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Peculiarities in light scattering by spherical
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Light scattering by a spherical particle with radial anisotropy is discussed by extending Mie theory to diffrac-
tion by an anisotropic sphere, including both the electric and the magnetic anisotropy ratio. It is shown that
radial anisotropy may lead to great modifications in scattering efficiencies and field enhancement, elucidating
the importance of anisotropies in the control of scattering. The capacity for nondissipating damping is demon-
strated for anisotropic spheres with different signs in radial and transversal permittivities. © 2008 Optical
Society of America
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. INTRODUCTION
he majority of solid materials in nature are anisotropic;
.g., polar crystallites made of orientational molecules are
enerally both anisotropic and collective. The presence of
nisotropy is due to the lack of symmetry in the local
tomic environment, and the collectivity is caused by the
ense grouping of molecules. Understanding the role of
hese effects in light scattering is of particular interest for
any medical and bioengineering applications. Most pre-

ious investigations into the ordering of orientational
olecules and fluids have focused on 1D and 2D periodic

ubstrates [1]. These problems have also been analyzed
heoretically in terms of Landau theory [2] and Monte
arlo simulation [3]. Recently, the orientational ordering
f colloidal molecules on 2D periodic substrates has been
nvestigated both theoretically and numerically [4]. A few
umerical approaches for 3D molecular-dynamics calcula-
ions have been reported [5,6]. However, the macroscopic
nisotropic response of a spherical particle made of crys-
allites on the Maier–Saupe model has received less at-
ention in spite of its importance in the technologies of the
mbedding of artificial particles and biomedical detection.
adially anisotropic materials have been receiving great
ttention recently from both the scientific and the engi-
eering communities. It has been reported that the
pherical or cylindrical cloak can be realized by a material
ith radial anisotropy using coordination transformation

7–9]; these studies were presented primarily in the optics
imit or static cases. Thus, an analytical method is neces-
ary to exactly characterize the wave interaction and to
rovide more physical insight into the design process of
loaking structures. The nonlinear physics of the material
tudied in this report has been investigated [10], where
he nonlinear enhancement in second-harmonic and in-
uced third-harmonic generation is found to be much
arger than that of the corresponding isotropic systems.
1084-7529/08/071623-6/$15.00 © 2
Especially in medical applications and bioengineering,
ight scattering yields insight into the details of the inter-
ction of embedded or injected bioparticles with micro-
ave and/or optical illumination [11]. Scattering helps,

or example, to locate some abnormal proteins. Of special
nterest are spherical particles with radial anisotropies. It
s expected that molecules in spherical particles are at
east partially oriented with respect to the direction nor-

al to the surface. Such orientation of molecules can be
asily included into the theory by considering the particle
s a uniaxial anisotropic medium with the principal optic
xis along with local direction normal to the surface. The
omplex dielectric and magnetic tensorial components �n
�n� and �t ��t� correspond to the field vectors normal to
nd tangential to the local surface (local optic axis [12]),
espectively. This problem can be investigated systemati-
ally on the basis of the exact solution of the Maxwell
quations, which demonstrates the extension of Mie
heory to diffraction by an anisotropic sphere, including
oth the electric and the magnetic anisotropy ratio.
Some peculiarities in light scattering from isotropic
aterials were found recently for the case of weakly dis-

ipating materials near plasmon resonance frequencies.
or these isotropic materials, the classical Rayleigh scat-

ering does not hold and can be replaced by anomalous
ight scattering [13]. This anomalous light scattering is
ssociated with complex patterns of near and far fields, in
ontrast to Rayleigh scattering. It also demonstrates an
xtraordinary scattering effect [14], which is similar to
uantum scattering by a potential with quasi-discrete lev-
ls exhibiting Fano resonances [15]. Another interesting
ffect refers to active random isotropic media, which sup-
ort optical light enhancement [16]. Recently, scattering
f light by anisotropic materials has been analyzed in
17–19], but the material is characterized primarily in
ectangular coordinates and treated by a differential
008 Optical Society of America
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heory. Therefore, the purpose of this paper is the analy-
is of the radial anisotropy effect upon the plasmonics and
ther extraordinary effects on the basis of an exact and
ompact solution for light scattering by spherical particles
ith uniaxial anisotropy defined in spherical coordinates.

