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1. Fabrication of the binary phase mask

Figure S1Photograph of the fabricated binary mabBhke geometry of the binary
phase maski¥1.975mm, #=3.85mm, r3=5.55mm,+6.925mm ands~7.5mm. The
diameter of the efficient phase region in this masksmm.



A 25.4x25.4x1mm quartz substrate is firsiankd with acetone and Isopropyl
Alcohol (IPA) in an ultrasonic bath. AZ5214 redsthen spin coated on the substrate
and pre-baked at 90°C for 30 minutes to removestivent. The sample was exposed
under UV light in a bond aligner (SUSS MicroTec, BIBA6) with a photomask.
The exposed regions were removed in AZ develop&er Aleveloping, the sample
was post-baked at 120°C for 30 minutes. Mgks evaporated onto the patterned
sample using an e-beam evaporator (Denton Vacuwploier). The base pressure
was 1.1e-6 Torr and the thickness of the film w28 Bm. After evaporation, lift-off
process was carried out in acetone to form therpiphase lens. The photograph of

fabricated binary mask is shown in Fig. S1.

2. Reference experiment with spatial light modulator

Figure S2. Reference experiment when the binarknsagplaced with a spatial light

modulator. (a) Schematic of the experiment. (b) Wtiee mask phase and the lens
phase are simultaneously adopted by the SLM, kghtbypass the opaque pupil and
illuminate the object beneath. (c) When either masklens phase is adopted
separately, the light is blocked by the opaqueutarcarea. Almost no light passes the
pupil and a very dark "N" is captured by CCD. (d@&dured intensity on 7 transversal
planes, on both sides of the central pla®). (e) The total phase profile of binary

and lens is mimicked with SLM.



3. Experimental Section

The experiment is carried out on an optiabldé of 3 m long. A linearly polarized
incident laser is expanded by a beam expander ¢seapof two lenses and one 10
pm-diameter pinhole. After going through a stoge tight illuminates the binary
phase mask and a focusing lens (or equivalent SIAMirror is used to change the
optical path considering the limitation of tablad¢h. An object (letter ‘N’) is located
behind the pupil. The distance between the pumlaect is 20 mm. A CCD camera
(IDS UI-2240) with a 20x camera lens is used t@réc¢he intensity.

In the experiment using binary phase maskidated on the quartz substrate, the
wavelength of incident light is 632.8nm and theulsing lens has the NA of 0.0075
with its focal length of 1m and the size of 15mndiameter, which is the same with
the stop size and the maximum diameter of binagsphmask. The phase delay
between two neighboring belts in the mask is redliby their height difference of
692nm since the refraction index of quartz is 1480632.8nm.

In the experiment using SLM, the phase mddciamask is created by a phase-
type HOLOEYE LC2002 with a pixel pitch of 32 umthe wavelength 532nm. A
small gap with size of about 8 um exists betweem m@ighboring pixels. When the
light passing through the gap is focused by a larspot will be generated at the focal
plane of focusing lens regardless of the phasd_-bf. Since a low numerical-aperture
(NA) lens is equivalent to a lens phase of expf#(f1)] in Fourier optics witH being
the focal length, the presence of the NA in Figi2thus replaced by a lens-phase to
be equivalently realized by the SLM. The SLM proekithe mask phase and the lens
phase withf = 2m simultaneously. The stop has the size of 18 Xu that the lens
realized by SLM has the NA of 0.0048.

4. Design of binary phase plate for realizing the anti-resolution PSF

In the main text, Eqs (2-4) demonstrateditite focusing of the vector beams (i.e.
radially and azimuthally polarized beams) by usarfgggh NA lens. In tightly focusing
of vector beams, the electric field in the focaiom has the strong dependence on the
polarization of incident vector beams, e.g. Eqs3)2or radially polarized beam and
Eq. (4) for azimuthally polarized beam [S1]. Itnst convenient to describe the

design of binary phase in a general way. For the sd simplicity, we take the



focusing lens with low NA for example. In this caslee polarization effect in the
focal region is not significant and can be negl@éde that, for the incident beams
with all the polarizations, the electric field ihet focal region can be described in a
unified way by using a scalar focusing of light e low NA lens. For the scalar
focusing of a low NA circular lens with focal leigt, the optical field in the focal

region can be expressed by [S2]

