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The propagation of electromagnetic plane waves in an isotropic chiral medium is characterized, and a special
interest is shown in chiral nihility and the effects of chirality on energy transmission. In particular, the wave
impedance is matched to that of free space. Moreover, the refractive index n is also matched in impedance to
that of free space when an appropriate value of the chirality is chosen. A “chiral nihility” medium is explored
in which both the permittivity and the permeability tend to zero. Some specific case studies of chiral nihility
are presented, and Brewster angles are found to cover an extremely wide range. The E-field distributions in
these different cases where the chiral slab is placed in free space are analyzed by using the appropriate con-
stitutive relations. It is shown from numerical calculations that one can obtain some critical characteristics of
the effects of chirality on energy transmission and reflection, such as transparency and power tunneling.
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1. INTRODUCTION

In 1968, Veselago theoretically demonstrated the electro-
magnetic properties of substances with simultaneously
negative permittivity e and permeability u [1]. A material
possessing these properties is now referred to as a left-
handed material, since the electric field E, magnetic field
H, and the wave vector k£ in the medium obey a left-
handed rule. Left-handed materials possess some unique
properties compared with conventional dielectric materi-
als, such as a negative refractive index [2], subwave-
length imaging [3], a backward-wave region [4], and
double-negative parameters [5]; therefore these media are
also often referred to as negative refractive index materi-
als. This kind of medium does not, however, normally ex-
ist in nature. In particular, the negative u value is not
found in natural materials.

Thirty years later, Pendry and co-workers revisited the
negative refractive index material problem and developed
the concept of a perfect lens using the double-negative
constitutive parameters, € and w [6]. The first metamate-
rial prediction by Veselago and its later formulation by
Pendry were both theoretical. The research work in this
area was not pushed that far until Pendry proposed the
structure of split-ring resonator [7] and Shelby et al. ex-
perimentally realized a left-handed material for the first
time, where measurements confirmed negative refraction
in the microwave region [8]. However, it is a very difficult
task to realize negative permeability from metallic split-
ring resonators and to achieve low-loss double-negative
media at much higher frequencies. A recent publication
on metamaterials in the visible region showed that nega-
tive values of the real parts of the permeability and the
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permittivity can be obtained simultaneously, but a nega-
tive index of refraction cannot be achieved because of high
values of the imaginary part of the permeability [9].

On the other hand, negative refraction can be also
achieved by using chiral media [10-13], which belong to a
general class of bianisotropic media. The use of a chiral
medium can help considerably for achieving negative re-
fraction in the optical region [14—16] where artificial mag-
netic materials become unnecessary. In chiral media with
inclusions of long helices, a backward wave can be excited
along the helix, which acts as a delay line. Electric or
magnetic excitation will simultaneously produce both
electric and magnetic polarizations [17,18]. In this paper,
we deal with the propagation of electromagnetic plane
waves in chiral nihility media. Cases of chiral nihility
where both the relative permittivity €. and the relative
permeability u, are very small will be considered. The
possibility of matching the refractive index n and the
wave impedance Z to those of free space will be discussed.
Z is matched when both the permittivity and the perme-
ability take the same values, and n is matched according
to the different values of €,, u,, and . This type of me-
dium also favors the realization of a negative refraction
and the propagation of backward waves when the chiral-
ity parameter is appropriately chosen.

In this paper, we investigate eigenwaves propagating
in a chiral medium. The reflection from a dielectric—chiral
interface and wave propagation in an infinite chiral slab
placed in free space are discussed. The E-field is analyzed,
and related results established by numerical calculations
are presented at different angles of incidence and for dif-
ferent sets of values of the constitutive parameters.

© 2008 Optical Society of America
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2. SEMI-INFINITE CHIRAL MEDIA

In this section, we consider a plane wave incident upon
the interface between an achiral dielectric medium and a
chiral medium as shown in Fig. 1. The Cartesian coordi-
nate system (x,y,z) is employed, and the x—y plane is
considered the plane of interface between the dielectric
(permittivity e€; and permeability u;) and a homogeneous
chiral medium.