. FORMULATION
he sphere with uniaxial anisotropy is illuminated by a
lane wave with the electric field polarized along the x
xis. The constitutive tensors of the relative permittivity
nd permeability are defined as

�̄ = �
�n 0 0

0 �t 0

0 0 �t
�, �̄ = �

�n 0 0

0 �t 0

0 0 �t
� , �1�

here �n (or �n) and �t (or �t) stand for the permittivity
or permeability) elements corresponding to the electric
or magnetic)-field vector normal to and tangent to the lo-
al optic axis, respectively.

In [20], it has been proved that in radial anisotropic
aterial the TE and TM waves are decoupled if off-axis

lements are zero. Hence, solving the Maxwell equations
sing two Debye potentials, one has

�n

�t

�2�TM

�r2 +
1

r2sin �

�

��
�sin �

��TM

��
� +

1

r2sin2�

�2�TM

��2

+
�2

c2 �n�t�TM = 0, �2�

�n

�t

�2�TE

�r2 +
1

r2sin �

�

��
�sin �

��TE

��
�

+
1

r2sin2�

�2�TE

��2 +
�2

c2 �t�n�TE = 0. �3�

ere we define the parameters of the anisotropy ratio:
e=�t /�n (electric-type) and Am=�t /�n (magnetic-type).
quations (2) and (3) convert into the usual wave equa-

ions for isotropic materials (see [12]). Electromagnetic
elds can be expressed through those potentials. Solving
hese equations with the corresponding boundary condi-
ions, one can find normalized scattering amplitudes al
electric) and bl (magnetic)

al =
Rl

�a�

Rl
�a� + iIl

�a�
, bl =

Rl
�b�

Rl
�b� + iIl

�b�
, �4�

here

Rl
�a� = nt�l��q��v1

�ntq� − �t�l�q��v1
� �ntq�, �5�

Il
�a� = nt�l��q��v1

�ntq� − �t�l�q��v1
� �ntq�, �6�

Rl
�b� = nt�l�q��v2

� �ntq� − �t�l��q��v2
�ntq�, �7�
Il
�b� = nt�l�q��v2

� �ntq� − �t�l��q��v2
�ntq�. �8�

ere nt=��t�t is the complex refractive index, and the
unctions �v�x� and �l�x� are given by �v�x�
�	x /2Jv+1/2�x� and �l�x�=�	x /2Nl+1/2�x�, respectively.
he primes indicate differentiation with respect to the en-

ire argument. The value q=k0a presents the so-called
ie size parameter, and a is the particle radius. One can

ee from these formulas that all the information about
article anisotropy is presented by the order of the spheri-
al Bessel functions, i.e., v1=�l�l+1�Ae+1/4−1/2 and v2
�l�l+1�Am+1/4−1/2, which can be derived from the
eneral results in [20] by letting the off-axis parameters
e zero. The radius a of the anisotropic sphere is fixed at
0 �m. In practical detection problems, the so-called ra-
ar backscattering cross section (RBSC) is of great inter-
st. Those scattering efficiencies are the basis for further
umerical analysis.

. NUMERICAL ANALYSIS OF PECULIAR
CATTERING
. Effects of the Anisotropy Ratio

n Fig. 1, we present the dependence of the backscattering
fficiency (normalized by the geometric cross section 	a2)
ersus the size parameter of the particle with a single an-
sotropy ratio (SAR). Curves 1, 2, and 3 reveal the role of
nisotropy in the scattering of normal anisotropic
pheres, where limiting backscatterings are found for suf-
ciently high incident frequency. Interestingly, it is found
hat the backscattering would be significantly enhanced if
he real part of electric SAR were negative. Also, it is
oted that in a case such as curve 4, the oscillation will
xist in a wider band of frequency, resulting in no con-
tant values. Given the physical size of the radius, one
an sweep the incident frequency and judge from the sig-
al strengths on the receiver to differentiate those special

