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1. Fabrication of the binary phase mask 

 

 

Figure S1. Photograph of the fabricated binary mask. The geometry of the binary 

phase mask: r1=1.975mm, r2=3.85mm, r3=5.55mm, r4=6.925mm and r5=7.5mm. The 

diameter of the efficient phase region in this mask is 15mm.   



 

      A 25.4×25.4×1mm quartz substrate is first cleaned with acetone and Isopropyl 

Alcohol (IPA) in an ultrasonic bath. AZ5214 resist is then spin coated on the substrate 

and pre-baked at 90°C for 30 minutes to remove the solvent. The sample was exposed 

under UV light in a bond aligner (SUSS MicroTec, MA8/BA6) with a photomask. 

The exposed regions were removed in AZ developer. After developing, the sample 

was post-baked at 120°C for 30 minutes. MgF2 was evaporated onto the patterned 

sample using an e-beam evaporator (Denton Vacuum, Explorer). The base pressure 

was 1.1e-6 Torr and the thickness of the film was 826 nm. After evaporation, lift-off 

process was carried out in acetone to form the binary phase lens. The photograph of 

fabricated binary mask is shown in Fig. S1. 

 

2. Reference experiment with spatial light modulator 

 

 

Figure S2. Reference experiment when the binary mask is replaced with a spatial light 

modulator. (a) Schematic of the experiment. (b) When the mask phase and the lens 

phase are simultaneously adopted by the SLM, light can bypass the opaque pupil and 

illuminate the object beneath. (c) When either mask or lens phase is adopted 

separately, the light is blocked by the opaque circular area. Almost no light passes the 

pupil and a very dark "N" is captured by CCD. (d) Measured intensity on 7 transversal 

planes, on both sides of the central plane (z=0). (e) The total phase profile of binary 

and lens is mimicked with SLM. 



 

3. Experimental Section 

      The experiment is carried out on an optical table of 3 m long. A linearly polarized 

incident laser is expanded by a beam expander comprised of two lenses and one 10 

µm-diameter pinhole. After going through a stop, the light illuminates the binary 

phase mask and a focusing lens (or equivalent SLM). A mirror is used to change the 

optical path considering the limitation of table length. An object (letter ‘N’) is located 

behind the pupil. The distance between the pupil and object is 20 mm. A CCD camera 

(IDS UI-2240) with a 20× camera lens is used to record the intensity. 

      In the experiment using binary phase mask fabricated on the quartz substrate, the 

wavelength of incident light is 632.8nm and the focusing lens has the NA of 0.0075 

with its focal length of 1m and the size of 15mm in diameter, which is the same with 

the stop size and the maximum diameter of binary phase mask. The phase delay π 

between two neighboring belts in the mask is realized by their height difference of 

692nm since the refraction index of quartz is 1.4507 at 632.8nm. 

      In the experiment using SLM, the phase modulation mask is created by a phase-

type HOLOEYE LC2002 with a pixel pitch of 32 µm at the wavelength 532nm. A 

small gap with size of about 8 µm exists between two neighboring pixels. When the 

light passing through the gap is focused by a lens, a spot will be generated at the focal 

plane of focusing lens regardless of the phase of SLM. Since a low numerical-aperture 

(NA) lens is equivalent to a lens phase of exp[-iπr2/(fλ)] in Fourier optics with f being 

the focal length, the presence of the NA in Fig. 2a is thus replaced by a lens-phase to 

be equivalently realized by the SLM. The SLM produces the mask phase and the lens 

phase with f = 2m simultaneously. The stop has the size of 19.2mm so that the lens 

realized by SLM has the NA of 0.0048. 

  
4. Design of binary phase plate for realizing the anti-resolution PSF 
 
      In the main text, Eqs (2-4) demonstrates the tight focusing of the vector beams (i.e. 

radially and azimuthally polarized beams) by using a high NA lens. In tightly focusing 

of vector beams, the electric field in the focal region has the strong dependence on the 

polarization of incident vector beams, e.g. Eqs. (2-3) for radially polarized beam and 