The constitutive relations used for the chiral medium
are defined as [19,20]

D = ,6)E — i\ €poH, (1)
B = ppoH + ik €uoE. (2)

A monochromatic time-harmonic variation exp(iwt) is as-
sumed throughout this paper, but omitted. From the
source-free Maxwell’s equations, we have the following
time-harmonic forms:

VXE=-ioB, (3)

VXH=iwD. (4)

The chiral medium is isotropic, and we assume that a
monochromatic plane wave propagates along the z axis of
the Cartesian system (x,y,z) where the unit vectors are
(éy,é,,é,) asillustrated in Fig. 1. The wavenumbers of the
two eigenwaves in the chiral medium then read as

kyo=ko(yp € = k), (5)

where %, denotes the wavenumber in vacuum.

In a chiral medium, two eigenmodes exist, and they
propagate at different phase velocities of w/k; and w/k,.
The E-fields associated with these two eigenmodes can be
expressed by

E,=E(é, +ié,))exp(-ikz), (6)

Ax
Dielectric Chiral
(&1, 1)

(£, 4, %)

(LCP)

Fig. 1. Orientation of the wave vectors at an oblique incidence
on a dielectric—chiral interface. The subscripts || and 1, respec-
tively, stand for parallel and perpendicular with respect to the
plane of incidence.
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E;=Eg(é, - ié,)exp(-iksz), (7)

which correspond to right-handed and left-handed circu-
larly polarized waves, respectively. The refractive indices
are thus given as

—_—

Nig= \“”:U“rsr + K. (8)

Potential applications in phase compensator and quan-
tum devices can be envisaged for chiral media, since one
of the refractive indices can be fairly small, leading to a
quantum vacuum that is highly discretized [21]. If a
proper model is applied to characterize the chiral media,
one will further obtain dispersive refractive indices. Thus,
each of the refractive indices can be zero at a certain fre-
quency [22].

In order to study the reflected power at the interface
between the dielectric medium and the chiral medium,
the following boundary conditions have to be satisfied:

é><I:Einc+E‘r:|=é><|:E’1+E‘2:|7 (9)

zX [Hinc +Hr] =2 X [Hl +H2]~ (10)

The method used by Silverman for retrieving Fresnel re-
flection and transmission coefficients (see Sect. 3 of [23])
is adopted (but will not be repeated here). They are fur-
ther transformed into the Tellegen formalism. In Fig. 2,
the reflected power versus the angle of incidence is drawn
for two different configurations.

The first case deals with a chiral medium where the
permittivity is greater than that of the dielectric. There
then exists a Brewster angle for an incidence at about 65°
for parallel polarization, as shown in Fig. 2(a). For the
second case, shown in Fig. 2(b), the chiral medium has a
lower permittivity than the surrounding dielectric. For
the value of k=0.25, no Brewster angle can be observed
for either polarization of the incident field. When 6=20°,
however, the reflected power of P, has a minimum, which
is close to zero. Total reflection is thus obtained from the
39° incidence for both P,.(l) and P,.(L1) polarizations.
Further investigation reveals that the permittivity ratio
(i.e., the permittivity of the dielectric over the permittiv-
ity of the chiral medium) determines the zero and total re-
flection characteristics. The zero reflection occurs only for
parallel polarization, which is consistent with the results
related to the conventional dielectric—dielectric interface.
It is interesting to observe that the total reflection hap-
pens over a wide range of incident angles, and a second-
ary total-reflection angle at §=22° appears at the perpen-
dicular polarization.

In what follows, we investigate the energy flow from
the dielectric to the chiral nihility in Fig. 3, where some
interesting phenomena arise.