ig. 1. (Color online) Normalized backscattering efficiency ver-
us k0a at the same scale of radial oscillation where only electric
nisotropy ratio is present. �n=�t=1+0.2i and �n=2+0.6i are as-
umed for all curves. Curve 1 (red): �t=2+0.6i �Ae=1�. Curve 2
olive): �t=4+1.2i �Ae=2�. Curve 3 (black): �t=8+2.4i �Ae=4�.
urve 4 (blue): �t=−4+1.2i �Ae=−1.67+1.1i�. Curve 5 (violet): �t
−4−1.2i �Ae=−2�. Curve 1 corresponds to the isotropic case. In
urve 5, one can see light enhancement in anisotropic spheres at
5.44 THz (i.e., the size parameter at 9.7), and the amplitude of
ackscattering is shown with normalization factor of 10−3 (i.e.,
aximal amplitude is above 300).



m
l
p
l
e
m
H
t

a
i
A
J
e
o
e

t
s
l
t
c
o

o
t
c
i
0
v
t
t
3
t
t
e
r
r

B
T
p
F
t
a
t
c
p
i
d
c
s
c
n
t

F
j
i
�
=
C
=
=
c
f
h

F
t

C.-W. Qiu and B. Luk’yanchuk Vol. 25, No. 7 /July 2008 /J. Opt. Soc. Am. A 1625
olecules having negative electric SAR within a molecu-
ar ensemble. The inset in Fig. 1 further illustrates the so-
histicated variation in a more detailed range. Of particu-
ar interest is the case of curve 5, where the light
nhancement is observed. Thus, a small anisotropic object
ay be regarded as if it has a large physical cross section.
owever, such giant enhancement is quite sensitive to

he incident frequency.
In Fig. 2 the effects of the joint anisotropy ratio (JAR)

re examined so as to demonstrate how the backscatter-
ng is affected by the simultaneous presence of Ae and Am.
nalogously, the oscillations in the backscattering for
AR are found to be convergent versus the size param-
ter. Comparing curve 1 with curve 3, one can see that the
pposite signs in the real parts of the transverse param-
ters (�t and �t) would lead to the same limiting value of

ig. 2. (Color online) Normalized backscattering efficiency with
oint anisotropy ratios of Ae and Am. The same radial oscillation
s assumed, �n=2+0.6i, for all curves. Curve 1 (red): �t=4+1.2i
Ae=2�, �r=1+0.2i, �t=1.5+0.3i �Am=1.5�. Curve 2 (olive): �t
3.76+1.2i �Ae=2+0.4i�, �r=1+0.2i, �t=1.5+0.3i �Am=1.5�.
urve 3 (blue): �t=−4+1.2i �Ae=−1.67+1.1i�, �r=1+0.2i, �t
−1.5+0.3i �Am=−1.38+0.58i�. Curve 4 (violet): �t=−4−1.2i �Ae
−2�, �r=1+0.2i, �t=−1.5−0.3i �Am=−1.5�. For the last case, one
an see light enhancement in active materials with negative re-
ractive index at 9.8 THz, i.e., size parameter at 6.16. Several en-
anced backscatterings also exist at other frequencies.

ig. 3. (Color online) Variation of backscattering efficiency versu
ransverse oscillations are kept unchanged, respectively, in (a) a
he backscattering, but the scattering patterns for small
ize parameters are dramatically modified. The enhanced
ight scattering of JAR has a more complex pattern than
hat of SAR. Multiple resonances can be found in JAR
ases with the strongest one located at 9.8 THz, the sec-
nd strongest at 16.07 THz, and some smaller ones.

