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The propagation of electromagnetic plane waves in an isotropic chiral medium is characterized, and a special
interest is shown in chiral nihility and the effects of chirality on energy transmission. In particular, the wave
impedance is matched to that of free space. Moreover, the refractive index n is also matched in impedance to
that of free space when an appropriate value of the chirality is chosen. A “chiral nihility” medium is explored
in which both the permittivity and the permeability tend to zero. Some specific case studies of chiral nihility
are presented, and Brewster angles are found to cover an extremely wide range. The E-field distributions in
these different cases where the chiral slab is placed in free space are analyzed by using the appropriate con-
stitutive relations. It is shown from numerical calculations that one can obtain some critical characteristics of
the effects of chirality on energy transmission and reflection, such as transparency and power tunneling.
© 2007 Optical Society of America
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. INTRODUCTION
n 1968, Veselago theoretically demonstrated the electro-
agnetic properties of substances with simultaneously
egative permittivity � and permeability � [1]. A material
ossessing these properties is now referred to as a left-
anded material, since the electric field E, magnetic field
, and the wave vector k in the medium obey a left-

anded rule. Left-handed materials possess some unique
roperties compared with conventional dielectric materi-
ls, such as a negative refractive index [2], subwave-
ength imaging [3], a backward-wave region [4], and
ouble-negative parameters [5]; therefore these media are
lso often referred to as negative refractive index materi-
ls. This kind of medium does not, however, normally ex-
st in nature. In particular, the negative � value is not
ound in natural materials.

Thirty years later, Pendry and co-workers revisited the
egative refractive index material problem and developed
he concept of a perfect lens using the double-negative
onstitutive parameters, � and � [6]. The first metamate-
ial prediction by Veselago and its later formulation by
endry were both theoretical. The research work in this
rea was not pushed that far until Pendry proposed the
tructure of split-ring resonator [7] and Shelby et al. ex-
erimentally realized a left-handed material for the first
ime, where measurements confirmed negative refraction
n the microwave region [8]. However, it is a very difficult
ask to realize negative permeability from metallic split-
ing resonators and to achieve low-loss double-negative
edia at much higher frequencies. A recent publication

n metamaterials in the visible region showed that nega-
ive values of the real parts of the permeability and the
1084-7529/08/010055-9/$15.00 © 2
ermittivity can be obtained simultaneously, but a nega-
ive index of refraction cannot be achieved because of high
alues of the imaginary part of the permeability [9].

On the other hand, negative refraction can be also
chieved by using chiral media [10–13], which belong to a
eneral class of bianisotropic media. The use of a chiral
edium can help considerably for achieving negative re-

raction in the optical region [14–16] where artificial mag-
etic materials become unnecessary. In chiral media with

nclusions of long helices, a backward wave can be excited
long the helix, which acts as a delay line. Electric or
agnetic excitation will simultaneously produce both

lectric and magnetic polarizations [17,18]. In this paper,
e deal with the propagation of electromagnetic plane
aves in chiral nihility media. Cases of chiral nihility
here both the relative permittivity �r and the relative
ermeability �r are very small will be considered. The
ossibility of matching the refractive index n and the
ave impedance Z to those of free space will be discussed.
is matched when both the permittivity and the perme-

bility take the same values, and n is matched according
o the different values of �r, �r, and �. This type of me-
ium also favors the realization of a negative refraction
nd the propagation of backward waves when the chiral-
ty parameter is appropriately chosen.

In this paper, we investigate eigenwaves propagating
n a chiral medium. The reflection from a dielectric–chiral
nterface and wave propagation in an infinite chiral slab
laced in free space are discussed. The E-field is analyzed,
nd related results established by numerical calculations
re presented at different angles of incidence and for dif-
erent sets of values of the constitutive parameters.
008 Optical Society of America
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. SEMI-INFINITE CHIRAL MEDIA
n this section, we consider a plane wave incident upon
he interface between an achiral dielectric medium and a
hiral medium as shown in Fig. 1. The Cartesian coordi-
ate system �x ,y ,z� is employed, and the x–y plane is
onsidered the plane of interface between the dielectric
permittivity �1 and permeability �1) and a homogeneous
hiral medium.

