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Simulation of full responses of a triaxial induction tool
in a homogeneous biaxial anisotropic formation

Ning Yuan', Xiao Chun Nie', Richard Liu’, and Cheng Wei Qiu?

ABSTRACT

Triaxial induction tools are used to evaluate fractured and low-
resistivity reservoirs composed of thinly laminated sand-shale
sequences. Thinly laminated and fractured reservoirs demon-
strate transversely isotropic or fully anisotropic (biaxial aniso-
tropic) electrical properties. Compared to the number of studies
on transverse isotropy, relatively little work covers biaxial aniso-
tropy because of the mathematical complexity. We have devel-
oped a theoretical analysis for the full response of a triaxial in-
duction tool in a homogeneous biaxial anisotropic formation.
The triaxial tool is composed of three mutually orthogonal trans-
mitters and three mutually orthogonal receivers. The bucking
coils are also oriented at three mutually orthogonal directions to
remove direct coupling. Starting from the space-domain Max-
well’s equations, which the electromagnetic (EM) fields satis-
fied, we obtain the spectral-domain Maxwell’s equations by de-
fining a Fourier transform pair. Solving the resultant spectral-

domain vector equation, we can find the spectral-domain solu-
tion for the electric field. Then, the magnetic fields can be deter-
mined from a homogeneous form of Maxwell’s equations. The
solution for the EM fields in the space domain can be expressed
in terms of inverse Fourier transforms of their spectral-domain
counterparts. We use modified Gauss-Laguerre quadrature and
contour integration methods to evaluate the inverse Fourier
transform efficiently. Our formulations are based on arbitrary rel-
ative dipping and azimuthal and tool angles; thus, we obtain the
full coupling matrix connecting source excitations to magnetic
field response. We have validated our formulas and investigated
the effects of logging responses on factors such as relative dip-
ping, azimuthal and tool angles, and frequency using our code.
We only consider conductivity anisotropy, not anisotropy in di-
electric permittivity and magnetic permeability. However, our
method and formulas are straightforward enough to consider an-
isotropy in dielectric permittivity.

INTRODUCTION

Electrical conductivity/resistivity logs provide valuable informa-
tion about the porosity and fluid content of rock near a borehole.
Conventional electric logs determine apparent scalar (or isotropic)
conductivity. The conductivity is actually a symmetric and positive
definite second-rank tensor (Kunz and Moran, 1958). In the princi-
pal axis coordinate system, the conductivity tensor diagonalizes as

g 0 0
=0 o, 0| (1)
0 0 o,

For an isotropic medium, the conductivity is a scalar, i.e., o,
= 0, = 0, = a; for a transversely isotropic (TI) medium, two of the

three principal conductivities are equal. On the scale of logging mea-
surements, thin-bedded sand-shale sequences frequently exhibit
transverse isotropy, i.e., o, = o,. If alayered medium has a fracture
pattern that cuts across bedding, the conductivity is fully anisotrop-
ic. Full anisotropy is referred to as biaxial anisotropy in crystals. In
this case, all three principal conductivities are different, representing
the differences of pore connectivity and conductivity in vertical and
lateral directions.

Traditional induction tools have only coaxial transmitter-receiv-
er coils and measure one magnetic-field component at different re-
ceiver locations. To characterize anisotropic conductivity, conven-
tional induction-logging methods must be extended to provide
additional information. Multicomponent induction-logging tools
(Kriegshéuser et al., 2000; Anderson et al., 2002; Rosthal et al.,
2003; Zhang et al., 2004; Rabinovich et al., 2006; Wang et al., 2006;
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Rabinovich et al., 2007; Davydycheva et al., 2009) are designed to
obtain formation anisotropy. The rich information provided by mul-
ticomponent induction measurements determines complex forma-
tions such as biaxial anisotropic media.

In this paper, we consider a triaxial induction tool that includes
three orthogonal transmitters and three orthogonal receivers, as
shown in Figure 1 (Anderson et al., 2002). The study of the impact of
anisotropy on the tool’s response is important for the correct inter-
pretation of measurements. Among various studies on electrical an-
isotropy, most studies assumed a TI or uniaxial medium for conve-
nience (Chetaev, 1966; Althausen, 1969; Moran and Gianzero,
1979, 1982; Chemalietal., 1987; Liiling et al., 1994; Andersonetal.,
1995; Wang et al., 2003; Zhang et al., 2004; Wang et al., 2006; Lee
and Teixeira, 2007; Zhong et al., 2008). Although transverse isotro-
py is a reasonable approximation based on stratigraphic geometry,
the assumption is made primarily for mathematical convenience
rather than for its low frequency of occurrence in nature because
Maxwell’s equations can be solved analytically, leading to relatively
simple formulas for a TI medium.