Two cases of chiral nihility are considered, i.e., in the
presence and absence of impedance matching to the air. It
is easily found by comparing Fig. 3(a) with Fig. 2(a) that a
zero-reflection angle occurs at the perpendicular polariza-
tion instead of the parallel polarization, which is in con-
trast to the situation for normal chiral or dielectric mate-
rials. It is shown that the reflected power varies
drastically with the incident angle within a certain range.
The zero-reflection angle at 27° is quite close to the lowest
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Fig. 2. Reflected power as a function of the incidence with unit

permeability, the same chirality, but different permittivity. u,
=u=1, k=0.25. (a) €,=1, €=4; (b) =4, e=1.

total reflection angle at 30°, which means that this range
is quite angle sensitive. More surprisingly, the depen-
dence of reflected power on the incidence becomes identi-
cal for both polarizations when the impedance of chiral ni-
hility is matched to that of free space. In this special case,
the Breswter angle forms a range instead of a single angle
as shown in Fig. 3(b), and total reflection happens when
the incident angle is greater than 30°, although imped-
ance matching is achieved. The reflection is due to the
mismatch of the refractive indices.

As one can see, the chirality in each case in Fig. 3 is
doubled in Fig. 4, if we keep other parameters unchanged.
The chiral effects of chiral nihility are presented. In Fig.
4, the reflected powers at both polarizations carry a simi-
lar dependence on incidence, while the magnitude of re-
flected power significantly differs from that in Fig. 3.

In Fig. 4, the reflected power is quite stable over the
whole region except at 90°. If the impedance of chiral ni-
hility is matched, the value will be further reduced to zero
[see Fig. 4(b)], which means that the Brewster angle cov-
ers almost the whole range of incident angles. Therefore,
under such circumstances, all the energy is transmitted
to the chiral nihility except at a parallel incidence. This
outcome may be of great importance for realizing imaging
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Fig. 3. Reflected power as a function of the incidence with dif-
ferent cases of chiral nihility. k=0.5. (a) e;=u;=1, e=4X107°, u
=1x107% (b) e =p, e=pu=1x1075,

characteristics without much loss of information with a
point source or a line source, since one of the refractive
indices of chiral nihility is very close to —1.

Figure 5 shows the reflected power versus the chirality
for the same two configurations as above at an oblique in-
cidence of 45°. When the chiral medium is denser than
the dielectric [Fig. 5(a)l, the reflected power shows a
maximum of 0.8 for k=2 for perpendicular polarization of
the incident field and tends to a stable value of 0.22 for
x>4. For parallel polarization, two maxima are obtained
(P,=0.8) at k=1.29 and x=2.71, respectively. In order to
have good transmission through the interface, the chiral-
ity must be either lower than 1.29 or greater than 2.71.

In contrast, when the dielectric is denser than the chi-
ral medium [Fig. 5(b)], total reflection is observed at both
polarizations for a chirality smaller than 0.42. In the case
of parallel polarization, the reflected power decreases to a
stable value of 0.22 as the chirality increases. At the per-
pendicular polarization of the incident field, a minimum
is first observed for x=1, and then another maximum is
observed for «=2.41. When «>3, the reflected power
tends to 0.04. If we further increase the mismatching of
the permittivity between the dielectric and the chiral me-
dium, the variational curves shown in Fig. 5 shift to the
right (higher values of chirality), and the amplitude of the
reflected power increases.
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Fig. 4. Reflected power as a function of the incidence with the
same permittivity and permeability as in Fig. 3 but with a higher
chirality. e;=u1=1, =4 X107%, u=1X107>, k=1.

In contrast to the normal chiral slab, chiral nihility
slabs at an oblique incidence are also studied in Fig. 6.
Similarly, particular values of chirality will lead to zero
reflection; these values represent the so-called critical
chirality «.. In Fig. 6(a), x,~0.75, which exists only for
perpendicular polarization. If the chirality is lower than
K., total reflection happens, and no power can be trans-
mitted to the chiral nihility slab. When the chirality is
sufficiently large, the reflected powers approach their re-
spective stable values. It is found that the stable reflected
power of P; is about 7 times larger than that of P, . If the
chiral nihility slab has its impedance matched to the free
space, both P, and P, have identical performance versus
the chirality, and «, can be observed for both cases. This
suggests that higher chirality would be a better choice if
energy transport is desired.

