing up the momentum change associated with each refrac-

tion. As a close approximation, only two refractions, corresponding to

DPray5DPray,11DPray,2 (see Section 1 in Supplementary Information

for details), are considered: DPray,15P0(T1A1t1R1A1r2A1i) and

DPray,25P0(T1T2A2t1T1R2A2r2T1A1t). Here, P0 is the amplitude of

the momentum of the incident ray. A1i,1t,1r and A2i,2t,2r are the dir-

ectional vectors along the incident, transmitted, and reflected rays for

the first and second refractions,39 respectively. T1,2 and R1,2 are the

energy transmission and reflection coefficients determined by the

Fresnel formula. For the special case of h150 and sufficiently small

R1,2 (e.g., R153.4% and R250.2% at h150 for the parameters given in

Figure 1), one can directly obtain DPray,x/P05T1T2n2cosh22n1. In the

usual case of light scattering in a homogenous background (n15n2),

DPray,x is certainly less than zero. However, for the inhomogeneous

mixture background depicted in Figure 1a, the condition n2.n1/

(T1T2cosh2) may easily be satisfied, thereby resulting in a positive
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Figure 1 (a) A schematic diagram of photon momentum transfer in an inhomo-

geneous mixed background. A1i,1r,1t and A2i,2r,2t denote the propagation direc-

tions of the incident, reflected and transmitted rays at points 1 and 2, respectively

(the length of each arrow indicates nm, the refractive index of the associated

medium). h1,2 describe the angles of the incident and transmitted rays with

respect to the 1x axis. (b) The ray-tracing patterns of the system with

h152206, ry50.75rx (where rx and ry are the semi-axes of the scatterer along

the x and y directions, respectively), n151, n251.33 and n351.45. The black

(solid) and red (dashed) lines represent the incident and refracted rays, respect-

ively. (c) The same as (b) except for h151206.
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DPray,x. Thus, an induced negative force on the submerged object is a

natural consequence of linear momentum conservation.

In the analysis presented above, no restrictions (beam shape, polar-

ization, relative phase, coherence, etc.) on the optical fields are

imposed; only the law of conservation of linear momentum is invoked.

Therefore, a simple optical field, such as a single plane wave, can be

used to realize an NSF in practice. We attribute the greatly simplified

conditions required to achieve an NSF in our scheme to the presence

of the liquid, which provides a channel to increase the forward

momentum in a passive environment. Previously reported NSF scen-

arios2–13 have included only a light beam and a scatterer, and the

background medium has been uniform and contributed equally to

both the incident and scattered beams. As proposed in Ref. 40 and

demonstrated in Ref. 22, the background medium also plays an

important role in the generation of a tractor beam. To obtain a pulling

force with a structured background as in Ref. 22, however, the hydro-

dynamic effect, a convection current and uneven heating all must be

present. By contrast, in our scenario, it can be observed that even if

such effects are omitted, it is possible to change the magnitude of the

optical pulling force simply by modifying the frequency of the light

source, the difference in the refractive indexes of the two background

media (the refractive index of the final background medium should be

higher than that of the previous medium (or media) to achieve optical

pulling), and the shape or size of the submerged particle.

To calculate the momentum transfer and the corresponding forces

quantitatively, we set the media of the gas, the liquid and the scatterer

to be, respectively, air, water and silica sphere with indexes of n151.0,

n251.33 and n351.45. Using the ray-tracing method mentioned

above, all rays impinging on the scatterer are traced (as illustrated in

Figure 1b and 1c), and the momentum changes and, in turn, the

optical force are calculated correspondingly. Figure 2a shows the

changes in Fx with the shape of the scatterer for the case of h1506.

When 0.425,ry/rx,0.775, both p and s polarizations can produce a

negative force. Figure 2d shows the changes in the force with the angle

of incidence on a circular scatterer with rx5ry, and NSFs are achieved

within a broad range of incidence directions. These results are con-

sistent with the analysis presented above.

To calculate the force using STs, we calculate the scattering using the

finite-difference time-domain method for a plane wave incident on a

circular scatterer (with semi-axes along the x direction, rx, and along

the y direction, ry, of rx5ry52.0 mm) and an elliptical scatterer (with

rx52 mm and ry50.4 mm). Then, the optical forces experienced by the

particles are calculated through the integration of the time-averaged

Minkowski stress tensor on a closed contour (see the dashed rectangles

in Figure 2c and 2f) surrounding the scatterer,

�Th i~ 1

2
Re DE�zBH�{

1

2
I E�:DzH�:Bð Þ

� �
ð2Þ

The calculated forces for the elliptical and circular scatterers are

presented in Figure 2b and 2e (square lines), respectively, and good

agreement with the results of the ray-tracing method is observed.