The constitutive relations used for the chiral medium
re defined as [19,20]

D = �r�0E − i���0�0H, �1�

B = �r�0H + i���0�0E. �2�

monochromatic time-harmonic variation exp�i�t� is as-
umed throughout this paper, but omitted. From the
ource-free Maxwell’s equations, we have the following
ime-harmonic forms:

� � E = − i�B, �3�

� � H = i�D. �4�

he chiral medium is isotropic, and we assume that a
onochromatic plane wave propagates along the z axis of

he Cartesian system �x ,y ,z� where the unit vectors are
êx , êy , êz� as illustrated in Fig. 1. The wavenumbers of the
wo eigenwaves in the chiral medium then read as

k1,2 = k0���r�r ± ��, �5�

here k0 denotes the wavenumber in vacuum.
In a chiral medium, two eigenmodes exist, and they

ropagate at different phase velocities of � /k1 and � /k2.
he E-fields associated with these two eigenmodes can be
xpressed by

E1 = E01�êx + iêy�exp�− ik1z�, �6�

ig. 1. Orientation of the wave vectors at an oblique incidence
n a dielectric–chiral interface. The subscripts � and �, respec-
ively, stand for parallel and perpendicular with respect to the
lane of incidence.
E2 = E02�êx − iêy�exp�− ik2z�, �7�

hich correspond to right-handed and left-handed circu-
arly polarized waves, respectively. The refractive indices
re thus given as

n1,2 = ��r�r ± �. �8�

otential applications in phase compensator and quan-
um devices can be envisaged for chiral media, since one
f the refractive indices can be fairly small, leading to a
uantum vacuum that is highly discretized [21]. If a
roper model is applied to characterize the chiral media,
ne will further obtain dispersive refractive indices. Thus,
ach of the refractive indices can be zero at a certain fre-
uency [22].
In order to study the reflected power at the interface

etween the dielectric medium and the chiral medium,
he following boundary conditions have to be satisfied:

ẑ � �Einc + Er� = ẑ � �E1 + E2�, �9�

ẑ � �Hinc + Hr� = ẑ � �H1 + H2�. �10�

he method used by Silverman for retrieving Fresnel re-
ection and transmission coefficients (see Sect. 3 of [23])

s adopted (but will not be repeated here). They are fur-
her transformed into the Tellegen formalism. In Fig. 2,
he reflected power versus the angle of incidence is drawn
or two different configurations.

The first case deals with a chiral medium where the
ermittivity is greater than that of the dielectric. There
hen exists a Brewster angle for an incidence at about 65°
or parallel polarization, as shown in Fig. 2(a). For the
econd case, shown in Fig. 2(b), the chiral medium has a
ower permittivity than the surrounding dielectric. For
he value of �=0.25, no Brewster angle can be observed
or either polarization of the incident field. When �=20°,
owever, the reflected power of P� has a minimum, which

s close to zero. Total reflection is thus obtained from the
9° incidence for both Ppa��� and Ppe��� polarizations.
urther investigation reveals that the permittivity ratio

i.e., the permittivity of the dielectric over the permittiv-
ty of the chiral medium) determines the zero and total re-
ection characteristics. The zero reflection occurs only for
arallel polarization, which is consistent with the results
elated to the conventional dielectric–dielectric interface.
t is interesting to observe that the total reflection hap-
ens over a wide range of incident angles, and a second-
ry total-reflection angle at �=22° appears at the perpen-
icular polarization.
In what follows, we investigate the energy flow from

he dielectric to the chiral nihility in Fig. 3, where some
nteresting phenomena arise.