The likelihood of encountering biaxial anisotropy in sedimentary
rocks has been reported by Sawyer et al. (1971), Zafran (1981), and
Zhao et al. (1994), and interest in studying tool response in a biaxial
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Figure 1. (a) Basic structure of a triaxial induction tool and (b) its
equivalent dipole model.

anisotropic medium is increasing. However, because of mathemati-
cal complexity, there are few theoretical studies on biaxial anisotro-
py (Nekut, 1994; Gianzero et al., 2002). Nekut (1994), in the first
theoretical work on biaxial anisotropy, considers the response of a
hypothetical time-domain instrument with a zero-spacing transmit-
ter and receiver in a biaxial medium. Gianzero et al. (2002) study the
response of a triaxial induction instrument in a biaxial anisotropic
medium. Different from Nekut’s work, Gianzero et al. (2002) con-
sider nonzero spacing between the three orthogonal transmitters and
three orthogonal receivers. Also, their analysis is in the frequency
domain instead of the time domain. The work of Gianzero et al. lays
the foundation to the response of triaxial induction logging tools in a
biaxial anisotropic formation. However, they only consider a special
case where the instrument is oriented parallel to the principal axes of
a biaxial medium. In practice, the instrument can be oriented arbi-
trarily with respect to the principal axes of the biaxial medium, com-
plicating the forward-modeling problem.

Here, we study the response of a triaxial induction sonde in a more
general case where the coil axes of the instrument are arbitrarily ro-
tated and/or tilted with respect to the conductivity tensor principal
axes of the biaxial anisotropic medium. We further extend the meth-
od of Gianzero et al. (2002) to derive the formulas for computing the
magnetic-field responses. The full coupling matrix connecting the
source excitations to the magnetic-field response is presented, and
the critical numerical methods are discussed. Numerical examples
are presented to validate formulations and numerical evaluation.
The sensitivity of tool responses to factors such as dipping, azimuth-
al and tool angles, and frequency are also investigated.

FORMULATION

In this section, we will derive the magnetic-field response of a tri-
axial tool in a biaxial anisotropic medium and discuss the evaluation
of the inverse Fourier transform.

Spectral-domain solution to Maxwell’s equations in a
homogeneous biaxial anisotropic medium

A homogeneous, biaxial, unbounded medium can be character-
ized by the tensor conductivity defined in equation 1 (expressed in
the principal axis system). Assuming the harmonic time dependence
to be e ~'* (suppressed throughout our paper), Maxwell’s equations
for the electric and magnetic fields are

VXH(r) = (o — iwe)E(r) + J(r), (2a)
VXE(r) =iouH(r) + iouyM,(r), (2b)

where u, is the magnetic permeability of the air, r = (x,y,z) is the
position vector, € is the dielectric constant tensor, M(r) is the mag-
netic-source flux density, and J,(r) is the electric source current den-
sity.

For logging devices operating at relatively low frequencies and
formations with conductivities greater than 10~* S/m, we can as-
sume that contributions from displacement current determined by
iwe can be ignored in comparison with . For the induction logging
problems considered in this paper, we assume that J,(r) = 0, which
means only magnetic dipoles are used to represent induction coils.
Therefore, Maxwell’s equations are reduced to
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V XH(r) = ¢E(r), (3a)
V XE(r) = iopH(r) + iougM,(r). (3b)

The solution for equation 3 in the space domain can be expressed in
terms of triple Fourier transforms of their spectral-domain counter-
parts E(k) and H(K):

_ iKryz 13
E(r),H(r) = e f dKe®TE(K),H(K), (4)
k
where K = (£,7,5) and where
E(K),H(K) = f dre ”™TE(r),H(r) (5)

r

and

deeiK~r: f J f dgdndgei(fx+ 7]y+§z)_ (6)

k

Thus, for mathematical convenience, we first solve equation 3 in the
spectral domain and then use equation 4 to obtain the space-domain
solutions from their spectral-domain counterparts.

For the spectral-domain solutions E(K) and H(K), we can first
eliminate the magnetic fields using electric fields in equation 3a and
solve for E(K) from equation 3b in the presence of the source M(r).
Then, because the source singularity has been totally accounted for
in this solution, the magnetic fields can be determined from a homo-
geneous form of Maxwell’s equations.

