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Efficient and Tunable Photoinduced Honeycomb Lattice in
an Atomic Ensemble

Feng Wen, Xun Zhang, Huapeng Ye, Wei Wang, Hongxing Wang, Yanpeng Zhang,
Zhiping Dai,* and Cheng-Wei Qiu*

Artificial periodic structures (APS) with controllable optical properties are
highly demanded in all-optical devices and circuits in communication
networks. However, APS realized in solid materials are usually non-tunable
and inherently possess immutable photonic bandgap. In this article, a novel
honeycomb lattice in an atomic ensemble by utilizing the multi-beam
interference method is reported. Unlike the honeycomb lattice formed in solid
materials, the optical properties of this photoinduced honeycomb lattice, such
as the absorption/dispersion coefficients and the photonic bandgap can be
efficiently tuned by two-photon detuning and Rabi frequency, resulting in both
amplitude- and phase- type honeycomb lattice. Based on the two-photon
quantum-imaging method, the near-field diffraction of the honeycomb lattice
is also investigated. It is found that the resolution of the diffraction pattern is
tunable by simply adjusting the manner of the two detectors scanning across
the imaging beams. In addition, the contrast of the pattern can be greatly
enhanced by tuning the optical properties of the lattice. Such an optical
honeycomb lattice with tunable properties could find applications in
all-optical switching at the few photons level and paves the way for the
generation and manipulation of optical topological insulators.

1. Introduction

Artificial periodic structures (APS) such as waveguide arrays,[1,2]

photonic crystals,[3–5] and metamaterials,[6,7] have attracted sub-
stantial attention in the past several years due to their unprece-
dented capacities in lightmanipulation ranging from strong slow
light,[8] inhibited spontaneous emission,[9] photon–atom bound
states,[10] vortex beams, and orbital angular momentum,[11–14]

to all-optical signal processing and switching.[15–17] APS can be
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fabricated into various geometries,
among which the honeycomb lattices are
known to support larger bandgaps, and
help to strongly modify or even suppress
the propagation direction of light at
desired frequencies. Furthermore, the
honeycomb lattice also exhibits certain
graphene-like properties naturally and
was suggested to prepare the photonic
topological insulators,[18–22] in which the
propagating light beams are confined
at the edges without scattering energy
into the bulk, and robust against defects.
Conventionally, twomethods, namely the
femtosecond laser writing technique and
the optically induced method, are uti-
lized to fabricate the honeycomb lattices.
The former method is valid only in solid
materials, while the latter can be used in
both solid and gaseous materials. So far,
the honeycomb lattices in solid materials
are widely investigated;[23,24] neverthe-
less, the refractive index of the resulting
periodic structures in solid materials is

usually non-tunable, and thus leading to immutable photonic
bandgap (PBG), such as photonic crystals with fixed periodic
structures.[25] APS with tunable optical properties are highly de-
manded in all-optical devices and circuits in communication net-
works. It would be of great importance if we can obtain some
degree of tunability in the photonic band structure.[26,27] One
possibility to tune the optical properties is demonstrated in fil-
trated liquid crystals.[25] Nevertheless, the modulation efficiency
with liquid crystals is limited by the long relaxation time in the
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process of molecular reorientation which is usually based on
slow electro- and thermo-optics effects. Indeed, tuning the optical
properties directly by optical means is more desirable. This can
be achieved in the so-called electromagnetically induced grating
(EIG) system, and the tunable transmission spectra is demon-
strated both in cold[28] and hot[29] atomic samples. Unlike tra-
ditional APS in solid materials, such periodic structure is cre-
ated by interfering two laser beams, and consequently the result-
ing photonic structure is highly tunable.[30,31] So in this paper,
we report a novel honeycomb lattice in an ultra-cold atomic en-
semble, where the periodic refractive index can be dynamically
modulated by the all-optical method. In particular, we consider
first the absorption/dispersion coefficients, the PBG structure,
and transmission of the optically induced honeycomb lattice, and
demonstrate that those properties can bemodulated significantly
by two-photon detuning and Rabi frequency. Using two-photon
quantum-imaging method, we considered the near-field diffrac-
tion pattern of the honeycomb lattice, and found that the resolu-
tion of the diffraction pattern can be efficiently tuned by simply
adjusting the manner of the two detectors scanning across the
imaging beams. In addition, we also show that the contrast of the
diffraction pattern can be greatly enhanced by tuning the optical
property of such photoinduced nonmaterial lattice. It may open
up the possibility of generating a honeycomb lattice in atomic
vapors under physical mechanisms that are vastly different from
those in solid-state materials.
It is worth mentioning that our scheme has the following ad-