Two cases of chiral nihility are considered, i.e., in the
resence and absence of impedance matching to the air. It
s easily found by comparing Fig. 3(a) with Fig. 2(a) that a
ero-reflection angle occurs at the perpendicular polariza-
ion instead of the parallel polarization, which is in con-
rast to the situation for normal chiral or dielectric mate-
ials. It is shown that the reflected power varies
rastically with the incident angle within a certain range.
he zero-reflection angle at 27° is quite close to the lowest
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otal reflection angle at 30°, which means that this range
s quite angle sensitive. More surprisingly, the depen-
ence of reflected power on the incidence becomes identi-
al for both polarizations when the impedance of chiral ni-
ility is matched to that of free space. In this special case,
he Breswter angle forms a range instead of a single angle
s shown in Fig. 3(b), and total reflection happens when
he incident angle is greater than 30°, although imped-
nce matching is achieved. The reflection is due to the
ismatch of the refractive indices.
As one can see, the chirality in each case in Fig. 3 is

oubled in Fig. 4, if we keep other parameters unchanged.
he chiral effects of chiral nihility are presented. In Fig.
, the reflected powers at both polarizations carry a simi-
ar dependence on incidence, while the magnitude of re-
ected power significantly differs from that in Fig. 3.
In Fig. 4, the reflected power is quite stable over the

hole region except at 90°. If the impedance of chiral ni-
ility is matched, the value will be further reduced to zero
see Fig. 4(b)], which means that the Brewster angle cov-
rs almost the whole range of incident angles. Therefore,
nder such circumstances, all the energy is transmitted
o the chiral nihility except at a parallel incidence. This
utcome may be of great importance for realizing imaging

ig. 2. Reflected power as a function of the incidence with unit
ermeability, the same chirality, but different permittivity. �1
�=1, �=0.25. (a) �1=1, �=4; (b) �1=4, �=1.
haracteristics without much loss of information with a
oint source or a line source, since one of the refractive
ndices of chiral nihility is very close to −1.

Figure 5 shows the reflected power versus the chirality
or the same two configurations as above at an oblique in-
idence of 45°. When the chiral medium is denser than
he dielectric [Fig. 5(a)], the reflected power shows a
aximum of 0.8 for �=2 for perpendicular polarization of

he incident field and tends to a stable value of 0.22 for
�4. For parallel polarization, two maxima are obtained

Pr=0.8� at �=1.29 and �=2.71, respectively. In order to
ave good transmission through the interface, the chiral-

ty must be either lower than 1.29 or greater than 2.71.
In contrast, when the dielectric is denser than the chi-

al medium [Fig. 5(b)], total reflection is observed at both
olarizations for a chirality smaller than 0.42. In the case
f parallel polarization, the reflected power decreases to a
table value of 0.22 as the chirality increases. At the per-
endicular polarization of the incident field, a minimum
s first observed for �=1, and then another maximum is
bserved for �=2.41. When ��3, the reflected power
ends to 0.04. If we further increase the mismatching of
he permittivity between the dielectric and the chiral me-
ium, the variational curves shown in Fig. 5 shift to the
ight (higher values of chirality), and the amplitude of the
eflected power increases.

ig. 3. Reflected power as a function of the incidence with dif-
erent cases of chiral nihility. �=0.5. (a) �1=�1=1, �=4�10−5, �
1�10−5; (b) �1=�1, �=�=1�10−5.
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In contrast to the normal chiral slab, chiral nihility
labs at an oblique incidence are also studied in Fig. 6.
imilarly, particular values of chirality will lead to zero
eflection; these values represent the so-called critical
hirality �c. In Fig. 6(a), �c�0.75, which exists only for
erpendicular polarization. If the chirality is lower than
c, total reflection happens, and no power can be trans-
itted to the chiral nihility slab. When the chirality is

ufficiently large, the reflected powers approach their re-
pective stable values. It is found that the stable reflected
ower of P� is about 7 times larger than that of P�. If the
hiral nihility slab has its impedance matched to the free
pace, both P� and P� have identical performance versus
he chirality, and �c can be observed for both cases. This
uggests that higher chirality would be a better choice if
nergy transport is desired.