Eq. (4) for azimuthally polarized beam [S1]. It is not convenient to describe the 

design of binary phase in a general way. For the sake of simplicity, we take the 



focusing lens with low NA for example. In this case, the polarization effect in the 

focal region is not significant and can be neglected so that, for the incident beams 

with all the polarizations, the electric field in the focal region can be described in a 

unified way by using a scalar focusing of light with a low NA lens. For the scalar 

focusing of a low NA circular lens with focal length f, the optical field in the focal 

region can be expressed by [S2] 
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where R is the radius of the focusing lens, u0(r) is the electric field incident on the 

focusing lens, the exponential item exp(-ikr2/f) is the equivalent phase factor of the 

low NA lens which is located at z=0, which implies that the electric field at the focal 

plane is obtained by setting z=f in Eq. (S1). According to the concept of anti-

resolution proposed in the main text, we should manipulate its PSF to realize the anti-

resolution at the focal plane so that the electric field at the focal plane should be paid 

much attention. In Eq. (S1) by setting z=f and omitting its constant factor 

i2π/(λf)·exp[ik(z+0.5ρ2/f)], we have the electric field at the focal plane 
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where the incident beam is uniform and modulated by a N-belt binary phase so that 

u0(r)=exp(iφ(r)), sinθn=rn/f for the focusing lens obeys the sine condition, θn is the 

focusing angle, with θ0=0 and the maximum angle θN=sin-1(NA), as shown by Eq. 5 in 

the main text. Interestingly, we find that Eq. (S2) provides an analytical model, 

without any integral involved, to approximate the electric field at the focal plane. By 

using Eq. (S2), we can obtain the arbitrary intensity pattern when changing the 

unknown parameter θn (n=1, 2, …, N-1).   

      Before we introduce the method to obtain the anti-resolution at the focal plane, the 



physical concept of anti-resolution should be revisited on basis of the Eq. (S2). In 

anti-resolution, its PSF as shown in Fig. 1d has the zero intensity at ρ=0 (suppressing 

the mainlobe intensity), the approaching zero intensity in the range 0<ρ<D/2 

(widening the mainlobe) and the largest sidelobe intensity (enhancing the sidelobe). In 

order to realize the goal of suppressing the mainlobe intensity in anti-resolution, we 

just set the intensity to be zero at ρ=0, leading to the equation 
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In Eq. (S3), the N-1 unknown parameters θn (n=1, 2, …, N-1) indicate the infinite 

solutions to realize the goal of suppressing the mainlobe, which implies that it is 

possible to fix one solution if more constraints is imposed to Eq. (S3), e.g. reserving 

N-2 zero-intensity locations in the region 0<ρ<D/2 so as to widen the mainlobe (the 

second goal in anti-resolution).  For the third goal of enhancing the sidelobe, we do 

not need to make any measure to realize it because the high sidelobe is the natural 

result in the viewpoint of energy conservation for the approaching-zero intensity in 

the range 0≤ρ<D/2. Therefore, it is physically feasible to construct a PSF with anti-

resolution. In fact, the zero intensity in the region 0≤ρ<D/2 shown in Fig. (S3) is 

mainly attributed to the local destructive interference caused by the 0-π phase 

modulation of binary element.  

 
Fig. S3 The radial (along ρ) pattern of the anti-resolution PSF.  The prescribed 

positions from 1 to M (M=N-1) in the range 0≤ρ<D/2 are shown by the color spots 
and located at the zero-intensity part of the intensity line (blue).    

 
      In order to show the design conveniently, we simplify Eq. (S2) by some 

characteristic functions: 
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so that we have  
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without the constant item f2 in Eq. (S2). According to the above discussion, beyond 

the central position ρ=0, we still need to prescribe N-2 zero-intensity positions in the 

region 0<ρ<D/2, which are shown from 2 to M in Fig. S3. The prescribed zero-

intensity positions are labeled as m (m=1, 2, …, M) to distinguish from the belt label n, 

resulting that the prescribed zero-intensity positions can be labeled as ρm (m=1, 2, …, 

M).  According to Eq. (S7), we have the M equations for M positions as follows: 
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which can be simplified further by a matrix equation  