vantages. First, the optical lattice written in an atomic assemble
is reconfigurable and can be dynamically tuned. So the absorp-
tion/dispersion index and the PBG structures of the induced hon-
eycomb lattice can be dynamically modulated by adjusting the
two-photon detuning and Rabi frequency. Second, other complex
lattice structures, that is, quasi-crystals, square lattice, kagome
lattice, defect-mediated lattice, Bessel lattice, virtual lattice, ring
lattice, and 3D photonic lattice, can also be realized by using the
multi-beam interference method in current systems. Third, the
formation of lattice, as well as the tuning, is all done all-optically.
Optical lattice structures both in the cold and warm atomic sys-
tems are quite stable, so long as the lattice forming beams are
stable. This provides an effective way for creating photonic topo-
logical insulators.

2. Optical Properties of Honeycomb Lattice

We start by considering a typical electromagnetically induced
transparency (EIT) system confined in a regular cold magneto
optical trap (MOT). As shown in Figure 1a, the EIT system is
composed by the interaction between an ensemble of cascade-
type three-level cold atoms[32] and four continuous wave lasers,
including a weak field EP and a lattice-forming field Eeff (x, y).
Here, the lattice-forming field is generated by interfering the
three ordinarily polarized plane waves with the same frequency
ωS. To be specific, the three plane waves, being symmetrically
placed with respect to z, are launched into the cold atomic en-
semble at an angle of 2π/3 between each other, as shown in
Figure 1a. The effective Rabi frequency of Eeff (x, y) can be writ-
ten as �eff = ∑3

m=1 �S exp[ik0
−→
bm • −→r ], where−→b1 = (1, 0),

−→
b2 =

(−1/2, √3/2), and
−→
b3 = (−1/2, −√

3/2). k0 = 4π/3a, with a pe-
riod along the x-axis, and �S = μ10E2/� represents the Rabi fre-
quency of the coupling fields. The corresponding intensity dis-
tribution of Eeff (x, y) is shown in Figure 2a, where the optically
induced interference pattern possesses a 2D honeycomb lattice
with a threefold symmetry.
As usual, the weak field EP with Rabi frequency �P is used

to probe the atomic transition |0〉 → |1〉, being detuned with
�1 = ωP − ω10, while the lattice-forming field Eeff (x, y) (with ef-
fect Rabi frequency �eff (x, y)) originating from the same laser is
coherently coupled with the levels |1〉 and |2〉, being detuned with
�2 = ωS − ω21. This results in an EIT if �1 + �2 = 0 and �P

� �eff (x, y). As the atomic transition channel |1〉 → |2〉 is pe-
riodically dressed by Eeff (x, y), according to the dressed state
theory analysis, the |1〉 will be split into dressed states |+〉 and
|−〉 with eigenvalues λ± = �2/2± (�2

2/4+ |�eff (x, y)|2)1/2. Con-
sequently, the spatial distribution of the dressed state |+〉 and |−〉
also exhibits honeycomb lattice since the spatial intensity distri-
bution of �eff (x, y) presents a honeycomb lattice, as shown in
Figure 1b and the panels Figure 1c1,c2.
The optical response of the cold atomic ensemble to

probe fields is governed by the master equation ∂ρ/∂t =
−i/�[ρ, Hint],[33] here, Hint = �P e−i�1t |0〉〈1| + �eff e−i�2t |1〉〈2| +
h.c denotes the atom–field interactions Hamiltonian. �1 and �2

describe the single-photon detuning of EP and Ee f f (x, y) from
the atomic channel |0〉 → |1〉 and |1〉 → |2〉, respectively, with
ωmn = ωm − ωn (m, n = 0, 1, 2). Solving the master equation un-
der the rotating-wave approximation and assuming that the sys-
tem is initially in its ground state |0〉 (more details can be found
in Supporting Information), the polarization atωP takes the form
P(ωP ) = ε0χ (ωP )EP (ωP ), where the steady state of the optical-
induced susceptibility is

