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Light scattering by a spherical particle with radial anisotropy is discussed by extending Mie theory to diffrac-
tion by an anisotropic sphere, including both the electric and the magnetic anisotropy ratio. It is shown that
radial anisotropy may lead to great modifications in scattering efficiencies and field enhancement, elucidating
the importance of anisotropies in the control of scattering. The capacity for nondissipating damping is demon-
strated for anisotropic spheres with different signs in radial and transversal permittivities. © 2008 Optical
Society of America
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1. INTRODUCTION

The majority of solid materials in nature are anisotropic;
e.g., polar crystallites made of orientational molecules are
generally both anisotropic and collective. The presence of
anisotropy is due to the lack of symmetry in the local
atomic environment, and the collectivity is caused by the
dense grouping of molecules. Understanding the role of
these effects in light scattering is of particular interest for
many medical and bioengineering applications. Most pre-
vious investigations into the ordering of orientational
molecules and fluids have focused on 1D and 2D periodic
substrates [1]. These problems have also been analyzed
theoretically in terms of Landau theory [2] and Monte
Carlo simulation [3]. Recently, the orientational ordering
of colloidal molecules on 2D periodic substrates has been
investigated both theoretically and numerically [4]. A few
numerical approaches for 3D molecular-dynamics calcula-
tions have been reported [5,6]. However, the macroscopic
anisotropic response of a spherical particle made of crys-
tallites on the Maier—Saupe model has received less at-
tention in spite of its importance in the technologies of the
embedding of artificial particles and biomedical detection.
Radially anisotropic materials have been receiving great
attention recently from both the scientific and the engi-
neering communities. It has been reported that the
spherical or cylindrical cloak can be realized by a material
with radial anisotropy using coordination transformation
[7-9]; these studies were presented primarily in the optics
limit or static cases. Thus, an analytical method is neces-
sary to exactly characterize the wave interaction and to
provide more physical insight into the design process of
cloaking structures. The nonlinear physics of the material
studied in this report has been investigated [10], where
the nonlinear enhancement in second-harmonic and in-
duced third-harmonic generation is found to be much
larger than that of the corresponding isotropic systems.
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Especially in medical applications and bioengineering,
light scattering yields insight into the details of the inter-
action of embedded or injected bioparticles with micro-
wave and/or optical illumination [11]. Scattering helps,
for example, to locate some abnormal proteins. Of special
interest are spherical particles with radial anisotropies. It
is expected that molecules in spherical particles are at
least partially oriented with respect to the direction nor-
mal to the surface. Such orientation of molecules can be
easily included into the theory by considering the particle
as a uniaxial anisotropic medium with the principal optic
axis along with local direction normal to the surface. The
complex dielectric and magnetic tensorial components e,
(u,,) and € (u,) correspond to the field vectors normal to
and tangential to the local surface (local optic axis [12]),
respectively. This problem can be investigated systemati-
cally on the basis of the exact solution of the Maxwell
equations, which demonstrates the extension of Mie
theory to diffraction by an anisotropic sphere, including
both the electric and the magnetic anisotropy ratio.

Some peculiarities in light scattering from isotropic
materials were found recently for the case of weakly dis-
sipating materials near plasmon resonance frequencies.
For these isotropic materials, the classical Rayleigh scat-
tering does not hold and can be replaced by anomalous
light scattering [13]. This anomalous light scattering is
associated with complex patterns of near and far fields, in
contrast to Rayleigh scattering. It also demonstrates an
extraordinary scattering effect [14], which is similar to
quantum scattering by a potential with quasi-discrete lev-
els exhibiting Fano resonances [15]. Another interesting
effect refers to active random isotropic media, which sup-
port optical light enhancement [16]. Recently, scattering
of light by anisotropic materials has been analyzed in
[17-19], but the material is characterized primarily in
rectangular coordinates and treated by a differential

© 2008 Optical Society of America



1624 J. Opt. Soc. Am. A/Vol. 25, No. 7/July 2008

theory. Therefore, the purpose of this paper is the analy-
sis of the radial anisotropy effect upon the plasmonics and
other extraordinary effects on the basis of an exact and
compact solution for light scattering by spherical particles
with uniaxial anisotropy defined in spherical coordinates.

2. FORMULATION

The sphere with uniaxial anisotropy is illuminated by a
plane wave with the electric field polarized along the x
axis. The constitutive tensors of the relative permittivity
and permeability are defined as

e, 0 0 m, 0 0
€= 0 € 0 . [_l, =|0 Mt 0 5 (1)
0 0 ¢ 0 0 u

where ¢, (or u,) and ¢ (or u,) stand for the permittivity
(or permeability) elements corresponding to the electric
(or magnetic)-field vector normal to and tangent to the lo-
cal optic axis, respectively.