ASC = ,        (S8) 

where S is an M×(N-1) matrix with its matrix element Smn=S(ρm,θn), C is a (N-1)×1 

matrix with its matrix element Cn=C(θn) and A is an M×1 matrix with its element 

An=-A(ρm). Eq. (S8) is a non-linear matrix equation because the S and C are 

dependent on the unknown parameters θn. In Eq. (S8), the number of unknown 

parameter and equations are the same so that it has the only solution.  For a special 

position ρ=[ρ1, ρ2, …, ρM], which is up to the customized requirement in the size of D 

shown in Fig. S3, we just solve the non-linear equation shown by Eq. (S8) to finish 

the design of binary phase by fixing the angles θn(n=1, 2, …, N-1). Comparing with 

the solution of a linear matrix equation, the non-linear matrix equation in Eq. (S8) can 

not be solved by the simple matrix-inversion technique that is used to solve the linear 

matrix equation. In fact, for the non-linear matrix equation, it generally has no 

analytical solution but its numerical solution can be obtained in a quite easy way by 

using the well-developed Newton theory, which is widely used in the relative 

engineering problems [S3]. For the detailed process to solve Eq. (S8), we ignore it 

here because there are so many references about it. In addition, one can also find the 



special packages to solve the non-linear matrix equation in some commercial 

computing software, e.g. MATLAB or MATHEMATICA. For the detailed 

information about our codes used to solve Eq. (8), one can refer to our new paper [S4]. 

Therefore, the solution of Eq. (S8) is not a troublesome issue. Sometimes, for one 

special position ρ (e.g. ρm and ρm+1 are too close), the mathematical solution, provided 

by Newton’s theory, of Eq. (S8) might be not a physical solution and we should drop 

it automatically. For a physical solution, it should satisfy the condition: 0<sinθn 

<sinθN.  

      In Fig. 5a, we show the four sets of designed binary-phase plates for generating 

the anti-resolution PSF using the problem in Eq. (S8). We choose the zero-intensity 

position at ρ=[0,  22.5µm, 45µm, 67.5µm, 90µm] for No. 1, ρ=[0,  27.5µm, 75µm, 

82.5µm, 110µm] for No. 2, ρ=[0,  32.5µm, 65µm, 97.5µm, 130µm] for No. 3 and 

ρ=[0,  37.5µm, 75µm, 112.5µm, 150µm] for No. 4. The NA of focusing lens is fixed 

to 0.005 when we design the four sets of binary-phase plates. The data for the four 

sets of binary-phase plates are shown in Fig. 5a. For the design, we have to claim 

several points:  

     1) Both number of equations and unknown parameters in Eq. (S8) are the same (N-

1) so that it has the only solution, but in real design by solving the Eq. (S8), the 

number of equations can be larger than (N-1) by prescribing more zero-intensity 

position in ρ (as shown in the above examples: four unknown parameters θn (n=1, 2, 3 

and 4) but we prescribe five zero-intensity positions). The reason for this is to 

suppress the null field in the range of D. Another issue caused by this is that Eq. (S8) 

has no exact solution for the more zero-intensity position at ρ. But, this will not lead 

to the failure of designing the anti-resolution PSF because we only need the 

approximate solution numerically with the condition that the null-field (0≤ρ<D) 

intensity is much below the sidelobe intensity. In our case, we take it as the null field 

when its intensity is below 10-3 of the sidelobe intensity. Therefore, although we can 

not get the exact solution when we increase the number of the prescribed zero-

intensity position, we can still get another solution to realize the anti-resolution PSF 

with more low intensity in the null-field region.  

     2)Because the binary-phase plate has the intrinsic property that can generate the 

null field at its Fraunhofer diffraction region, the focusing lens  can not change the 

property and just transfer the Fraunhofer diffraction region to the focal region of 

focusing lens. Therefore, we design the four sets of binary-phase plates by using the 



focusing lens with NA=0.005, but we show the axial size (d0) of the null field in the 

focusing lens with NA=0.0075 in order to match the experimental focusing lens in Fig. 

4.     

      Finally, we have to emphasize that the method to design the binary phase plate for 

realizing the anti-resolution PSF is optimization-free because we can solve the inverse 

problem described in Eq. (S8) numerically by the well-developed Newton theory. It is 

worthy to point out that the optimization-free design method to control the optical 

field by a binary plate has been introduced to construct a super-oscillatory lens for 

realizing the super-resolution focusing.  

 

5. Generation of optical capsule based on the anti-resolution PSF 

     In the last section, we have introduced the optimization-free design of binary phase 

for realizing the anti-resolution PSF. Now, we explain the physical reason for 

generation of optical capsule when the anti-resolution PSF is achieved at the focal 

plane.  