i i z+p—2 ik ke
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whereR is the radius of the focusing lengyr) is the electric field incident on the

focusing lens, the exponential item exk(®/f) is the equivalent phase factor of the
low NA lens which is located at z=0, which impligst the electric field at the focal

plane is obtained by setting zn Eq. (S1). According to the concept of anti-
resolution proposed in the main text, we shouldimadate its PSF to realize the anti-
resolution at the focal plane so that the eledteid at the focal plane should be paid
much attention. In Eq. (S1) by setting fzand omitting its constant factor

i2r/(Af)- expk(z+0.5%/f)], we have the electric field at the focal plane
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where the incident beam is uniform and modulated biybelt binary phase so that
uo(r)=exple(r)), simy=ry/f for the focusing lens obeys the sine conditi@nis the
focusing angle, witl#,=0 and the maximum angtk=sin*(NA), as shown by Eq. 5 in
the main text. Interestingly, we find that Eq. (S&pvides an analytical model,
without any integral involved, to approximate thectric field at the focal plane. By
using Eq. (S2), we can obtain the arbitrary intgngattern when changing the
unknown parametet, (n=1, 2, ...,N-1).

Before we introduce the method to obtainahg-resolution at the focal plane, the



physical concept of anti-resolution should be riégsson basis of the Eq. (S2). In
anti-resolution, its PSF as shown in Fig. 1d haszro intensity gi=0 (suppressing
the mainlobe intensity), the approaching zero isitgnin the range QxD/2
(widening the mainlobe) and the largest sidelobensity (enhancing the sidelobe). In
order to realize the goal of suppressing the mbhmlmtensity in anti-resolution, we
just set the intensity to be zergal, leading to the equation

N-1
(-2)"sin* g, +2> (-1)"sin’ 4, =0. (S3)

n=1
In Eq. (S3), theN-1 unknown parameter, (n=1, 2, ...,N-1) indicate the infinite
solutions to realize the goal of suppressing thenlmlae, which implies that it is
possible to fix one solution if more constraintsngposed to Eq. (S3), e.g. reserving
N-2 zero-intensity locations in the regiong89/2 so as to widen the mainlobe (the
second goal in anti-resolution). For the third Igolaenhancing the sidelobe, we do
not need to make any measure to realize it becdnestigh sidelobe is the natural
result in the viewpoint of energy conservation floe approaching-zero intensity in
the range €p<D/2. Therefore, it is physically feasible to const a PSF with anti-
resolution. In fact, the zero intensity in the m@giG<p<D/2 shown in Fig. (S3) is
mainly attributed to the local destructive integiece caused by the m0phase

modulation of binary element.
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Fig. S3 The radial (along) pattern of the anti-resolution PSF. The presdib
positions from 1t (M=N-1) in the range €p<D/2 are shown by the color spots
and located at the zero-intensity part of the isitgriine (blue).
In order to show the design conveniently, simplify Eq. (S2) by some
characteristic functions:
J,(kpsing, )
kosing,,

c(g,)=20{-1)"sin?4,, (S5)

Alp)=(-1)"sin* g, , (S4)



_J,(kosing,)
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so that we have

U(o)= o)+ Scle)slpd). (s7)
without the constant iterff in Eq. (S2). According to the above discussioryobe
the central positiop=0, we still need to prescrié-2 zero-intensity positions in the
region 0%<D/2, which are shown from 2 to M in Fig. S3. Theegtribed zero-
intensity positions are labeledmgm=1, 2, ..., M) to distinguish from the belt label
resulting that the prescribed zero-intensity posgican be labeled ag (m=1, 2, ...,
M). According to Eq. (S7), we have the M equatitorsM positions as follows:
Ap)+clé)dlp.6)+Clg)da.6)++Clg,)9a.6,)++Cl6,.)5a.6,.)=U(a) =0
Ap,)+Cl6)sp..8)+Cl6,)90, 6,)+-+Cl6)H 0., 6,)++Cleh )0, 6a) =U(0,) =0

Np) +Cl8)S( 00, 8)+ CIE)S{ 00, 8) -+ ClE)S 20, 8) +-—-+Cl6 )l B2) =U ) =0

Npw)+cl@)don.8)+Cl)sa 6)+-+Clg)o. 6)+ -+ Cla2)S o 6ia) =U(a,) =0
which can be simplified further by a matrix equatio