χ = i N|μ10|2
�ε0

d20

d10d20+
∣∣�e f f

∣∣2 (1)

where N is the density of the atomic ensemble, ε0 the vacuum
permittivity, μ10 the electric dipole moment, d10 = γ10 + i�1

and d20 = γ20 + i (�1 + �2) the complex decay rates, describing
single- and two-photon detuning, respectively, and γi j the dephas-
ing rate between |i〉 and | j 〉.
As indicated by Equation (1), the optical response of the atomic

ensemble to the probe field will be modulated periodically with a
honeycomb profile due to the spatial distribution of the dressed
state |±〉 exhibiting a honeycomb lattice. To illustrate this point
explicitly, the optical-induced susceptibility χ to the probe fields
at lattice sites and the regions immediately around the sites is
plotted in Figure 2b1,b2 for comparison. From the absorption
curve (solid lines in Figure 2b1,b2), we find that the probe field is
quite opaque at lattice sites and almost transparent at the regions
immediately around the lattice sites. This leads to a substantial
amplitudemodulation across the probe beam.On the other hand,
the dispersion within the EIT window (dashed lines in Figure
2b1,b2) is positive at lattice sites but negative at the regions im-
mediately around it. Therefore, a large phase modulation across
the probe beam can be achieved if the probe field passes through
the EIT system. As the absorption and dispersion coefficients
of the probe field are highly dependent on Ee f f (x, y), they are
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Figure 1. Schematic of the honeycomb lattice in an atomic ensemble: a1) cascade-type three-level scheme with |0〉 (5S1/2(F = 3)), |1〉 (5P3/2(F = 3)),
and |3〉 (5D5/2) of 85Rb atoms,[32] interacting with a probe field and the lattice-forming fields, and a2) the corresponding geometry of lattice-forming
fields upon the cold atoms ensemble. b) Energy level splitting due to the three beam interference pattern with �2 = 0. c1,c2) The top views of the two
split sublevels |+〉 and |−〉, respectively.

Figure 2. a) Spatial distribution of the lattice-forming laser. The absorption spectrum and dispersion spectrum of atomic ensemble at b1) nodes and
b2) anti-nodes of the lattice-forming laser. c1) Probe absorption spectrum and c2) dispersion spectrum at anti-nodes with γ20 = 0.1 MHz for various
dephasing rate γ10 from 0.1, 0.5, to 2.0 MHz. d1) Probe absorption spectrum and d2) dispersion spectrum at anti-nodes with γ10 = 1 MHz for various
dephasing rate γ20 from 0.1, 0.5, to 1.5 MHz. Other parameters are a = 2 µm, and �eff = 6 MHz.
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Figure 3. a1–a3) and b1–b3) The first three photonic band structures of honeycomb lattice corresponding to �eff = 6 MHz and �e f f = 12 MHz,
respectively, with a1) and b1) �1 = −�2 = −3, a2) and b2) �1 = �2 = 0, and a3) and b3) �1 = −�2 = 3. Other parameters are γ10 = 1 MHz,
γ20 = 0.1 MHz, and a = 2 µm.

expected to change periodically when the lattice-forming laser
changes from lattice sites to the regions immediately around
the sites across x-axis and y-axis, and consequently the 2D hon-
eycomb periodical amplitude and phase modulation will be re-
alized in this atomic ensemble. The absorption and dispersion
spectra for various dephasing rates γ10 and γ20 are shown in Fig-
ure 2c,d. It can be clearly seen that the width of EIT resonance
(transparency dip) in the absorption spectrum becomes deeper
until it forms a transparency window when γ10 and γ20 change
from higher dephasing rates to lower dephasing rates, see Fig-
ure 2c1,d1. Meanwhile, the variation of dispersion at the trans-
parency region is insensitive as the dephasing rate changes. Com-
pared with γ10, however, a steeper dispersion at the transparency
region is obtained if γ20 changes, see Figure 2c2,d2.
It is worthmentioning that a typically photonic band-gap is cre-

ated simultaneously in our scheme. Based on the plane wave ex-
pansion method, we analyze the photonic band gap (PBG) struc-
ture of the honeycomb lattice by tuning the two-photon detun-
ing and Rabi frequency of the lattice-forming field, where all
the important parameters can be taken into account with this
method. In each panel of Figure 3, we display the lowest three
PBG bands in the first Brillouin zone. It clearly exhibits that the
PBG structures of the lattice are sensitive to the two-photon de-
tuning and Rabi frequency being adjusted. We first consider the
influence of the two-photon detuning on the band structure by
fixing the �eff = 6 MHz, as shown in Figure 3a1–a3. Specifi-
cally, if �1 = �2 = 0 MHz, the honeycomb lattice is homoge-
neous as the phase modulation is absent, and the corresponding
PBG structure is shown in Figure 3a2, where the edges of the
upper two bands merge with each other and there are no Dirac
cones in the PBG. By setting �1 = −�2 = −3 MHz, see Figure