      First, we revisit the different focusing behavior along transverse and axial 

direction for a lens. Without loss of generality, we analyze the intensity at focal plane 

z=f for the transverse direction and the on-axis intensity with r=0 for the axial 

direction. For the uniform illumination without any phase or amplitude modulation by 

binary elements, we can get the analytical form of the intensity at z=f and r=0 

according to Eq. (S1).   
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where I(ρ,z=f) and I(ρ=0,z) show the intensity profiles at focal plane and on axis with 

ρ=0, respectively. From Eqs. (S9) and (S10), we can derivate the size (from the focal 

point to the first zero-intensity) in radial and axial directions.  For the radial size at the 

focal plane, the first zero-intensity point is located at kρR/f=3.84, which implies the 

radial size is  



NA

λρ 61.0=∆ ,      (S11) 

where NA≈R/f for a low NA lens as shown by Fig. S4a- S4b. For the axial size with 

ρ=0, the first zero-intensity point is located at R2k(1/z-1/f)=π, which implies that the 

axial size (Fig. S4a-S4c) is  

                                                  ( ) 22
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2 NAfRf
z
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λ ≈
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From the radial and axial size denoted by Eqs. (S11) and (S12), one can see that the 

radial size is proportional to 1/NA while the axis size is proportional to 1/NA2. 

Because the lens’ NA is smaller than 1, the spot in radial direction is smaller than that 

in axial direction as shown in Fig. (S4), which indicates that the focusing lens has a 

tighter confinement in radial direction than axial direction. It is a very important as 

well as fundamental conclusion in optical focusing of lens. Therefore, for the well-

built anti-resolution PSF at the focal plane, just standing on this physical conclusion 

without further investigation into the intensity distribution in axis region, we can have 

an intuitionistic prediction: the zero-intensity region in axis direction with ρ=0 must 

be much larger than that in its radial region.  

 

Fig. S4 The focusing properties of a lens. (a) The intensity profile at the x-z plane of 

focusing field by a lens. (b) The radial intensity profile of the focused spot at the focal 

plane in (a). (c) The axial intensity profile at ρ=0 in (a). (d) The intensity profile of 

optical capsule in the focal region by using a lens and a binary-phase plate. D and d is 

the radial and axial sizes (from one hotspot to another) of the optical capsule. (e) The 



radial intensity profile of the optical capsule at the focal plane in (d).  (f) The axial 

intensity profile of the optical capsule at ρ=0 in (d).  

       Next, we check the above prediction through the analytical simulation by using 

Eq. (S1) because this theoretical prediction proves the generation of optical capsule 

on the basis of anti-resolution PSF.  In fact, the simulation results in Fig. 5c-5c have 

proved the prediction that the transversal (D) and axial sizes (d0) are proportional to 

1/NA and 1/NA2, respectively. Because NA<1, the axial size (d0) is always larger than 

the transversal size (D). Although we can find the undoubtable proof to verify the 

existence of the axial null-field from the simulation in Fig. 5c, we can also find 

another physical proof based on the uniform variation of energy flux of light in the 

homogenous medium. In section 4, we showed the generation of the anti-resolution 

PSF with the null-field region 0≤ρ<D at the focal plane. If we move the viewing 

position to one out-of-plane (z≠f) position, we can predict the existence of null field at 

this out-of-plane position because of the uniform variation of energy flux of light in 

air as shown in Fig. S4d. The null-field region will exist until the out-of-plane 

position is located at the two ends of the optical capsule. Because the axial 

confinement of focusing lens is much weaker than its transversal confinement, as 

shown by Eqs. S11 and S12, the null field in axial direction has the longer extension 

than that in transversal direction. Therefore, an optical capsule with long boundary in 

axial direction and short boundary in transversal direction is formed after an anti-

resolution PSF has been generated at the focal plane.  

      The sections 4 and 5 are contributed to explain the physical reason for the 

generation of optical capsule by using the novel anti-resolution PSF concept in the 

optical imaging system with focusing lens, which motivates us to propose the optical 

capsule in theory and verify it in experiment. However, the basic reason is the 

substantial property of the binary-phase plate in generating the optical capsule at its 

Fraunhofer-diffraction region as depicted in the main text.    
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