In [20], it has been proved that in radial anisotropic
material the TE and TM waves are decoupled if off-axis
elements are zero. Hence, solving the Maxwell equations
using two Debye potentials, one has
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Here we define the parameters of the anisotropy ratio:
A,=¢/¢, (electric-type) and A,,=u,/u, (magnetic-type).
Equations (2) and (3) convert into the usual wave equa-
tions for isotropic materials (see [12]). Electromagnetic
fields can be expressed through those potentials. Solving
these equations with the corresponding boundary condi-
tions, one can find normalized scattering amplitudes q;
(electric) and b; (magnetic)

ml(a) %gb)
G=—o—0 b= (4)
@ ein® T R/ i)
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Here nt=\s"% is the complex refractive index, and the
functions ¢,(x) and x(x) are given by ¢,(x)
= \EMJM,Z(x) and y;(x)= Jmx/2N 1+1/2(x), respectively.
The primes indicate differentiation with respect to the en-
tire argument. The value g=kpa presents the so-called
Mie size parameter, and a is the particle radius. One can
see from these formulas that all the information about
particle anisotropy is presented by the order of the spheri-
cal Bessel functions, i.e., v1=\I(l+1)A,+1/4-1/2 and v,
=Jl(l+1)A,,+1/4-1/2, which can be derived from the
general results in [20] by letting the off-axis parameters
be zero. The radius a of the anisotropic sphere is fixed at
30 um. In practical detection problems, the so-called ra-
dar backscattering cross section (RBSC) is of great inter-
est. Those scattering efficiencies are the basis for further
numerical analysis.

3. NUMERICAL ANALYSIS OF PECULIAR
SCATTERING

A. Effects of the Anisotropy Ratio

In Fig. 1, we present the dependence of the backscattering
efficiency (normalized by the geometric cross section ma2)
versus the size parameter of the particle with a single an-
isotropy ratio (SAR). Curves 1, 2, and 3 reveal the role of
anisotropy in the scattering of normal anisotropic
spheres, where limiting backscatterings are found for suf-
ficiently high incident frequency. Interestingly, it is found
that the backscattering would be significantly enhanced if
the real part of electric SAR were negative. Also, it is
noted that in a case such as curve 4, the oscillation will
exist in a wider band of frequency, resulting in no con-
stant values. Given the physical size of the radius, one
can sweep the incident frequency and judge from the sig-
nal strengths on the receiver to differentiate those special
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Fig. 1. (Color online) Normalized backscattering efficiency ver-
sus kga at the same scale of radial oscillation where only electric
anisotropy ratio is present. u,=u,=1+0.27 and €,=2+0.6 are as-
sumed for all curves. Curve 1 (red): =2+0.6; (A,=1). Curve 2
(olive): ¢=4+1.2i (A,=2). Curve 3 (black): ¢=8+2.4i (A,=4).
Curve 4 (blue): ¢=-4+1.2i (A,=-1.67+1.1i). Curve 5 (violet): ¢,
=-4-1.2i (A,=-2). Curve 1 corresponds to the isotropic case. In
curve 5, one can see light enhancement in anisotropic spheres at
15.44 THz (i.e., the size parameter at 9.7), and the amplitude of
backscattering is shown with normalization factor of 102 (i.e.,
maximal amplitude is above 300).
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Fig. 2. (Color online) Normalized backscattering efficiency with

joint anisotropy ratios of A, and A,,. The same radial oscillation
is assumed, €,=2+0.6i, for all curves. Curve 1 (red): ¢=4+1.2¢
(A,=2), n,=1+0.2{, u,=1.5+0.3i (A,,=1.5). Curve 2 (olive): ¢,
=3.76+1.2i (A,=2+0.4i), u,=1+0.2i, w,=1.5+0.3i (A,=1.5).
Curve 3 (blue): ¢=-4+12i (A,=-1.67+1.10), w,=1+0.2i, pu,
=-1.5+0.3i (A,,=-1.38+0.58i). Curve 4 (violet): =—4-1.2i (A,
=-2), u,=1+0.2i, u,=-1.5-0.3i (A,,=—1.5). For the last case, one
can see light enhancement in active materials with negative re-
fractive index at 9.8 THz, i.e., size parameter at 6.16. Several en-
hanced backscatterings also exist at other frequencies.

molecules having negative electric SAR within a molecu-
lar ensemble. The inset in Fig. 1 further illustrates the so-
phisticated variation in a more detailed range. Of particu-
lar interest is the case of curve 5, where the light
enhancement is observed. Thus, a small anisotropic object
may be regarded as if it has a large physical cross section.
However, such giant enhancement is quite sensitive to
the incident frequency.