SC=A, (S8)
whereS is an Mx(N-1) matrix with its matrix elemer§y,=Spm0), C is a (N-1)x1
matrix with its matrix elemen€,=C(6,) and A is an Mx1 matrix with its element
Ar=-Alpm). Eq. (S8) is a non-linear matrix equation becatls® S and C are
dependent on the unknown parametésiIn Eq. (S8), the number of unknown
parameter and equations are the same so that thbamly solution. For a special
positionp=[p1, p2, ..., pm], Which is up to the customized requirement ingtze of D
shown in Fig. S3, we just solve the non-linear éignashown by Eq. (S8) to finish
the design of binary phase by fixing the andlg®=1, 2, ..., N-1). Comparing with
the solution of a linear matrix equation, the nme&r matrix equation in Eq. (S8) can
not be solved by the simple matrix-inversion teglei that is used to solve the linear
matrix equation. In fact, for the non-linear mategquation, it generally has no
analytical solution but its numerical solution da@ obtained in a quite easy way by
using the well-developed Newton theory, which isdely used in the relative
engineering problems [S3]. For the detailed prodessolve Eq. (S8), we ignore it
here because there are so many references abtuaddition, one can also find the



special packages to solve the non-linear matrixaggn in some commercial
computing software, e.g. MATLAB or MATHEMATICA. Forthe detailed
information about our codes used to solve Eq.dB8¢, can refer to our new paper [S4].
Therefore, the solution of Eqg. (S8) is not a tresbime issue. Sometimes, for one
special positiorp (e.g.pmandpm. are too closg the mathematical solution, provided
by Newton’s theory, of Eq. (S8) might be not a pbsgissolution and we should drop
it automatically. For a physical solution, it shduatisfy the condition: O<dih
<Sindn.

In Fig. 5a, we show the four sets of desighedry-phase plates for generating
the anti-resolution PSF using the problem in E®).(SVe choose the zero-intensity
position atp=[0, 22.5um, 45um, 67.5um, 90um] fdo. 1, p=[0, 27.5um, 75um,
82.5um, 110um] foNo. 2, p=[0, 32.5um, 65um, 97.5um, 130um] fdo. 3 and
p=[0, 37.5um, 75um, 112.5um, 150um] M. 4. The NA of focusing lens is fixed
to 0.005 when we design the four sets of binarysphalates. The data for the four
sets of binary-phase plates are shown in Fig. ba.tlte design, we have to claim
several points:

1) Both number of equations and unknown pataraén Eq. (S8) are the same (N-
1) so that it has the only solution, but in reasige by solving the Eq. (S8), the
number of equations can be larger than (N-1) bysqrileing more zero-intensity
position inp (as shown in the above examples: four unknownmpatersd, (n=1, 2, 3
and 4) but we prescribe five zero-intensity possjo The reason for this is to
suppress the null field in the range of D. Anotissue caused by this is that Eq. (S8)
has no exact solution for the more zero-intensdyigon atp. But, this will not lead
to the failure of designing the anti-resolution P8&cause we only need the
approximate solution numerically with the condititimat the null-field (8p<D)
intensity is much below the sidelobe intensityolr case, we take it as the null field
when its intensity is below 1Dof the sidelobe intensity. Therefore, althoughcae
not get the exact solution when we increase thebeunof the prescribed zero-
intensity position, we can still get another salatito realize the anti-resolution PSF
with more low intensity in the null-field region.

2)Because the binary-phase plate has thensntriproperty that can generate the
null field at its Fraunhofer diffraction region,eHocusing lens can not change the
property and just transfer the Fraunhofer diff@ctregion to the focal region of

focusing lens. Therefore, we design the four sétsirmry-phase plates by using the



focusing lens with NA=0.005, but we show the asiae () of the null field in the
focusing lens with NA=0.0075 in order to match éx@erimental focusing lens in Fig.
4,

Finally, we have to emphasize that the metbadksign the binary phase plate for
realizing the anti-resolution PSF is optimizatioeef because we can solve the inverse
problem described in Eq. (S8) numerically by thélrdeveloped Newton theory. It is
worthy to point out that the optimization-free dgsimethod to control the optical
field by a binary plate has been introduced to tacs a super-oscillatory lens for

realizing the super-resolution focusing.