3a1, we can see that there are six points and cones between the
upper two bands (the bands 2 and 3 marked in Figure 3a1) at
the corners of the first Brillouin zone, and the dispersion rela-
tion is linear around the Dirac points. However, the PBG struc-
ture is quite different from those in Figure 3a1 if �1 = −�2 = 3
MHz. A big band gap opens between the upper two bands and
the six Dirac cones in the original PBG disappeared. Neverthe-
less, one can find that there are 6 Dirac points between bands 1
and 2, as shown in Figure 3a3. The influence of two-photon de-
tuning on the PBG structure with increased �eff = 12 MHz is
presented in Figure 3b1–b3. Compared with Figure 3a1,b1, one
can see that the upper two bands in Figure 3b1 become almost
degenerate and flat, and the opened gap between the bands 1 and
2 is smaller in Figure 3a1. However, the PBG structures shown
in Figure 3a2 are quite the same as Figure 3b2. Therefore, the
PBG structures can be easily modulated by choosing the param-
eter regions, which is one of the main advantages of the current
system.
Since PBG will affect the transmission/reflection of the probe

beam uniformly and does not lead to the diffraction in the trans-
verse directions, we only consider the lattice in the transverse di-
rection in the following. Next, we explore the propagation dynam-
ics of the probe field within the honeycomb lattice, which can be
expressed via a self-consistent equation, with the induced polar-
izations serving as the driving source,

∂EP

∂z
= (−m(x, y)/2+ in(x, y))EP (2)

where m(x, y) = (4π/λ)Im[χ (ωP )] and n(x, y)L =
(2πL/λ)Re [χ (ωP )] are the two-photon absorption and the
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Figure 4. The output profile of the transmission function T (x , y) plotted over four space periods along x and y . a) The amplitude honeycomb lattice
by setting �1 = �2 = 0MHz, with a1) γ10 = 0.5, γ20 = 0.1MHz, a2) γ10 = 1, γ20 = 0.1MHz, a3) γ10 = 1, γ20 = 0.5 MHz, under the same color scale.
b) The hybrid honeycomb lattice by setting�1 = −�2 = 3 MHz, with b1) γ10 = 0.5, γ20 = 0.1MHz, b2) γ10 = 1, γ20 = 0.1MHz, b3) γ10 = 1, γ20 = 0.5
MHz, under the same color scale. Other parameters are a = 2 µm and �eff = 6 MHz.

phase shift coefficient to the probe field, respectively. Equation
(2) can be solved analytically, and the normalized transmission
function with interaction length L is obtained as

T (x, y) = exp
[
−m(x, y)L

2
+ in(x, y)L

]
(3)

Figure 4a1–a3 illustrate the transmission profiles of the probe
beam at the output surface of atomic ensemble by setting �1 =
�2 = 0MHz for various dephasing rates, as displayed in the cap-
tion. It can be clearly seen from Figure 4a1 that the probe beam
is significantly absorbed at the lattice sites but much less at the
regions immediately around the sites. Recall that the intensity
of the lattice-forming field is very weak at the six lattice sites,
whereas strong enough at the regions immediately around the
sites. This implies that the probe beam at the six lattice sites is
absorbed according to the usual Beer law, and much less in the
regions immediately around the lattice sites due to the dressing
effect. In other words, the transmission profile of the probe field
is 2D intensity-dependent, and thus a phenomenon reminiscent
of amplitude-type honeycomb lattice is realized, as shown in the
bottom of Figure 4a1. The absorption spectrum decreased sig-
nificantly if γ10 = 1 (see Figure 2c1), and thus leading to the re-
duction of the transmission profile, as shown in Figure 4a2. It is
worth mentioning that the absorption spectrum is insensitive to
the increase of γ20 (see Figure 2d1). Therefore, as shown in Figure
4a3, the intensity change of the transmission profile is not obvi-

