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Supplementary Materials for Design Procedure and Criteria 

 

1. The intensity and phase of light passing through a single belt with its radius r0 and width 

∆r. In Fig. 1, we show the sketch of the diffraction of a belt with radius r0 and width ∆r. The angle 

between the ray emitting from the center of belt to the on-axis point at the target plane and the 

optical axis is α whose sine has the form of sinα=r0/(r0
2
+z

2
)

1/2
. In order to evaluate the difference 

between the intensity profile of light passing through the transparent belt and the Bessel function 

J0(k0rsinα), we use the their root-mean-square error (RMSE) 
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where N is the number of sampling points in position r. If RMSE is small, the intensity profile at 

the target plane has a good approximation of the Bessel function. Figure 1(b) shows the 

dependence of the RMSE on the width ∆r and radius r0 (or sinα) of the belt when the propagating 

distance from the belt plane to the target plane is 20λ. We take N=300 in Fig. 1(b). We just display 

the cases for the RMSE smaller than 0.05, in which the good approximation can be obtained. In 

order to show the difference between the color and white region more straightforwardly, we select 

some positions, i.e. A in white region and B in color region, and plot their intensity profiles at the 

target plane in Fig. 1(d) and (e). When we choose the parameters ∆r =1.7λ and sinα=0.6 at the 

position A in Fig. 1(b), the intensity profile has a bad approximation of Bessel function as shown 

in Fig. 1(d). However, for the position B with ∆r =0.5λ and sinα=0.6, one can hardly distinguish 

between the intensity profile and Bessel function with its RMSE of 8.5×10
-4

 in Fig. S1(d). From 

Fig. 1(b), we can see the tendency that the approximation is good when the radius r0 (or sinα) 

increases. For the belt with its width ∆r smaller than the wavelength, its RMSE between the 



intensity profile and Bessel function is also small enough to obtain a good approximation. If the 

width ∆r increases, the better approximation happens at only the position in the feather-like region 

of Fig. 1(b). This implies that the careful weight in choosing the width of belt is required in 

designing a zone plate for super-resolution or super-oscillation focusing because the belt with its 

parameters located at the white region in Fig. 1(b) makes no sense in achieving a small spot. From 

this viewpoint, Figure 1(b) shows an instructive roadmap for designing a super-resolution or 

super-oscillation zone plate.  

     Interestingly, one can note that the white region in Fig. 1(b) always spreads to the position 

where ∆r =nλ (n=1, 2, …) and sinα=1. This phenomenon tells us a fact that light passing through 

the belt with the integer-wavelength width ∆r and large radius r0 has a destructive interference 

with the zero on-axis intensity at the center, which has no any improvement in reducing the spot 

size but contributing a large ring-like intensity. Therefore, for the belt with very large radius r0, its 

width should be chosen as the value with integer wavelength when one pursues a small spot at the 

target plane.  

     Correspondingly, in Fig. 1(c), we show the modulated amplitude Cn with its intensity profile 

having a good approximation of Bessel function. According to the conclusion derived from Fig. 

1(b), we just consider the color region with the width ∆r smaller than the wavelength. In this 

region, for a belt with the fixed width ∆r, its amplitude is large for the intermediate radius r0 (or 

sinα) and small for the low and high radius r0 (or sinα), which is well consistent with the 

amplitude requirement for super-oscillation focusing in Fig. 2(b). This shows the advantage for 

zone plate to realize the super-oscillatory focusing spot with its sidelobe away from the center.  

    To understand the properties of light passing through a single belt, we plot the phase and 

amplitude profiles for the cases of the belt with different radius r0 and fixed width ∆r=0.3λ in Fig. 

2(d) and (e). The propagating distance is also chosen at z=20λ. The amplitude profile has the sharp 

variation for the small radius of the belt and the similar shape for the radius r0 is larger than 40λ. 