Here, the s-polarization results are not shown because they are similar

to those of the p-polarization case. In the calculation, the local per-

mittivity and permeability along the integration paths are used (as

shown in Figure 2c and 2f). Figure 2c and 2f present the field patterns

of Hz for the scatterer in the case of h152306 for the circular and

elliptical scatterers, respectively. The arrows represent the elementary

force vectors on the closed contour along which the total net force Fx is

calculated via integration. The majority of the pulling force is exerted

when the photons leave the scatterer, consistent with our analysis.

Explanation of the observations and two-photon momenta

It is important to note that our previous analysis and the experimental

observation reported in Ref. 22 cannot distinguish whether the

momentum of a photon moving in a continuous background (water)

is the Minkowski momentum. In a similar previous experiment (the

well-known Jones experiment), optical-force-formula-based approaches

supported the transfer of both the MPM31 and the APM.32 Such

ambiguities regarding the transfer of photon momentum from the

background can only be overcome via a direct photon momentum

approach24 such as the ray-tracing method, which was the primary

focus of the previous section. Surprisingly, for the experiment pre-

sented in Ref. 22, the force experienced by the embedding water

medium should be calculated using the Einstein–Laub formula

based on the field inside the water, which indeed supports the

APM formulation (cf. Equation (21) in Refs. 32 and 41). If the force

on a lossless continuous medium is calculated via the Minkowski ST

(associated with the MPM) employing the interior fields, the cal-

culation will yield zero force. In the cited experiment,22 at the inter-

face of the scatterer and the water,22 the MPM should arise because

of the reduced impedance mismatch.42 In fact, the MPM generates a

translation of the electromagnetic field.26 This translation relative to

the host is exactly the quantity required to represent the displace-

ment of an embedded object.25 As a result, the MPM appears in

almost all major radiation pressure experiments that measure the

displacement of an embedded object.25,26 However, after some

duration of photon emission by the scatterer, the dressed photon

(MPM) should start to lose its momentum, slowly but continuously.

That momentum should be absorbed by the water medium, and

finally, the momentum of the moving photon should be the APM.

In this discussion, it is important to mention the experimental

observations of Ashkin and Dziedzic regarding the force density

distribution in water,33 which support the Einstein–Laub force–

density expression associated with the APM, according to

Mansuripur et al.41 Therefore, the experimental observation of a

pulling force on the scatterer in Ref. 22 indeed cannot prove that

the MPM is the only correct photon momentum. In fact, both the

MPM and the APM are correct, but their functionalities are quite

different.

The validity of other methods

Hitherto, the transfer of optical momentum has been calculated

based on the MPM approach, which is also in good agreement with

the experimental observations reported in Ref. 22. Surprisingly, no

other photon momentum (Abraham or Peierls) predicts an optical

pulling force (see Supplementary Fig. S1 in Section 2 in

Supplementary Information). In addition, the force calculation

results based on the Lorentz formula and the Chu formula that

are presented in Figure 2b and 2e, which are calculated via

the integration of the Lorentz force density (from the interior of

the embedded particle) and via Chu’s ST (from the exterior of the

embedded particle),24 do not guarantee negative forces (the

Nelson43 stress tensor leads to the same result). In Ref. 29, it was

considered that the MPM bears a momentum contribution

from the single-photon momentum (field momentum or Abraham

momentum24,29) along with a momentum contribution from the

material,24 Pmed.29 Although Milonni and Boyd29 have considered that

the momentum of the medium (Pmed) should be regarded as the

momentum that is shared with the background medium (or host26)

by the field, we argue, likely for the first time, that Pmed should

be regarded only as a transfer of mechanical momentum from the

Tractor beams achieved by dielectric inhomogeneity
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background to the embedded particle (see also Supplementary Fig. S1

in Section 2 and, later, Section 3 in Supplementary Information).

According to Milonni and Boyd,29 this Pmed originates from the extra

time-varying Abraham term fA. However, the time average of fA becomes

zero when we consider the time-averaged total force or the time-averaged

momentum transfer. Our proposal also explains why the Helmholtz

force term, fH, in the linear momentum conservation formula of

Minkowski44,45 fails to predict the total time-averaged mechanical force

without the addition of hidden terms from elasticity and thermodyn-

amics44,45 (also see Section 3 in Supplementary Information).

Because the time-varying Minkowski momentum density (or the

MPM) carries the mechanical momentum component, the time-aver-

aged force calculated using the associated Helmholtz force fails to

predict the correct total mechanical force. Moreover, the Abraham

force law also fails to yield the total force, as fA becomes zero when

the time average is taken. As a result, from our point of view, the ray-

tracing methods based on the MPM presented in this article or the

Minkowski stress tensor based on the background fields should be

employed to calculate the correct result (see the three-dimensional

cases presented in Section 4 in Supplementary Information).