ous. On the other hand, Figure 4b1 shows the transmission func-
tion T (x, y) over several periods by setting �1 = −�2 = 3 MHz.
In this case, the probe field experiences a rapid phase change at
the lattice sites due to the newly introduced phase modulation,
and then a phase modulation is imposed onto its transmission
profile. Accordingly, a spatial hybrid honeycomb lattice (both am-
plitude and phase modulation) is achieved in this case, as shown
in the bottom of Figure 4b1. The variation of the dispersion at
�1 = −�2 = 3 can be ignored even if γ10 is varying from 0.5 to 1
MHz (see Figure 4c2). Hence, the transmission profile in Figure
4b2 is almost the same as in Figure 4b1. Nevertheless, a steeper
dispersion is obtained if γ20 changes from 0.1 to 0.5 MHz (see
Figure 2d2), and then amore rapid phase change can be observed
in the transmission profile, as shown in Figure 4b1.

3. Two-Photon Near-Field Diffraction Pattern of the
Honeycomb Lattice

It is shown that the optical transmission property as well as the
PBG structure of the honeycomb lattice can be effectively con-
trolled by the special tuning of the laser field intensities and
detuning. In the following sections, we will further explore the
feature of the honeycomb lattice from the aspect of the near-
field diffraction phenomenon by introducing the two-photon
quantum-imaging configuration. For convenience, we assume
that the entangled photon pairs generated from SPDC have the
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Figure 5. a) Diagram for two-photon quantum imaging. BE, beam expander; Dp, diaphragm;M1 andM2, mirrors; BS, beam splitter; 2.C.C, second-order
coincidence counting; D1, bucket detector; D2, single-photon detector. b1–b3) The three special scanning ways of two single-photon detectors across
the signal and the idler beams.

same wavelength λs = λi= 780.2 nm, and period along the x-axis
a 2 µm.
As shown in Figure 5, within the Beta barium borate (BBO)

crystal cut for type-I phase matching, a pair of spatially entan-
gled photons (signal and idler photon) are generated through the
spontaneous parametric down-conversion (SPDC) process. They
are first separated by a beam splitter (BS), and then propagated
along two different routes, namely the signal arm and idler arm.
In the signal arm, the EIT system with honeycomb lattice struc-
ture is placed between BS and bucket detector D1, and the sig-
nal photons are coupled with the EIT system via atomic channel
|0〉 → |1〉 and collected by a bucket detector D1. Meanwhile, in
the idler arm, the idler photon is employed as a trigger and de-
tected by the reference detectorD2, where the coincidence count-
ing is taken. Here, the distances from the BBO crystal to atomic
ensemble and the reference detector D2 are z0 and z2, respec-
tively. The distance between the atomic ensemble and bucket de-
tector D1 is z1.
According to Glauber’s quantum measurement theory,[34]

the second-order coincidence counting rate for two-photon

quantum-imaging can be expressed as

C = 1
P

P∫
0

P∫
0

dt1dt2
〈
�

∣∣E (−)(−→κ1 , t1)E (−)(−→κ2 , t2)E (+)

× (
−→
κ∗
2 , t2)E (+)(

−→
κ∗
1 , t1)

∣∣�〉
(4)

where |�〉 the biphoton state function at out-
put surface of the BBO crystal, takes the form∫
dωi

∫
dωs

∫
d2−→ρ1

∫
d2−→ρ2 δ(ωi + ωs − ω0)δ(

−→ρ1 + −→ρ2 )|1ki , 1ks 〉[35],
with ωm,

−→ρm and km (m = s , i ) being the angular frequency,
transverse coordinate, and wave vectors of entangled pho-
ton, respectively. The terms δ(ωi + ωs − ω0) and δ(−→ρ1 + −→ρ2 )
in |�〉 ensure that the biphoton generated from SPDC are
entangled both in frequency and spatial domain, respectively.
E (+)(−→κi , ti )(E (−)(−→κi , ti )) is the positive (negative) part of E (−→κi , ti )
(i = 1, 2). −→κi is the transverse coordinate and ti is the triggering
time, in i th detection plane. P is chosen to be the capture of the
coincidence count.
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We begin by computing the field at the detector in terms of
the photon destruction operators at the output surface of the
crystal. Taking the propagation effect into account, the wave
function that describes the propagation of each mode of angular
frequency ωk from output surface of the BBO crystal to the
transverse point of detectors should be rewritten as E (+)(−→κk , tk)
= ∫

dωk
∫
d2−→ρk�kg (ωk)e−iωk tk hk(ωk,

−→ρk ,
−→κk )ak(−→ρk , ωk)(k = 1, 2),

where hk(ωk,
−→ρk ,

−→κk ) describes the propagating mode ωk from
output surface of crystal −→ρk to the detector with transverse point−→κk , g (ωk) is the narrow bandwidth of filter function peaked
with central frequency �k (ωk = �k + υk and υk ≤ �k), and
�k = √