3. INFINITE CHIRAL NIHILITY SLABS

In this section, the propagation of a plane wave through
an infinite chiral nihility slab of thickness d is considered.
The configuration for the chiral slab in a dielectric host
medium is given in Fig. 7(a).
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Fig. 5. Reflected power as a function of the chirality for an ob-
lique incidence at an angle of 6,,.=45°. (a) e;=u;=1, e=4, pu=1;
() €1=4, p1=1, e=p=1.

We assume that a plane wave propagating in a homo-
geneous isotropic dielectric medium is incident on the sur-
face of a chiral slab defined by the constitutive relations of
Eqgs. (1) and (2). In our case, air is taken as the dielectric
medium, and the two interfaces of the chiral slab are lo-
cated at z,=0 and z=d. If we consider a frequency region
where R[k]|>NR[u,€.], then one of the two waves is back-
ward according to Eq. (5). Hence, for one of the two polar-
izations, the chiral medium will present a negative index
of refraction, and in such a case subwavelength focusing
will take place for waves of this polarization as shown in
Fig. 7(b).

When k;,.=k,=k;, the angles of 6; and 6y (correspond-
ing to the transmitted waves in the chiral slab) are given
by

010= sin-l( i 510 e 0”‘6) : (11)
’ ki

where k;,.=kq, k,, k; denotes the incident, reflected, and
transmitted wavenumbers, respectively. The boundary
conditions of the tangential electric and magnetic fields
are applied at the two interfaces situated at z=0 and z
=d, and a matrix form is then used to determine the re-
flected and transmitted fields in the presence of two inter-
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Fig. 6. Reflected power as a function of the chirality for an ob-
lique incidence at an angle of 6;,.=45° in different cases of chiral
nihility. e;=u;=1. (a) u3=1x1075; (b) e=u=1x1075.

faces of a chiral slab [24,25], based on the field decompo-
sition [20] and the multiple scattering theories [26].

A. Modified Condition for Chiral Nihility

Now, we will revisit the chiral nihility. Let us now con-
sider Born’s relations [25,27] obtained from measure-
ments:

1
D= (E+iepupykoH),  (12)
1- epupy’ks
1
B=————(upH - iegupykoE), (13)
1- EB,U«B?’Zkg

where €, ug, and y denote the relative permittivity, rela-
tive permeability, and chirality, respectively, used by
Born. One should note that the constitutive parameters
used in Egs. (1) and (2) can be expressed in terms of
Born’s parameters as follows:

€B
€= ————, (14)
1 - egup¥ky
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Fig. 7. (a) Chiral slab of thickness d placed in free space. The
two interfaces with the chiral slab are situated at z=0 and z=d.
Regions 1 and 3 are considered to be vacuum, and region 2 is the
chiral medium. (b) Illustration of negative refraction and sub-
wavelength focusing by a chiral slab (£;>0 and k,<0).

L
p=— (15)
1 - egup¥ks

€BMBYW

= 16
(1- EBMB?’zkg) (16)

K

In [19], the authors defined chiral nihility as medium pa-
rameters satisfying €=0, u=0, and «# 0. When we apply
these conditions to Born’s parameters, however, we find
that if e=u=0, then ez and pg must be both equal to zero,
too. This restriction on eg and upg leads us to the fact that
all the constitutive parameters are null regardless of the
value of the Born chirality parameter y. No propagation
can be possible for such media, since Maxwell’s equations
become trivial, unless the y in Eq. (16) approaches infin-
ity. However, such a case lacks physical insight, since the
corresponding chiral nihility requires eg=up=0 and vy
— 0,

Hence, in this paper we consider the chiral medium to
have parameters €.=u,=1X 1072 (instead of zero) as an
analogy to the modified condition of chiral nihility. Subse-
quently, it can be found that « can take different values
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Fig. 8. Indices of refraction and wave vectors in the chiral nihi-
lity slab versus the chirality.

according to the values of y. If the relation of €.=u,=1
%107 holds, ez and up must also be equal to 1x 1075,
Concerning the chirality parameter, we have k=27wy at a
frequency of 10 GHz. Since y can take values only up to
about unity [27], then an upper limit of 27 for « is ob-
tained here.