However, the modulated amplitude U(0) at r=0 has a peak near r0=20λ and slowly decreases for 

the large radius r0 of the belt. For its phase profile, there is a radial (along r) phase change of π 
where the zero intensity happens in Fig. 2(d). Moreover, the phase also changes with the 

increment of the radius of the belt, which means that the phase for every spatial frequency is 

different. One has to choose the suitable radius r0 of belt to make the phase difference between the 

neighboring frequencies become π for realizing the super-oscillation focusing, which makes the 

zone plate behave badly in realizing a spot with sidelobe away from the center. 

 

2. The trust-region Newton’s theory for nonlinear equations 

In this paper, the numerical solution for the nonlinear problem describing the inverse 

problem of super-oscillation by using a zone plate or a binary-phase modulated lens system is 

obtained by the well-developed trust-region Newton’s theory, which is the most widely used 

algorithm for nonlinear equations. In this section, we just show the part that has the tight 

relationship with our case in the paper and ignore the proof, which can be found in the relative 

books for more details [S1, S2], for every theory used in our codes.      

 

 

 

 



Newton’ theory  

For most nonlinear equations with multiple variables, the basic problem can be expressed as 

follows: 

            Given Γ: R
n→R

n
, find x*ϵR

n
 such that Γ(x*)=0                   (S2) 

where Γ is assumed to be continuously differentiable. Here, in our cases, the function F has the 

form of Γ(v)=L(rm)+F(rm)+∑nS(vn,rm)C(vn) for the lens system and Γ(v)= F(rm)+∑nS(vn,rm)C(vn) 

for the zone plate. For simplicity, we give the solution for the problem with one variable. We can 
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approximate the integral in Eq. (S3) by a linear term J(x0)·p, where J(x0) is the Jacobian of Γ(x). 

Therefore, Eq. (S3) can be simplified with 

                         ( ) ( ) ( )pxJxpx 000 +Γ=+Γ ,                      (S4) 

Now, we can solve the step p that makes Γ(x0+p)=0, which gives the Newton iteration for this 

problem. The solution is 

                            ( ) ( )pxJx 00 −=Γ ,                             (S5) 

                              pxx += 01 .                                (S6) 

From Eq. (S5) and (S6), one can see that the choice of step p is very important in solving the 

nonlinear problem successfully. Many methods has been developed to find the suitable step p for 

the various nonlinear problem. The trust-region method is the most popular one for its global 

convergence properties and rapid local convergence with exact solution.    

 

Trust-region method 

     As shown in Eq. (S4), the step p is a root of the Γ(x0+p)=0. Equivalently, the step p is also a 

minimum of the Euclidean norm m(p) 
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where the sign 
2

2
⋅  stands for the Euclidean norm and the s

T
 is the transpose of the matrix s. 

Hence, the subproblem of trust-region method is to find the minimum of function m(p) in the 

limited region ║p║≤∆k, where ∆k is the trust-region radius which has the positive value. Choosing 

the trust-region radius ∆k at each iteration is the first problem that should be settled down in 

building the trust-region method. We follow the general way for evaluating the trust-region radius 

by the agreement between the model function m(p) and the objective function Γ(xk) at the previous 

iterations. For the iteration with its step pk, we can use the ratio 
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where the numerator and denominator evaluate the actual and predicted reduction. Because the 



step is obtained by minimizing the m(p) over the region includes p=0, the denominator always has 

the nonnegative value. This implies that, if the ratio ρk is negative, the next objective value is 

larger than the current value Γ(xk). Moreover, when ρk is close to 1, it is the good agreement for 

this step, resulting that it is safe to use the trust region of this step in the next iteration. However, 

when ρk is very small (close to zero) or negative, we should decrease the radius of trust region. 

When we carry out this method in a computer code, its flowchart for the trust-region method has 

the form as Fig. S1.    

 

Figure S1 | The flowchart of the trust-region method based on the Newton’s theory for 

non-linear equations. 