Figure 3 shows the dependence of the backscattering
n the anisotropy ratio. It is found that the variation of
he backscattering is more sensitive to the transverse os-
illation. In Fig. 3(b), the suppression of the backscatter-
ng of a small anisotropic particle arises only in the range

�n
1, depending on the size parameter. However, the
ariation of the backscattering will be complicated when
he radial oscillation is fixed and transverse oscillation is
uned. In particular, for the red curve (curve 2) in Fig.
(a), there are two critical values of �t corresponding to
he backscattering suppression (one within 0
�n
1 and
he other in the vicinity of �n=6.5). This implies that the
nergy stored in the transverse and radial directions is
eversible if the anisotropy ratio is properly manipulated,
esulting in extraordinary scattering diagrams.

. Nondissipative Damping
he situation where the transverse ��t� and the radial ��n�
ermittivities have opposite signs is of special interest. In
ig. 4, one can see quite an unusual effect when the par-

icle is “plasmonic” ��t
−2� in the transverse direction
nd “dielectric” ��n�1� in the radial direction. Although
he material is nondissipative (Im��	=0 for all cases), one
an see that Qsca�0 (with the maximum near q
1.5). In
rinciple, the damping of an electromagnetic field during
ts propagation in a nondissipative medium is not forbid-
en in physics. For instance, Landau damping exists in a
ollisionless plasma [21]. The formal mathematical rea-
on for Landau damping is related to properties of some
ontour integral, and the physical reason lies in the reso-
ant absorption of the energy of Langmuir waves by elec-
rons whose velocity coincides with the phase velocity of

ric anisotropy. Points in (a) refer to the isotropic case. Radial and
s elect
nd (b).
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he waves. In the case of light scattering, one should re-
ember that the dissipation arises due to Im��n,t	�0 and

or) Im��n,t	�0, as follows from the Maxwell equations
see, e.g., [22]). Thus, with all Im��n,t	=Im��n,t	=0, we
ave no “true dissipation.” In the case of isotropic nondis-
ipative materials, it yields Qabs�0.Formally, it follows
rom the properties of the Bessel and Neumann functions
ith the real order l, which gives the real values to R and
in the form of R / �R+ iI� for those amplitudes in Eq. (4).

n such conventional cases, the identity Qsca�Qext
.e., Qabs�0, automatically holds, because
e�R / �R+ iI�	��R / �R+ iI��2�R2 / �R2+I2�. This property
till exists in anisotropic materials when Ae and Am are
ositive and the orders (i.e., v1 and v2) are also positive
nd real.
However, the orders of the Bessel functions become

maginary numbers if the anisotropy ratio is negative, re-
ulting in exotic behavior of the Bessel functions. These
essel functions are still analytical functions, which con-

ain both real and imaginary parts. Thus, the scattering
mplitudes have the form �R1+ iR2� / �R1+ iR2+ iI1−I2�,
here R1,2 and I1,2 are real valued. For these scattering
mplitudes, the condition of Re�a	��a�2 does not hold, i.e.,
abs�0, which can be seen in Fig. 4.
In the case of Landau damping, each electron emits ex-

ctly the same energy that it absorbs, and thus the aver-
ged value of the energy absorbed by each electron is
qual to zero (no dissipation). However, collisionless
lasma with many electrons moving with different veloci-
ies leads to damping of the amplitude of the propagating
ave due to the noncoordinated absorption–emission pro-

esses of different electrons. It is not the “true dissipa-
ion” shown in Fig. 4, and the energy is reversibly stored
somewhere” in this anisotropic media like electromag-
etic energy stored in an inductance-capacitance network
ircuit. Such effects can be presented, e.g., in the form of

ig. 4. (Color online) Scattering efficiencies for nondissipative a
ive damping arises: (a) nonzero absorption cross section for non
ross section when the nondissipative damping occurs. The radi
−2.1 is near surface-plasmon resonance. It shows that the dam
nisotropic sphere that has a strong radial oscillation and a tran
lasma echo. In the case of light scattering by the aniso-
ropic particle studied, the energy is redistributed within
he electromagnetic modes, which produces the eigen-
odes of the particle. These modes also can absorb and

mit electromagnetic energy.
We have discussed in this paper the mathematical rea-