B. Numerical Results
First, we consider a chiral slab with both relative permit-
tivity and relative permeability having values of 1 X 107?

3 : e F
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(very close to 0) and the chirality parameter taking values
between 0 and 2. We assume that the thickness of the slab
along the z axis is d=5mm (0<z<5mm) and that a
plane wave parallel to the plane of incidence [e.g., the yoz
plane shown in Fig. 7(a)] coming from vacuum is incident
on the chiral slab. The electric and magnetic field vectors
are taken to be oriented along the x and y directions, re-
spectively. The working frequency here is set to be
10 GHz. The magnitude of wave vector k and index of re-
fraction n of each circularly polarized plane wave in a chi-
ral nihility slab are plotted versus the chirality parameter
in Fig. 8.

It is noted that when Re[«]|>Re[u,€.], one of the two
waves has a negative index of refraction, which corre-
sponds to a backward wave in the chiral slab. For the
whole set of values of «k, a matching of Z is achieved. But
a matching of n with that of free space is achieved only for
x=1 in this particular case.

The transmitted power in vacuum on the right-hand
side of a chiral nihility slab [region 3 of Fig. 7(a)] is plot-
ted versus the angle of incidence 6;,, for different values
of permittivity and permeability, and the results are
shown in Fig. 9.

Two types of transmission are considered for the paral-
lel incident plane wave, i.e., the nominal transmission,
which is calculated from the ratio of the parallel transmit-
ted E-field over the parallel incident E-field, and the cross

pttotal

i
*,
v

(d)

Fig. 9. Total transmitted power in vacuum on the right-hand side of the chiral nihility slab (region 3) for different values of €. and pu,
versus the angle of incidence 6;. (a) k=0, (b) k=0.25, (¢) k=0.8, (d) k=1.
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transmission, which is calculated from the ratio of the
perpendicular transmitted E-field over the parallel inci-
dent E-field.

It is noted from Fig. 9 that the total transmitted power
depends strongly on the value of k. For k=0 (a normal di-
electric medium), the transmitted power drops from 1 to 0
when the incident angle of the plane wave is slightly big-
ger than zero in the case where €,=u,=1Xx107° [Fig. 9(a)].
For any oblique incidence, the power transmitted is null.
When we simultaneously increase the values of €. and w,,
a low-pass characteristic is observed; when €.=p,=1 is
reached, total transmission is obtained for the whole
range of incidences varying from 0° to 90°, where a drop
to zero is noted. If chirality is considered (e.g., k=0.25), a
low-pass characteristic is observed for each set of €. and
u, values [Fig. 9(b)]. Increasing the values of €. and wu,
leads to a wider range of incident angles at which total
transmission occurs. If we consider k=0.8 [shown in Fig.
9(c)l, we can still observe the low-pass characteristics,
and the transmissions for €,=u,=1x10° and €.=u,=1
X 1072 are the same. In the case of k=1 and e.=pu,=1
X 107® [shown in Fig. 9(d)], the total transmitted power is
unity at any angle of incidence between 0° and 90°, where
it drops to zero. We should note that in this case one of the
two eigenwaves in the chiral slab has a refractive index
equal to —1. For ¢.=u,=1X1072, the drop to zero trans-
mission is smoother and occurs at a slightly lower inci-
dence. A surprising phenomenon arises when e.=u,=1
and «=1. In fact, the total transmitted power drops dras-
tically from 1 to 0.5 when the angle of incidence of the
plane wave is zero. This is because only one eigenwave
with n=2 propagates through the chiral medium. For an
oblique incidence, from 0° to approximately 30°, only half
of the total power is transmitted. At an angle of above 30°,
there is a smooth drop till 90°, where the power transmit-
ted is null. One possible and interesting application that
needs to be mentioned in this particular case is a half-
power divider for a selective range of incident angles.