In Fig. 2 the effects of the joint anisotropy ratio (JAR)
are examined so as to demonstrate how the backscatter-
ing is affected by the simultaneous presence of A, and A,,.
Analogously, the oscillations in the backscattering for
JAR are found to be convergent versus the size param-
eter. Comparing curve 1 with curve 3, one can see that the
opposite signs in the real parts of the transverse param-
eters (¢ and u;) would lead to the same limiting value of
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the backscattering, but the scattering patterns for small
size parameters are dramatically modified. The enhanced
light scattering of JAR has a more complex pattern than
that of SAR. Multiple resonances can be found in JAR
cases with the strongest one located at 9.8 THz, the sec-
ond strongest at 16.07 THz, and some smaller ones.

Figure 3 shows the dependence of the backscattering
on the anisotropy ratio. It is found that the variation of
the backscattering is more sensitive to the transverse os-
cillation. In Fig. 3(b), the suppression of the backscatter-
ing of a small anisotropic particle arises only in the range
0<e¢,<1, depending on the size parameter. However, the
variation of the backscattering will be complicated when
the radial oscillation is fixed and transverse oscillation is
tuned. In particular, for the red curve (curve 2) in Fig.
3(a), there are two critical values of ¢ corresponding to
the backscattering suppression (one within 0<e,<1 and
the other in the vicinity of €,=6.5). This implies that the
energy stored in the transverse and radial directions is
reversible if the anisotropy ratio is properly manipulated,
resulting in extraordinary scattering diagrams.

B. Nondissipative Damping

The situation where the transverse (¢;,) and the radial (e,)
permittivities have opposite signs is of special interest. In
Fig. 4, one can see quite an unusual effect when the par-
ticle is “plasmonic” (¢;<-2) in the transverse direction
and “dielectric” (e,>1) in the radial direction. Although
the material is nondissipative (Im[€]=0 for all cases), one
can see that @,., # 0 (with the maximum near ¢~1.5). In
principle, the damping of an electromagnetic field during
its propagation in a nondissipative medium is not forbid-
den in physics. For instance, Landau damping exists in a
collisionless plasma [21]. The formal mathematical rea-
son for Landau damping is related to properties of some
contour integral, and the physical reason lies in the reso-
nant absorption of the energy of Langmuir waves by elec-
trons whose velocity coincides with the phase velocity of
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Fig. 3. (Color online) Variation of backscattering efficiency versus electric anisotropy. Points in (a) refer to the isotropic case. Radial and
transverse oscillations are kept unchanged, respectively, in (a) and (b).
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(Color online) Scattering efficiencies for nondissipative anisotropic spheres with strong radial oscillation where the nondissipa-

tive damping arises: (a) nonzero absorption cross section for nondissipative anisotropic particles; (b) highly oscillating backscattering
cross section when the nondissipative damping occurs. The radial oscillation is assumed to be €,=17, and the transverse oscillation ¢,
=-2.1 is near surface-plasmon resonance. It shows that the damping arises within a certain frequency range even for a nondissipative
anisotropic sphere that has a strong radial oscillation and a transverse oscillation near the surface-plasmon resonance.

the waves. In the case of light scattering, one should re-
member that the dissipation arises due to Im[¢, ,]>0 and
(or) Im[u, ,]>0, as follows from the Maxwell equations
(see, e.g., [22]). Thus, with all Im[e, ,J=Im[u,,]=0, we
have no “true dissipation.” In the case of isotropic nondis-
sipative materials, it yields @,,,=0.Formally, it follows
from the properties of the Bessel and Neumann functions
with the real order /, which gives the real values to R and
J in the form of R/ (R +iJ) for those amplitudes in Eq. (4).
In such conventional cases, the identity Qg.,=Qes
ie., Qups=0, automatically holds, because
Re[R/(R+i7)]=|R/(R+iJ)|?=NR2/(:%2+72). This property
still exists in anisotropic materials when A, and A,, are
positive and the orders (i.e., v; and vy) are also positive
and real.

However, the orders of the Bessel functions become
imaginary numbers if the anisotropy ratio is negative, re-
sulting in exotic behavior of the Bessel functions. These
Bessel functions are still analytical functions, which con-
tain both real and imaginary parts. Thus, the scattering
amplitudes have the form (R{+iRqg)/(R;+iRe+iT1—Tsg),
where M 5 and J; 5 are real valued. For these scattering
amplitudes, the condition of Re[a]=|a|? does not hold, i.e.,
Rups # 0, which can be seen in Fig. 4.