on for the deviation in scattering and extinction efficien-
ies [when l�l+1�Ae+1/4
0, the order of the Bessel func-
ion �l�l+1�Ae+1/4−1/2 becomes a complex number,
esulting in a nonzero imaginary part in the value of the
essel function]. This means that corresponding oscilla-

ions have phase shifts and the emission/absorption pro-
ess occurs with different time delays for different modes.
lthough each partial oscillation has no dissipation, the
esulting summary oscillation looks like damping in the
cattering because of the noncoordinated absorption/
mission processes of different modes with different
hase shifts.
The problem of light storage in the isotropic particles

as been discussed previously in a number of papers, e.g.,
23]. Particles with radial anisotropy thus suggest a new
dea for this light storage because of the anisotropy. The
nisotropic particle represents an even more special situ-
tion since the oscillation is disturbed by the anisotropy
n a complex way, especially when the radial permittivity
s high and transverse permittivity seems “plasmonic” as
n Fig. 4. Thus, if we compare such an anisotropic case
ith the isotropic case, the idea is to consider the aver-
ged permittivity of the anisotropic particle in which elec-
ron velocities have a Maxwellian distribution function.
ence, the averaged permittivity will possess a “virtual”

maginary part, resulting in the nondissipative absorp-
ion, as reported.

From Fig. 4, we further find that when the transverse
ermittivity is near surface-plasmon resonance and the
adial oscillation is strong, highly oscillative radar back-

pic spheres with strong radial oscillation where the nondissipa-
ative anisotropic particles; (b) highly oscillating backscattering
lation is assumed to be �n=17, and the transverse oscillation �t
rises within a certain frequency range even for a nondissipative
oscillation near the surface-plasmon resonance.
nisotro
dissip

al oscil
ping a
sverse
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cattering �QRBSC� occurs. This implies that the wave dis-
ipates when the stored energy is reversed between ab-
orption and emission. A fine change in the incident
requency (i.e., size parameter) will result in significant
ariation in backscattering, and at certain frequencies
ven zero backscattering can be realized.

Nondissipative anisotropic spheres near surface-
lasmon resonances, with a slight anisotropy, are also in-
estigated [12]. In such circumstances, it is found that the
lasmon resonance can be tuned by changing the veloci-
ies and directions of electron movements along the radial
irection. The red curve (curve 2) in Fig. 5 denotes the iso-
ropic case near surface-plasmon resonance. However,
ven though the electron movement along the radial os-
illation is modified slightly, the scattering efficiencies
ill be changed drastically for small particles. Figure 5
lso shows that electric anisotropy larger than unity (i.e.,
e�1) favors the scattering enhancement particularly for
anoscaled particles. When the size parameter ap-
roaches a sufficiently large value, the role of aniostropy
ecomes negligible.

. SUMMARY
n summary, anomalous scatterings of spherical particles
ith radial anisotropies are studied by an exact solution

o take into account the anisotropy effects. The role of the
nisotropy ratio, both electric and magnetic, is discussed
n the control of scattering. If the anisotropy ratio is con-
gured properly, small objects can be “observable” and

or) “transparent” to external detecting devices. Peculiar
ackscatterings are presented with physical insights.
ince abnormal membranes usually have much higher
dhesive ability than normal ones, the theory proposed
ere would be very meaningful in the biomedical detec-
ion of those abnormal proteins if future biotechnology
akes it easier to arrange the deposits of such implanted

rientational molecules so as to induce a desirable aniso-

ig. 5. (Color online) Scattering efficiencies for nondissipative
ransversal oscillations are near surface-plasmon resonance, and
icularly studied to demonstrate the significance of anisotropy in
he anisotropic particles are near surface-plasmon resonance.
ropy ratio. Moreover, for the practical engineering of ra-
ar detection, the present work also provides insights into
ow to design the coating for aircraft and how to make
se of the SAR and JAR to minimize or enhance radar
ross sections if unintentional anisotropy is introduced by
atural causes or by the shear in the surface plane during
rocessing.
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