Here, we consider the chiral nihility slab, and « is as-
sumed to be zero when €.=u,=1X 1075 by considering y
=0 in the Born formalism. To gain some insight into the
behavior of the fields in different regions, the plots of the
real and the imaginary parts of the E-field (E, and E,
components) in these three regions are presented for the
selected value parameters.

In Fig. 10, we show only the E, component inside and
outside the slab when a plane wave is normally incident
(the E, component is null at 0° incidence). Here, we notice
that the imaginary and real parts of E, are respectively
null and unity inside the slab, and we also have conser-
vation of energy inside the slab. We can observe that
there exists no phase delay between the front face and the
back face of the slab. This slab can then act as a phase
compensator—conjugator. The slab is completely transpar-
ent to the electric field.

Assume now that the nihility slab has a chirality of
0.25. Then we still have the E, component present, as
shown in Fig. 11.

Note that here the two eigenwaves propagating inside
the slab have an index of refraction equal to —0.25 and
0.25. When «=0.25, the real part of E, decreases very
slightly in the slab (region 2) with a normally incident
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Fig. 10. Electric field and transmitted power as a function of the
z coordinate when a normally incident wave illuminates a slab of
medium with €.=xu,=1x107° and «=0.

plane wave. The E, component, which is null in region 1,
increases linearly to 0.22 in the chiral slab. Concerning
the imaginary parts presented in Fig. 11(b), we find that
they are both equal to zero inside the slab and that there
is no phase delay between the front and back faces of the
slab. The cases studied in Figs. 10 and 11 are examples in
which there is a matching of the wave impedance Z, since
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Fig. 11. Electric field and transmitted power as a function of the
z coordinate when a normally incident wave illuminates a slab of
medium with €.=u,=1%X107° and «=0.25. (a) Magnitude of real
parts and transmitted power. (b) Magnitude of imaginary parts.
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Fig. 12. Electric field as a function of the z coordinate when a
normally incident wave illuminates a slab of medium with e,
=u,=1x107% and «x=1. (a) Magnitude of real parts and transmit-
ted power. (b) Magnitude of imaginary parts.

€=M, but not the refractive index n. In this section, a
case of the matched refractive index is presented. Let us
consider the case in which there is also a matched index
of refraction by considering x=1. One of the two eigen-
waves propagating in the slab will have n=1, and the
other will be a backward wave with n=-1. The electric
field distribution of the normally incident plane wave is
presented in Fig. 12.

Figure 12(a) shows that the real part of the E, compo-
nent takes quite high values in the slab because the cross
transmission and the power transmitted in region 3 are
equal to 1. Figure 12(b) shows that the imaginary part of
E, arises after the wave propagates through the slab,
while it does not occur in regions 1 and 2. In this case, no
phase delay can be observed.

4. CONCLUSION

In this paper, we have investigated a chiral nihility me-
dium where both the permittivity and the permeability
tend to zero. Some physical restrictions have been pointed
out, and new conditions of chiral nihility have been pro-
posed. The possibility of achieving a negative index of re-
fraction and transparency in this medium has been veri-
fied numerically. Different components of the electric field
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distribution in the chiral nihility slab placed in air have
been presented. The dependence of chirality on the energy
flow has been studied. It has been shown that the wave
propagates in air without any phase delay, after passing
through a chiral nihility slab. The slab physically behaves
as a phase compensator or conjugator. A special case,
where x=1, has been identified for a possible application
of the slab as a half-power divider, where its peculiar
properties of Brewster angles have been shown.
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