Although the Chu stress tensor based on the exterior fields exhibits

an optical pulling force for the case of a 2D circle (Figure 2e), it

exhibits a pushing force for the 2D ellipse (Figure 2b). In fact, the

optical momentum transfer from the background to an embedded

particle should not be calculated using the Chu or Nelson stress

tensor. For non-magnetic media, the momentum density associated

with these formulas is the Abraham momentum. As a result, the Chu

and Nelson formulations fail to account for the effect of the transfer

of the mechanical momentum Pmed (the additional backward

momentum). Although several force and ST formulations have been

discussed in Ref. 46 in an attempt to explain various experimental

observations (other than those obtained for dielectric mixtures), the

problems associated with the different photon momenta have not

been clarified. In this article, even for a very complex scenario, we

have attempted to resolve the problems of both STs and the assoc-

iated photon momenta.
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optical forces with the shape ry/rx at h150. The forces are calculated using the ray-tracing method, in which the Minkowski approach is adopted for the photon
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(d) The variation in the optical forces with the incident direction h1 for a circular scatterer of rx5ry52.0 mm. The forces are calculated using the ray-tracing method. (e,

f) The same as (b) and (c), respectively, except for ry52.0 mm.
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RESULTS AND DISCUSSION

Modified Einstein–Laub stress tensor based on the interior fields of

the scatterer

Another method of unambiguously calculating the optical force is to

use the force density inside the scatterer rather than the fields outside

it. Surprisingly, the time-averaged Lorentz force obtained by employ-

ing the interior fields47 of the embedded particle also fails to yield an

accurate result for the total mechanical force, as shown in Figure 2b

and 2e. The Lorentz force reported in Ref. 47 (actually the internal Chu

force for non-magnetic media24) based on the interior fields and the

APM is applicable only when the background medium is air. It is for

this reason that the interior of a particle can be modeled as the interior

of the conventional Einstein–Balaz box experiment29 (the photon

momentum is the Abraham momentum in the interior of the

box26,29) only when the background is air. Therefore, conclusions

based on the Einstein–Balaz box experiment do not remain valid when

the background is not air and an additional mechanical momentum

Pmed is transferred via the MPM from the external background (i.e.,

the origin of the additional pulling force after the emission of the

photon by the scatterer in Ref. 22). If the background medium is

not air, then the Lorentz force47 on the interior of the embedded

particle should be modified. From our point of view, the interior

mechanical force should be calculated via the time-averaged modified

Einstein–Laub (MEL) stress tensor:48

FTotal(from interior fields)~
1

2
Re½
þ

T MEL(in)
� �

:dS� ð3Þ

where T MEL(in)
� �

~DinE�inzBinH�in{
1
2
(mbH2

inzebE2
in)I, mb and eb are

the permeability and permittivity of the background medium of the

particle, and I is the unit tensor. In our setup, the permeability and

permittivity of the background are the local permeability and permit-

tivity of the air and water, respectively, defined in the specific 2D

configuration of the full-wave simulation (Figure 2b and 2e). The

quantities Ein, Hin, Din and Bin refer to the values in the interior of

the silica particle. Note that no hidden quantity is required to obtain

the modified Einstein-Laub stress tensor. The calculations via the MEL

stress tensor based on the interior fields are in full agreement with the

ray-tracing method and Minkowski formulations based on the exter-

ior fields (Figure 2b and 2e). Detailed discussions of MEL formula-

tions48 will be presented in our future articles.

The dependence of the NSF on the vertical distance of the particle

from the interface

Also of interest is the stable dependence of the interfacial tractor beam

on the vertical distance D of the particle from the interface (as labeled

in Figure 1a). The results show that the NSF is robust with respect to

the vertical position D, as illustrated in Figure 3. However, the surface

energy well at the water-air interface can stably trap the scatterer in the

vertical direction (see Section 5 in Supplementary Information for

details). In the tangential direction, the motion equation is

m
dv

dt
~Fscat{Fd~Fscat{3pmr:v ð4Þ

where m and v are the mass and velocity of the object. Fscat and

Fd53pmr?v are the optical scattering force and the drag force of the

water, respectively. Then, the final velocity can be calculated by setting

dv/dt50, i.e., vfinal5Fscat/3pmr. Suppose that the temperature is 300 K;

in that case, the dynamic viscosity of water is approximately

m<831024 Pa s.49 Then, a linear relation between the velocity and

the optical scattering force can be obtained.

CONCLUSIONS

In summary, we demonstrated that the transfer of photon momentum

from an inhomogeneous background with a single submerged particle

supports the Minkowski formulation and that increased forward

momentum results from a bi-background medium configuration, in

which the particle plays an important role. The problems of how the

field, the mechanical momentum, the optical force and the stability of

the negative force are related to the momentum transfer process were

unambiguously addressed. The optical scattering force can thus be

robustly adjusted (positive or negative) using the correct momentum

transfer scheme. As a result, an interfacial tractor beam can be stably

realized over a wide range of incidence angles and vertical positions of

transparent particles. We believe that our proposal is very effective in

resolving not only the Abraham–Minkowski photon momentum

dilemma, but also the question of the associated stress tensors and

optical forces, including tractor beams.
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