. INFINITE CHIRAL NIHILITY SLABS
n this section, the propagation of a plane wave through
n infinite chiral nihility slab of thickness d is considered.
he configuration for the chiral slab in a dielectric host
edium is given in Fig. 7(a).

ig. 4. Reflected power as a function of the incidence with the
ame permittivity and permeability as in Fig. 3 but with a higher
hirality. �1=�1=1, �=4�10−5, �=1�10−5, �=1.
We assume that a plane wave propagating in a homo-
eneous isotropic dielectric medium is incident on the sur-
ace of a chiral slab defined by the constitutive relations of
qs. (1) and (2). In our case, air is taken as the dielectric
edium, and the two interfaces of the chiral slab are lo-

ated at zn=0 and z=d. If we consider a frequency region
here R����R��r�r�, then one of the two waves is back-
ard according to Eq. (5). Hence, for one of the two polar-

zations, the chiral medium will present a negative index
f refraction, and in such a case subwavelength focusing
ill take place for waves of this polarization as shown in
ig. 7(b).
When kinc=kr=kt, the angles of �1 and �2 (correspond-

ng to the transmitted waves in the chiral slab) are given
y

�1,2 = sin−1�kinc sin �inc

k1,2
	 , �11�

here kinc=k0, kr, kt denotes the incident, reflected, and
ransmitted wavenumbers, respectively. The boundary
onditions of the tangential electric and magnetic fields
re applied at the two interfaces situated at z=0 and z
d, and a matrix form is then used to determine the re-
ected and transmitted fields in the presence of two inter-

ig. 5. Reflected power as a function of the chirality for an ob-
ique incidence at an angle of �inc=45°. (a) �1=�1=1, �=4, �=1;
b) �1=4, �1=1, �=�=1.
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aces of a chiral slab [24,25], based on the field decompo-
ition [20] and the multiple scattering theories [26].

. Modified Condition for Chiral Nihility
ow, we will revisit the chiral nihility. Let us now con-

ider Born’s relations [25,27] obtained from measure-
ents:

D =
1

1 − �B�B�2k0
2 ��BE + i�B�B�k0H�, �12�

B =
1

1 − �B�B�2k0
2 ��BH − i�B�B�k0E�, �13�

here �B, �B, and � denote the relative permittivity, rela-
ive permeability, and chirality, respectively, used by
orn. One should note that the constitutive parameters
sed in Eqs. (1) and (2) can be expressed in terms of
orn’s parameters as follows:

� =
�B

1 − �B�B�2k0
2 , �14�

ig. 6. Reflected power as a function of the chirality for an ob-
ique incidence at an angle of �inc=45° in different cases of chiral
ihility. �1=�1=1. (a) �1=1�10−5; (b) �=�=1�10−5.
� =
�B

1 − �B�B�2k0
2 , �15�

� =
�B�B��

�1 − �B�B�2k0
2�

. �16�

n [19], the authors defined chiral nihility as medium pa-
ameters satisfying �=0, �=0, and ��0. When we apply
hese conditions to Born’s parameters, however, we find
hat if �=�=0, then �B and �B must be both equal to zero,
oo. This restriction on �B and �B leads us to the fact that
ll the constitutive parameters are null regardless of the
alue of the Born chirality parameter �. No propagation
an be possible for such media, since Maxwell’s equations
ecome trivial, unless the � in Eq. (16) approaches infin-
ty. However, such a case lacks physical insight, since the
orresponding chiral nihility requires �B=�B=0 and �

	.
Hence, in this paper we consider the chiral medium to

ave parameters �r=�r=1�10−5 (instead of zero) as an
nalogy to the modified condition of chiral nihility. Subse-
uently, it can be found that � can take different values

ig. 7. (a) Chiral slab of thickness d placed in free space. The
wo interfaces with the chiral slab are situated at z=0 and z=d.
egions 1 and 3 are considered to be vacuum, and region 2 is the
hiral medium. (b) Illustration of negative refraction and sub-
avelength focusing by a chiral slab (k1�0 and k2
0).
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ccording to the values of �. If the relation of �r=�r=1
10−5 holds, �B and �B must also be equal to 1�10−5.
oncerning the chirality parameter, we have ��2�� at a

requency of 10 GHz. Since � can take values only up to
bout unity [27], then an upper limit of 2� for � is ob-
ained here.