 

     In the flowchart, the calculation of pk is usually carried out by using the dogleg algorithm, 

which is a quick and efficient method for pk. Next, we introduce the dogleg algorithm.  

 

Dogleg algorithm 

   To obtain the approximate solution p of min[m(p)] in Eq. (S7), we use the dogleg algorithm 

which is based on the Cauchy point 
C

kp  and the unconstrained minimizer 
J

kp . The Cauchy 

point is used to quantify the sufficient reduction of pk for global convergence proposes. The 

Cauchy point is   

Begin 

Defining D>0 

Calculate pk 

Evaluate ρk 

Compare ρk 

ρk <1/4 

ρk >3/4 

& ║pk║=∆k 

∆k+1=min( 2∆k, D) ∆k+1= ∆k /4 ∆k+1= ∆k  

Calculate ∆k+1 

else 

Calculate xk+1 
ρk >η else 

xk+1=xk+pk xk+1=xk 

End 

Is m(pk)  

small enough? 

k=
k+

1
 

Yes 

No 

Choosing ∆0ϵ(0,D) 

ηϵ(0,1/4), k=0. 
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where  
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     To realize the curved trajectory needed in dogleg algorithm for quick convergence globally, 

the unconstrained minimizer 
J

kp  is introduced. When the Jacobian Jk has full rank, the mk(p) has 

the unique minimizer. Therefore, the unconstrained minimizer is the good approximation for 

obtaining the solution of min[m(p)]. The unconstrained minimizer has the form of 

                          ( )kk

J

k xJp Γ−= −1
.                                (S11) 

In the practical implementation of dogleg algorithm, the Cauchy point and the unconstrained 

minimizer are combined together for determining the approximate solution p of min[m(p)]. The 

flowchart of dogleg algorithm is shown in Fig. (S2). 

 

Figure S2 | The flowchart of dogleg algorithm for solving the subproblem in trust-region 

Newton method  

 

3. Construct a super-oscillatory focused spot by focusing the light with rigorous single 

spatial frequencies 

 

We have showed the generation of a super-oscillatory spot by using a zone plate and a 

binary-phase-base lens system. Here, to investigate the properties of the super-oscillatory focusing 

in optics, we construct an optical super-oscillatory pattern by interfering the light of different 

spatial frequencies with modulated amplitudes to display how the super-oscillation in optical 

focusing happens. For the focusing of a unpolarized beam with the single spatial frequencie, it can 

be approximated by the scalar Debye theory [S3, S4].  The electric field at the focal plane is 

proportional to 
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where k0=2π/λ.Without loss of generality, we consider the interference of light with N different 

spatial frequencies whose amplitudes are modulated. Following the results in Eq. (S12), the total 

electric field after interference can be expressed as 
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00 ,                       (S13)    

where Cn and vn are the modulated amplitude and the corresponding NA of n-th spatial frequency, 

respectively. First we show the simplest case of N=2 which is shown in Fig. S3(a). According to 

the results in Fig. 4, if the super-oscillation happens, the first zero-intensity position in the total 

electric field f after interference should be located at r<rs. In Fig. S3(a), the first zero-intensity 

position is chosen at r=r0. Then the zero intensity at r=r0 can be realized by adjusting the 

amplitudes of f1 and f2. Here, we suggest a set solution of C1=2.2041 and C2=-1.2041, where the 

negative amplitude can be achieved by introducing a phase retardation of π in optics. The total 

electric field f seems to be the result that one pulls down the electric field f1 of the maximum 

spatial frequency along the chromatic zone in Fig. S3(a) until the zero electric field (or completely 

destructive interference) occurs at r0. When the pulling down of f1 continues, the arbitrarily small 

super-oscillatory spot can be obtained only if the on-axis intensity at r=0 is nonzero, which gives 

the reason for the fact that it is possible to theoretically get a super-oscillatory spot with 

infinitesimal size [S5, S6]. Another consequence of pulling down f1 is the further decrement of 

first valley with negative value that leads to the increment in intensity of high sidelobe as shown 