�ωk/2ε0 ak(
−→ρk , ωk) is the photon annihilation opera-

tor, satisfying [a(−→ρ , ωi ), a+(
−→
ρ ′ , ω′)] = δ(−→ρ − −→

ρ ′ )δ(ω − ω′).
Assuming that the paraxial approximation is always
held,[36–38] the impulse response functions for the idler
arm and the signal arm become h2(

−→ρ2 , −→κ2 ) ∝ exp[ iωi z2
c ]

exp[ iωi
2cz2

(−→ρ2−−→κ2 )2 + i−→ρ2 ∗ −→
ki ] and h1(

−→ρ1 , −→κ1 ) ∝ − iωs
2πcz1

exp[ iωs z1
c ]∫

d2−→η T (−→η ) exp[ iωs
2cz0

(−→ρ1 − −→η )2 exp[ iωs
2cz1

(−→η − −→κ1 )2 + i−→ρ1 ∗ −→
ks ],

respectively.
Substituting h1(

−→ρ1 , −→κ1 ), h2(
−→ρ2 , −→κ2 ), and T (x, y) into

�(κ1, κ2) = 〈0|E (+)(
−→
κ∗
2 , t2)E (+)(

−→
κ∗
1 , t1)|�〉 and completing the

integration on transverse mode −→ρk , the two-photon amplitude is
obtained

�(κ1, κ2) = A0

∫
d2−→η T (−→η ) exp

[
− iωs

c
−→η ∗

(−→κ1
z1

+
−→κ1

z0 + z2

)]

× exp
[
iωs

2c
−→η ∗

(
1
z1

+ 1
z0 + z2

)]
(5)

where the irrelevant terms are absorbed intoA0, and
−→η , −→κ1 , and−→κ2 are the transverse coordinates at the atomic ensemble, D1, and

D2, respectively. On the other hand, T (x, y) can be expanded into
2D Fourier series as

T (x, y) =
∞∑

m,n=−∞
Cmn exp

[
i2π

(
m
a
x + n√

3a
y
)]

(6)

where a is the least distance between any two adjacent lattice
sites, and Cmn is 2D Fourier coefficient. Finally, substituting
Equation (6) into Equation (5) and then completing the integra-
tion on−→η , the biphoton amplitude can be simplified as

�(u1, u2; v1, v2)

= C0

∞∑
m,n=−∞

cmn

{
exp

[
−iπλs

z1(z0+z2)
z1 + z0+z2

(
m2

a2
+ n2

3a2

)]

× exp
[
i
2πm
a

(z0+z2)u1 + z1u2
z1 + z0+z2

]
exp

[
i
2πn√
3a

(z0+z2)v1 + z1v2
z1 + z0+z2

]}

(7)

where (uk ,vk) (k = 1, 2) are coordinates (X, Y) in Dk detection
planes, respectively. Careful examination of Equation (7) reveals
that the two-photon diffraction pattern of the honeycomb lattices
is determined not only by the intrinsic optical properties of the
honeycomb lattices, which can be effectively controlled via select-
ing a special parameter region, but by the scanning manners of

two detectors across the signal and idler beams as well. Some
interesting conclusions can be predicted immediately based on
Equation (7). First, the optical properties of the honeycomb lat-
tices, that is, amplitude/phase, are contained in Cmn, through
which the improvement about the visibility as well as the signal-
to-noise ratio of the diffraction patternmay be implemented. Sec-
ond, the first exponential term in Equation (7), referred to as “lo-
calization” term, describes the phase change of the diffraction or-
ders along the propagation directions, and determines whether
self-imaging occurs or not. For the ideal plane-wave illumina-
tion, the self-images repeat atmultiples of the Talbot length, zT =
3a2/2λP . Third, the magnification of lattice is closely dependent
on the scanning manner of two detectors across the signal and
the idler beams. Generally, three special scanning ways are in-
cluded: i) Both detectors are scanned synchronously across the
signal and idler beams with identical directions (see Figure 5b1),
that is, guaranteeing u1 = u2 and v1 = v2, and the corresponding
magnification M1 factor is always equal to 1 when D2 is scanned
along the diffraction direction. ii) One of these detectors is fixed
at its origin while the other is moved along x- and y-axes (see
Figure 5b2). Compared with the original lattice, the self-imaging
is magnified by a factor M2 = 1+ z1/(z0+z2). iii) Both detectors
are scanned synchronously across the two beams but in opposite
directions (see Figure 5b3), that is, u1 = −u2 and v1 = −v2, and
the corresponding magnification is M3 = 1+ 2z1/(z0+z2 − z1).
Therefore, the two-photon diffraction pattern of the lattices can
be modulated arbitrarily in case of ii) and iii).
Figure 6 shows the numerically computed near-field diffrac-