5. Generation of optical capsule based on the anti-resolution PSF

In the last section, we have introduced thinapation-free design of binary phase
for realizing the anti-resolution PSF. Now, we eipl the physical reason for
generation of optical capsule when the anti-resmuPSF is achieved at the focal
plane.

First, we revisit the different focusing belw along transverse and axial
direction for a lens. Without loss of generalitye @nalyze the intensity at focal plane
z=f for the transverse direction and the on-axis sitgnwith r=0 for the axial
direction. For the uniform illumination without amyase or amplitude modulation by
binary elements, we can get the analytical formthef intensity at zE=and r=0
according to Eqg. (S1).

I(p,z:f)=‘LRJO(k:c—’0)rdr :R“[M}, (S9)
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where Ip,z=f) and 1p=0,z) show the intensity profiles at focal planel @m axis with
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p=0, respectively. From Egs. (S9) and (S10), wed=nvate the size (from the focal
point to the first zero-intensity) in radial andabdirections. For the radial size at the
focal plane, the first zero-intensity point is lte atkpR/f=3.84, which implies the

radial size is
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where NAR/f for a low NA lens as shown by Fig. S4a- S4b. fher axial size with
p=0, the first zero-intensity point is locatedRek(1/z-1f)=r, which implies that the
axial size (Fig. S4a-S4c) is

054
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From the radial and axial size denoted by Eqs. \8@hil (S12), one can see that the

Az =
‘)l/f +

radial size is proportional to 1/NA while the axéize is proportional to 1/NA
Because the lens’ NA is smaller than 1, the spoadhal direction is smaller than that
in axial direction as shown in Fig. (S4), which icates that the focusing lens has a
tighter confinement in radial direction than axiection. It is a very important as
well as fundamental conclusion in optical focusofgens. Therefore, for the well-
built anti-resolution PSF at the focal plane, jsistnding on this physical conclusion
without further investigation into the intensitysttibution in axis region, we can have
an intuitionistic prediction: the zero-intensitygren in axis direction witlb=0 must

be much larger than that in its radial region.
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Fig. S4 The focusing properties of a lens. (a) ftensity profile at the x-z plane of
focusing field by a lens. (b) The radial intengtpfile of the focused spot at the focal
plane in (a). (c) The axial intensity profile @0 in (a). (d) The intensity profile of
optical capsule in the focal region by using a lend a binary-phase plate. D and d is

the radial and axial sizes (from one hotspot tafzm of the optical capsule. (e) The



radial intensity profile of the optical capsulethé focal plane in (d). (f) The axial
intensity profile of the optical capsule@t0 in (d).

Next, we check the above prediction throtigh analytical simulation by using
Eq. (S1) because this theoretical prediction prdahesgeneration of optical capsule
on the basis of anti-resolution PSF. In fact, ghreulation results in Fig. 5¢c-5¢ have
proved the prediction that the transversal (D) aridl sizes ¢p) are proportional to
1/NA and 1NA?, respectively. Because NA<1, the axial sid§) {s always larger than
the transversal size (D). Although we can find timeloubtable proof to verify the
existence of the axial null-field from the simutati in Fig. 5¢, we can also find
another physical proof based on the uniform vamabf energy flux of light in the
homogenous medium. In section 4, we showed thergtoe of the anti-resolution
PSF with the null-field region<p<D at the focal plane. If we move the viewing
position to one out-of-plane#§ position, we can predict the existence of ndldiat
this out-of-plane position because of the uniforaniation of energy flux of light in
air as shown in Fig. S4d. The null-field region Iwaixist until the out-of-plane
position is located at the two ends of the opticapsule. Because the axial
confinement of focusing lens is much weaker thantiansversal confinement, as
shown by Eqgs. S11 and S12, the null field in adieéction has the longer extension
than that in transversal direction. Therefore, ptical capsule with long boundary in
axial direction and short boundary in transverseddation is formed after an anti-
resolution PSF has been generated at the focad plan

The sections 4 and 5 are contributed to éxplae physical reason for the
generation of optical capsule by using the novei-r@solution PSF concept in the
optical imaging system with focusing lens, whichtivates us to propose the optical
capsule in theory and verify it in experiment. Hoee the basic reason is the
substantial property of the binary-phase plateenegating the optical capsule at its

Fraunhofer-diffraction region as depicted in thanrtaxt.
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