in Fig. S3(a), which can explain why the super-oscillation always accompanies with a high 

sidelobe [S5, S6]. From the case displayed in Fig. S3(a), we claim that, the super-oscillation in 

optics is the fact that the completely destructive interference happens at the some points with the 

neighboring interval smaller than the super-oscillation criterion rs. The case in Fig. S3(a) shows 

the simplest prototype that represents the inverse problem of super-oscillation: what is the 

amplitude for every spatial frequency if one wants to realize the nonzero intensity at r=0 and the 

zero intensity at r=r0 by using two given spatial frequencies.  

 



 

Figure S3 | The constructed optical pattern by inverse problem of super-oscillation. (a) The 

constructed super-oscillation by the light with two frequencies whose electric fields at the 

interfered area are f1=2.041J0(0.98k0r)and f2=-1.041J0(0.2k0r), respectively. (b) The intensity 

profiles of the constructed super-oscillation (blue) pattern by interference of the light with 10 

spatial frequencies and the optical pattern (red) from the maximum frequency. Inset: the values of 

10 given spatial frequencies (hollow circle) with equal interval and the solved C (solid dot) with 

the normalized value. (c) The intensity profiles of constructed super-oscillatory pattern when the 

minimum spatial frequency vmin is changing in the range of [0.001, 0.496] but the maximum 

spatial frequency vmax is fixed to 0.98. Inset: the maximum in the absolute value of the solved C 

(blue) and the corresponding norm ║S
-1║ (green) vs the different vmin. (d) The intensity profiles of 

constructed super-oscillatory pattern when vmax is changing in the range of [0.75, 0.98] but vmin is 

fixed to 0.01. Inset: the maximum in the absolute value of the solved C (blue) and the 

corresponding norm ║S
-1║ (green) vs the different vmax. 

 

      

Next, we discuss the inverse problem of super-oscillation generally. Assuming that we want 

to realize the electric field F=[f1,f2,…,fM]
T
 at the prescribed position r=[r1, r2,…, rM]

T
 by using the 

interference of light from the given spatial frequencies v=[v1, v2,…, vN]
T
, the problem of 

determining the unknown amplitude C=[C1,C2,…,CN]
 T

 can be expressed by 

                             SC=F,                                    (S14) 

where S is an M×N matrix that has its matrix element Smn=J0(k0rmvn) according to Eq. (S13). 

Because the only unknown variable in Eq. (S14) is C, it is a simple linear-equation problem to 

solve C, whose solution exists if N≥M. For simplicity, here we just discuss the case of N=M 

which implies that S is a square matrix. In this case, if S is invertible or has the nonzero 

determinate, which means the S
-1

 is not a singular matrix, C has the only solution of C=S
-1

F. For a 
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given F, S
-1

 is the key parameter that determines the cost C for super-oscillation. Therefore, we 

can use the norm ║S
-1║to evaluate the cost of super-oscillation. The norm ║S

-1║ depends on the 

prescribed position r and the spatial frequency v. A fast super-ocillation means that the interval 

∆r=rm+1-rm is very small. The m and m+1 row of S trends to have little difference so that S has its 

determinate |S| close to zero, which leads to the very large norm ║S
-1║ that causes a high cost in 

amplitude C. Therefore, the faster super-oscillation always requires the higher cost.  

Then, using the inverse problem of super-oscillation demonstrated above, we show an 

example that realizes a super-oscillatory spot with its high sidelobe away from center for 

super-resolution focusing. As shown in Fig. S3(b), for the N=10 given spatial frequencies v=[vmin, 

vmin+∆v,…,vmin+(N-2)·∆v, vmax] with equal frequency interval ∆v=vmax-vmin/(N-1) where 

vmin=0.201 and vmax=0.98, our aim is to use the frequencies v to realize a customized 

super-oscillatory pattern with its intensity profiles obeying F=[1, 0, … , 0]
T
 at the prescribed 

position r=[0, 0.158λ, 0.348λ,…, 1.233λ]. According to Eq. (S14), we can provide the solution C 

that is shown in the inset of Fig. S3(b). Using Eq. (S13) and the solved C by the inverse problem 

of super-oscillation, the intensity profile of constructed super-oscillatory pattern is displayed in 