tion pattern of the honeycomb lattice under the resonant inter-
action circumstance, that is, �1 = �2 = 0 MHz, with selecting
the first manner i). We see from Figure 6a,b that a typical self-
imaging of honeycomb lattice is produced, where both the trans-
verse and longitudinal resolutions of the diffraction patterns re-
main unchanged when D2 is scanned along the diffraction di-
rection z. In other words, the periods of the diffraction patterns
are all equal to the original honeycomb lattice. This interesting
phenomenon is attributed to the fact that the amplification fac-
tor M1 is always equal to 1 if D2 is scanned along the z-direction,
and thus the transverse and the longitudinal sizes of diffraction
patterns are independent of the positions of D2. To illustrate it
more intuitively, in Figure 6c1–c4, we also display the 2D diffrac-
tion patterns separately at the factional Talbot length z2 = 0, zT/3,
zT/2, and zT , respectively. Specifically, we first investigate the
diffraction patterns on the X-Y plane when D2 is fixed at z2 = 0.
As shown in Figure 6c1, the pattern shows that the intensity dis-
tribution at lattice sites is higher than that in the regions imme-
diately around the lattice sites, and the period of the pattern is
exactly equal to that of the original lattice. Therefore, the six lat-
tice sites resemble the honeycomb lattice. Next, we focus on the
imaging at 1/3 Talbot plane. As depicted in Figure 6c2, the in-
tensity distribution resembles a new honeycomb array with a re-
duced period equal to 3 × 31/2 µm, and the basis vectors of the
imaging lattice are rotated by an angle of 30° with respect to the
original lattice. In addition, a careful examination of Figure 6c2
further reveals that the honeycomb centers have high intensity
and the six lattice sites have low intensity. This is because the
nearest two spots partially overlap and consequently cause the
fields from corresponding spots to interfere partially, and thus
the six bright spots evolve into the dark spots. Different from
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Figure 6. a) The near-field diffraction pattern of 2D honeycomb lattice along the z-direction obtained by scanning D1 and D2 in manner i), with setting
�1 = �2 = 0 MHz. b) Self-imaging carpets at y = 0 parallel to X-Z plane. c) Contour plots the self-imaging parallel to X-Y plane at c1) 0, c2) zT /3, c3)
zT /2, and c4) zT , respectively. Other parameters are γ10 = 1 MHz, γ20 = 0.1 MHz, a = 2 µm, and �eff = 6 MHz.

the 1/3 Talbot plane, the distinct focusing phenomena can be ob-
tained at the 1/2 Talbot plane. As shown in Figure 6c3, all the
bright spots in the six lattice sites evolve into the dark spots in
the image, while the dark background in the regions immedi-
ately around the sites becomes bright honeycomb centers. More-
over, a phase shift of π occurs at the 1/2 Talbot length. This phe-
nomenon is attributed to the fields from two nearest adjacent
sites in the image overlapping completely, thus leading to con-
structive interference at the honeycomb centers and destructive
interference at the six lattice sites. Finally, we can see from Figure
6c4 that the simulated image at the first Talbot plane is an exact
replica of Figure 6c1.
Now, we turn attention to the diffraction patterns of honey-

comb lattice under the scanningmanners ii) and iii), respectively.
As before, we first focus on the evolution of amplitude-type hon-
eycomb lattice. In case of the scanning manner ii), with setting
z0 = zT/2 and z1 = 3zT/2, we can see from Figure 7a1 that an al-
tered Talbot “carpet” is produced. Different from Figure 6a1, the
diffraction patterns are reduced gradually when D2 moves along
the diffraction direction z from z2 = 0 to z2 = zT . In particular,
the spatial transverse resolution of the corresponding diffraction
patterns at z2 = 0, zT/3, zT/2 and zT are repeated with a period
of 8, 5.6, 5, and 2 µm, respectively. On the other hand, different
phenomena can be observed in manner iii). As shown in Fig-
ure 7a2, by setting z0 = zT/4 and z1 = zT/2, the diffraction pat-
terns are changed from 6, 26, 10, to 4.66 µm if D2 is located at
z2 = 0, zT/3, zT/2, and zT , respectively. Therefore, the transverse
resolution of diffraction patterns is decreased first and then in-
creased when D2 is scanning along the diffraction direction z.