In the case of Landau damping, each electron emits ex-
actly the same energy that it absorbs, and thus the aver-
aged value of the energy absorbed by each electron is
equal to zero (no dissipation). However, collisionless
plasma with many electrons moving with different veloci-
ties leads to damping of the amplitude of the propagating
wave due to the noncoordinated absorption—emission pro-
cesses of different electrons. It is not the “true dissipa-
tion” shown in Fig. 4, and the energy is reversibly stored
“somewhere” in this anisotropic media like electromag-
netic energy stored in an inductance-capacitance network
circuit. Such effects can be presented, e.g., in the form of

plasma echo. In the case of light scattering by the aniso-
tropic particle studied, the energy is redistributed within
the electromagnetic modes, which produces the eigen-
modes of the particle. These modes also can absorb and
emit electromagnetic energy.

We have discussed in this paper the mathematical rea-
son for the deviation in scattering and extinction efficien-
cies [when [(I+1)A,+1/4 <0, the order of the Bessel func-
tion \I(I+1)A,+1/4-1/2 becomes a complex number,
resulting in a nonzero imaginary part in the value of the
Bessel function]. This means that corresponding oscilla-
tions have phase shifts and the emission/absorption pro-
cess occurs with different time delays for different modes.
Although each partial oscillation has no dissipation, the
resulting summary oscillation looks like damping in the
scattering because of the noncoordinated absorption/
emission processes of different modes with different
phase shifts.

The problem of light storage in the isotropic particles
has been discussed previously in a number of papers, e.g.,
[23]. Particles with radial anisotropy thus suggest a new
idea for this light storage because of the anisotropy. The
anisotropic particle represents an even more special situ-
ation since the oscillation is disturbed by the anisotropy
in a complex way, especially when the radial permittivity
is high and transverse permittivity seems “plasmonic” as
in Fig. 4. Thus, if we compare such an anisotropic case
with the isotropic case, the idea is to consider the aver-
aged permittivity of the anisotropic particle in which elec-
tron velocities have a Maxwellian distribution function.
Hence, the averaged permittivity will possess a “virtual”
imaginary part, resulting in the nondissipative absorp-
tion, as reported.

From Fig. 4, we further find that when the transverse
permittivity is near surface-plasmon resonance and the
radial oscillation is strong, highly oscillative radar back-
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(Color online) Scattering efficiencies for nondissipative anisotropic spheres near surface-plasmon resonance. Both radial and

transversal oscillations are near surface-plasmon resonance, and three electric anisotropy ratios (i.e., A, <1, A,=1, and A,>1) are par-
ticularly studied to demonstrate the significance of anisotropy in (a) scattering cross section and (b) backscattering cross section when

the anisotropic particles are near surface-plasmon resonance.

scattering (Qgrpsc) occurs. This implies that the wave dis-
sipates when the stored energy is reversed between ab-
sorption and emission. A fine change in the incident
frequency (i.e., size parameter) will result in significant
variation in backscattering, and at certain frequencies
even zero backscattering can be realized.

Nondissipative anisotropic spheres near surface-
plasmon resonances, with a slight anisotropy, are also in-
vestigated [12]. In such circumstances, it is found that the
plasmon resonance can be tuned by changing the veloci-
ties and directions of electron movements along the radial
direction. The red curve (curve 2) in Fig. 5 denotes the iso-
tropic case near surface-plasmon resonance. However,
even though the electron movement along the radial os-
cillation is modified slightly, the scattering efficiencies
will be changed drastically for small particles. Figure 5
also shows that electric anisotropy larger than unity (i.e.,
A,>1) favors the scattering enhancement particularly for
nanoscaled particles. When the size parameter ap-
proaches a sufficiently large value, the role of aniostropy
becomes negligible.

4. SUMMARY

In summary, anomalous scatterings of spherical particles
with radial anisotropies are studied by an exact solution
to take into account the anisotropy effects. The role of the
anisotropy ratio, both electric and magnetic, is discussed
in the control of scattering. If the anisotropy ratio is con-
figured properly, small objects can be “observable” and
(or) “transparent” to external detecting devices. Peculiar
backscatterings are presented with physical insights.
Since abnormal membranes usually have much higher
adhesive ability than normal ones, the theory proposed
here would be very meaningful in the biomedical detec-
tion of those abnormal proteins if future biotechnology
makes it easier to arrange the deposits of such implanted
orientational molecules so as to induce a desirable aniso-

tropy ratio. Moreover, for the practical engineering of ra-
dar detection, the present work also provides insights into
how to design the coating for aircraft and how to make
use of the SAR and JAR to minimize or enhance radar
cross sections if unintentional anisotropy is introduced by
natural causes or by the shear in the surface plane during
processing.
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