Fig. S3(b). The constructed pattern indeed oscillates faster than the optical pattern from the 

maximum frequency. More importantly, the sidelobe in the constructed pattern is pushed several 

wavelengths away from the super-oscillatory main spot at the center by artificially padding the 

zero-intensity position between the sidelobe and main spot when setting the targeted F in practical 

application. In the intermediate area between the sidelobe and main spot, the zero intensity is used 

to suppress the high intensity of sidelobe so that the sidelobe has to move away from the center. 

The distance between the sidelobe and main spot can be enlarged by introducing more 

zero-intensity locations in their intermediate region, which implies more cost in the corresponding 

amplitude C [S7]. Nevertheless, this method provides an unrestricted route in theory for realizing 

a super-oscillatory focusing spot with its sidelobe arbitrarily far away from the center, which is a 

significant promotion in popularizing the super-oscillation in super-resolution imaging. 

Interestingly, the solved amplitude C has the alternating sign of positive or negative with its 

amplitude module small for low and high spatial frequencies and large for the intermediate spatial 

frequencies.  

       It is not the sole solution C for realizing the super-oscillatory pattern with the customized 

intensity F at the prescribed position r shown in Fig. S3(b) when we change the given spatial 

frequencies v. In Fig. S3(c), we fix the maximum spatial frequency vmax/λ to be 0.98/λ and change 

vmin from 0.01 to 0.496, so that the N=10 given spatial frequencies have the form of v=[vmin, 

vmin+∆v,…,vmin+(N-2)·∆v, vmax] with equal frequency interval ∆v=vmax-vmin/(N-1) where vmin is 

changing and vmax=0.98. According to the inverse problem described by Eq. (S14), we display the 

intensity profiles of some solutions in Fig. S3(c) that has absolutely the same intensity F at the 

prescribed position r although a little deviation between different frequency groups exists at the 

unprescribed position. It is worthy to note that both the norm ║S
-1║ and the maximum absolute 

value |C|max in every case experience a valley near vmin=0.2 when vmin varies from 0.01 to 0.496. 

This reveals that the cost for every frequency group is different and an optimal solution is existent 

in our case, which is an undeniable proof that the optimization mechanism of super-oscillation is 

considerably developed by choosing the suitable spatial frequencies. The existence of the optimal 

solution for super-oscillation renovates the cognizance that there is no cheapest band-limited 

function for super-oscillation [S7]. Furthermore, we use the fixed vmin=0.01 and varied vmax from 



0.75 to 0.95 to generate the spatial frequency group v with equal frequency interval 

∆v=vmax-vmin/(N-1). Likely, the customized intensity F at the prescribed position r is also achieved 

and shown in Fig. S3(d). In this case, the cost of super-oscillation exponentially decreases with the 

increment of vmax, which implies that the high spatial frequency is preferred in optimizing the 

super-oscillation with the smallest cost.   

 

4. Parameters of binary phase mask in Fig. 3b 

 

                 Table S1. Data of designed binary phase in Fig. 3b 

n sinθn n sinθn 

0 0 16 0.5196 

1 0.0317 17 0.5517 

2 0.0635 18 0.5835 

3 0.0955 19 0.6154 

4 0.1291 20 0.647 

5 0.1614 21 0.6796 

6 0.1941 22 0.7113 

7 0.2271 23 0.7435 

8 0.2602 24 0.7742 

9 0.2928 25 0.8063 

10 0.3247 26 0.8357 

11 0.3576 27 0.8676 

12 0.3899 28 0.8949 

13 0.4222 29 0.9244 

14 0.4544 30 0.95 

15 0.487   
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