These phenomena coincide well with the predictions made from
Equation (7). First,�(u1, u1, v1, v1) is very sensitive to the change
of the positions of the two detectors, and the diffraction pat-
terns are magnified by a factor of M2 = |1+ z1/(z0+z2)| (M3 =
|1+ 2z1/(z0+z2 − z1)|) in the ii) (iii)) scanning way. Therefore, if
D2 moves along the longitudinal direction, the transverse diffrac-
tion pattern gradually decreases in the second scanning method,
while it increases first and then decreases in the third scanning
method. Second, considering the second-order spatial correlation
function G(2)(um, un), we find that the spatial resolution is closely
dependent on the spatial correlation termSinc(�θ (um+un)/λ),[39]

and the spatial resolution can be improved by a factor of 2 if
we move the two single-photon detectors as the way in manner
iii).
To quantitatively illustrate the role of the phase modulation

on these images, we consider the hybrid-type honeycomb lattice,
as shown in Figure 7b1,b2, where the parameters and scanning
manners used are the same as those in Figure 7a1,a2, respec-
tively, except �1 = −�2 = 3 MHz. It is apparent that not only
the resolution of images, but also the location of Talbot plane is
unchanged when the phase modulation is introduced (see also
in Figure 7c1–c4 and Figure 7d1–d4), that is to say, those prop-
erties are independent of the phase modulation. However, a dis-
crepancy can be found by careful comparing Figure 7a1,b1 (or
Figure 7a2,b2), in which the maximum amplitude contrast de-
creases and the images under the amplitude-type honeycomb lat-
tice are clearer than those of hybrid-type if the phase is intro-
duced. All of these agree well with the predictions drawn from
Equation (7).

Laser Photonics Rev. 2018, 12, 1800050 C© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1800050 (8 of 10)



www.advancedsciencenews.com www.lpr-journal.org

Figure 7. The near-field diffraction pattern of 2D honeycomb lattice along the z-direction obtained by scanning D1 and D2 in manner ii), with a1)
�1 = �2 = 0 MHz and b1) �1 = −�2 = 3 MHz. The near-field diffraction pattern by scanning D1 and D2 in manner iii), with a2) �1 = �2 = 0 MHz
and b2) �1 = −�2 = 3 MHz. The four panels in c) and in d) are the contour plots of b1) and b2) parallel to X-Y plane, at 0, zT /3,zT /2, and zT ,
respectively. Other parameters are γ10 = 1 MHz, γ20 = 0.1 MHz, a = 2 µm, and �eff = 6 MHz.

Before summarizing this section, two points should be em-
phasized. First, assisted by small angle condition and two-photon
Doppler-free technique,[40,41] the scheme proposed here can be
implemented both in the cold and warm atomic vapor. Second,
the transverse resolution of honeycomb lattices can be further
increased via multiphoton entangled states.[42] Although the real-
ization of multiphoton entangled source is experimentally chal-
lenging, the inherent physics would be of great richness and well
worth studying.

4. Conclusions

In conclusion, assisted withmulti-beam interferencemethod, we
have proposed a scheme for the construction of the honeycomb
lattice in multi-level atomic vapor ensembles. We have illustrated
how the absorption and dispersion properties of the formed lat-
tice are modulated under different parameter conditions, and
thus the generation of the amplitude/phase modulation honey-
comb lattice. Furthermore, we exploit the diffraction pattern of
the two typical lattices, and find that the transverse resolution of
imaging is determined by the scanning manner of two detectors.
In addition, we also indicate that the optical properties of the in-
duced lattice are associated with the imaging contrast. The fur-
ther development of our proposal will be presented in 2D atom
super-resolution optical testing, all-optical switching at the few
photons level, and can be used for the generation and manipula-
tion of optical topological insulators as well.
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