. Numerical Results
irst, we consider a chiral slab with both relative permit-

−5

ig. 8. Indices of refraction and wave vectors in the chiral nihi-
ity slab versus the chirality.
ivity and relative permeability having values of 1�10 t

i

very close to 0) and the chirality parameter taking values
etween 0 and 2. We assume that the thickness of the slab
long the z axis is d=5 mm �0
z
5 mm� and that a
lane wave parallel to the plane of incidence [e.g., the yoz
lane shown in Fig. 7(a)] coming from vacuum is incident
n the chiral slab. The electric and magnetic field vectors
re taken to be oriented along the x and y directions, re-
pectively. The working frequency here is set to be
0 GHz. The magnitude of wave vector k and index of re-
raction n of each circularly polarized plane wave in a chi-
al nihility slab are plotted versus the chirality parameter
n Fig. 8.

It is noted that when Re����Re��r�r�, one of the two
aves has a negative index of refraction, which corre-

ponds to a backward wave in the chiral slab. For the
hole set of values of �, a matching of Z is achieved. But
matching of n with that of free space is achieved only for
=1 in this particular case.
The transmitted power in vacuum on the right-hand

ide of a chiral nihility slab [region 3 of Fig. 7(a)] is plot-
ed versus the angle of incidence �inc for different values
f permittivity and permeability, and the results are
hown in Fig. 9.

Two types of transmission are considered for the paral-
el incident plane wave, i.e., the nominal transmission,
hich is calculated from the ratio of the parallel transmit-
ed E-field over the parallel incident E-field, and the cross
ig. 9. Total transmitted power in vacuum on the right-hand side of the chiral nihility slab (region 3) for different values of �r and �r
ersus the angle of incidence � . (a) �=0, (b) �=0.25, (c) �=0.8, (d) �=1.



t
p
d

d
e
w
g
F
W
a
r
r
t
l
�
l
t
9
a
�
�
u
i
t
e
m
d
a
t
p
w
o
o
t
t
n
p

s
=
b
r
c
s

o
(
t
n
v
t
b
c
e

0
s

t
0
s

p
i
t
t
i
s
w

F
z
m

F
z
m
p

Qiu et al. Vol. 25, No. 1 /January 2008 /J. Opt. Soc. Am. A 61
ransmission, which is calculated from the ratio of the
erpendicular transmitted E-field over the parallel inci-
ent E-field.
It is noted from Fig. 9 that the total transmitted power

epends strongly on the value of �. For �=0 (a normal di-
lectric medium), the transmitted power drops from 1 to 0
hen the incident angle of the plane wave is slightly big-
er than zero in the case where �r=�r=1�10−5 [Fig. 9(a)].
or any oblique incidence, the power transmitted is null.
hen we simultaneously increase the values of �r and �r,
low-pass characteristic is observed; when �r=�r=1 is

eached, total transmission is obtained for the whole
ange of incidences varying from 0° to 90°, where a drop
o zero is noted. If chirality is considered (e.g., �=0.25), a
ow-pass characteristic is observed for each set of �r and
r values [Fig. 9(b)]. Increasing the values of �r and �r

eads to a wider range of incident angles at which total
ransmission occurs. If we consider �=0.8 [shown in Fig.
(c)], we can still observe the low-pass characteristics,
nd the transmissions for �r=�r=1�10−5 and �r=�r=1
10−2 are the same. In the case of �=1 and �r=�r=1
10−5 [shown in Fig. 9(d)], the total transmitted power is

nity at any angle of incidence between 0° and 90°, where
t drops to zero. We should note that in this case one of the
wo eigenwaves in the chiral slab has a refractive index
qual to −1. For �r=�r=1�10−2, the drop to zero trans-
ission is smoother and occurs at a slightly lower inci-

ence. A surprising phenomenon arises when �r=�r=1
nd �=1. In fact, the total transmitted power drops dras-
ically from 1 to 0.5 when the angle of incidence of the
lane wave is zero. This is because only one eigenwave
ith n=2 propagates through the chiral medium. For an
blique incidence, from 0° to approximately 30°, only half
f the total power is transmitted. At an angle of above 30°,
here is a smooth drop till 90°, where the power transmit-
ed is null. One possible and interesting application that
eeds to be mentioned in this particular case is a half-
ower divider for a selective range of incident angles.
Here, we consider the chiral nihility slab, and � is as-

umed to be zero when �r=�r=1�10−5 by considering �
0 in the Born formalism. To gain some insight into the
ehavior of the fields in different regions, the plots of the
eal and the imaginary parts of the E-field (Ex and Ez
omponents) in these three regions are presented for the
elected value parameters.

In Fig. 10, we show only the Ex component inside and
utside the slab when a plane wave is normally incident
the Ez component is null at 0° incidence). Here, we notice
hat the imaginary and real parts of Ex are respectively
ull and unity inside the slab, and we also have conser-
ation of energy inside the slab. We can observe that
here exists no phase delay between the front face and the
ack face of the slab. This slab can then act as a phase
ompensator–conjugator. The slab is completely transpar-
nt to the electric field.

Assume now that the nihility slab has a chirality of
.25. Then we still have the Ey component present, as
hown in Fig. 11.

Note that here the two eigenwaves propagating inside
he slab have an index of refraction equal to −0.25 and
.25. When �=0.25, the real part of Ex decreases very
lightly in the slab (region 2) with a normally incident
lane wave. The Ey component, which is null in region 1,
ncreases linearly to 0.22 in the chiral slab. Concerning
he imaginary parts presented in Fig. 11(b), we find that
hey are both equal to zero inside the slab and that there
s no phase delay between the front and back faces of the
lab. The cases studied in Figs. 10 and 11 are examples in
hich there is a matching of the wave impedance Z, since

ig. 10. Electric field and transmitted power as a function of the
coordinate when a normally incident wave illuminates a slab of
edium with �r=�r=1�10−5 and �=0.

ig. 11. Electric field and transmitted power as a function of the
coordinate when a normally incident wave illuminates a slab of
edium with �r=�r=1�10−5 and �=0.25. (a) Magnitude of real

arts and transmitted power. (b) Magnitude of imaginary parts.
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r=�r, but not the refractive index n. In this section, a
ase of the matched refractive index is presented. Let us
onsider the case in which there is also a matched index
f refraction by considering �=1. One of the two eigen-
aves propagating in the slab will have n=1, and the

ther will be a backward wave with n=−1. The electric
eld distribution of the normally incident plane wave is
resented in Fig. 12.
Figure 12(a) shows that the real part of the Ey compo-

ent takes quite high values in the slab because the cross
ransmission and the power transmitted in region 3 are
qual to 1. Figure 12(b) shows that the imaginary part of
y arises after the wave propagates through the slab,
hile it does not occur in regions 1 and 2. In this case, no
hase delay can be observed.

. CONCLUSION
n this paper, we have investigated a chiral nihility me-
ium where both the permittivity and the permeability
end to zero. Some physical restrictions have been pointed
ut, and new conditions of chiral nihility have been pro-
osed. The possibility of achieving a negative index of re-
raction and transparency in this medium has been veri-
ed numerically. Different components of the electric field

ig. 12. Electric field as a function of the z coordinate when a
ormally incident wave illuminates a slab of medium with �r
�r=1�10−5 and �=1. (a) Magnitude of real parts and transmit-

ed power. (b) Magnitude of imaginary parts.
istribution in the chiral nihility slab placed in air have
een presented. The dependence of chirality on the energy
ow has been studied. It has been shown that the wave
ropagates in air without any phase delay, after passing
hrough a chiral nihility slab. The slab physically behaves
s a phase compensator or conjugator. A special case,
here �=1, has been identified for a possible application

f the slab as a half-power divider, where its peculiar
roperties of Brewster angles have been shown.
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