Substituting equation 3a and 3b results in the following vector
wave equation:

VV-E(r) — V’E(r) — K’E(r) = iouV X M,(r), (7)

where k? = iw 0. Applying the triple Fourier transform defined in
equation 6 and equation 7, we obtain

Q(K)-E(K) = — iopV X M(K), (8)
where the coefficient matrix €2 is given by
K= (n*+ &) £ &s
Q= & k= (& + %) s
s ns k2= (&% + 79

)

Then, the solutions for the space-domain fields are

E(r) = — -2

(127:;3 f dKe®TQ 1 (K)V X M,(K). (10)

K

The inverse matrix ' can be computed in terms of its adjoint and
determinant as

A
CdetQ

-1

(11)

Let w;;(i = 1,2,3; j = 1,2,3) denote element (i,j) in the inverse ma-
trix. The elements are found to be

[k; — (&% + DK = (& + 7] - 7°S

@ det
(12a)
_ k2_ 2+ 2+ 2
W= Wy = £alk, d(eth u g)], (12b)
_ k2_ 2+ 2+ 2
w;3= w3 = £k, (iftﬂ TS )], (12¢)
. [k — (9 + K — (62 + pD)] — £26°
2 det Q ’
(12d)
_ k)ZC_( 2+ 2+ 2)
W3 = W3 = nst degtﬂ ) ], (12e)
. [k — (7* + Ak — (£ + D] — €29
33 det Q ’
(12f)

The determinant of the coefficient matrix can be written in the fol-
lowing factored form:

det @ = k2(s* — 5)(s* — 52), (13)

where s, and s, are the axial wavenumbers of the ordinary and ex-
traordinary modes of propagation. The two distinct modes of propa-
gation can be found to be (Appendix A)

93’6 —a=+\b, (14)
where
KU+ E) - EU+ k) — nk k)
a= 3 (15)
2k;
and
24 02 — ID(ERE + 0 — K2
b=a2—(§ n° — k(&K + 77k, &) 1)

K

The positive and negative square roots correspond to s, and s,, re-
spectively. Our derivation (equations 7-16) follows that of Gianzero
et al. (2002) but modifies all typographical errors. Detailed deriva-
tion of @ and b can be found in Appendix A.

Once the space-domain electric field is obtained from equation
10, the corresponding magnetic field can be determined from the
source-free Maxwell equations.

Full magnetic-field response of triaxial induction sonde
in biaxial anisotropic medium

In this section, we derive the full magnetic-field response of a tri-
axial induction sonde in a biaxial anisotropic medium. The basic
structure of a triaxial tool is shown in Figure 1a, consisting of one
group of transmitter coils, one group of bucking coils, and one group
of receiver coils. All transmitter, bucking, and receiver coils are ori-
ented in three mutually orthogonal directions. In the analysis, the
coils are assumed to be sufficiently small and replaced by point mag-
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netic dipoles in the modeling. Thus, the magnetic-source excitation
of the triaxial tool can be expressed as M = (M,,M,,M,)5(r), as
shown in Figure 1b.

For each component of the transmitter moments M,, M, and M_,
there generally are three components of the induced field at each
point in the medium. Thus, there are nine field components at each
receiver location. These field components can be expressed by a ma-
trix representation of a dyadic Has

Hy H, H,
H=|H, H, H,| (17)
H

where the first subscript corresponds to the transmitter index and the
second corresponds to the receiver index. Therefore, H;; denotes the
magnetic field received by the j-directed receiver coil excited by the
i-directed transmitter coil.

Next, we derive the expressions for the nine magnetic-field com-
ponents in a homogeneous biaxial medium.

Magnetic-field components generated by a unit X-directed
magnetic dipole M = (1,0,0)”

For an x-directed magnetic dipole M = (1,0,0)” located at r’
= (x',y',z'), equation 8 can be rewritten as

l

w(K) 0
OK):| By (K) | = wpoe™ &7+
«(K) 7
(18)
Solving equation 18, we can get
oK) SWip; — NWi3
Exy(K) = w#oe_i(gxl Fay' s Sy — NWo3
(K) SW3p — W33
(19)

The corresponding components of the magnetic field can be deter-
mined from the source-free Maxwell equations:

~ 1 ~ ~

H, = ——(9E, - sE,), (20a)
WMo ’

~ 1 ~ ~

H,=—sE, - ¢E.), (20b)
@ g

~ 1 ~ ~

H, = —(¢E,— nE,). (20c)
@ [

Direct substitution of equation 19 into equation 20 yields

(
(K) — e—i(fx'+7]y'+s‘z’)
(

7(sw3; — nw33) — s(swy — Nwss)
s(swi; — no3) — §(sw3 — nwss)
§(swy — nwy) — n(sw; — nw3)
(21)
Then, the magnetic-field components in the space domain can be ob-

tained from their spectral-domain counterparts in equation 21 by ap-
plying inverse Fourier transforms defined in equation 6:

Lo
H,(r) = (ZW)3f_wafwd§d17d9

. el‘&()é*x')eirl(y*y')eic(zfz’)(zﬁgw23 _ 772(1)33

- S‘2(‘)22) s (22)

1 o0 oo o0 ) , ) ,
H,(r) = (277)3f f f dédndse " ein(y —y')

2 s(swy, — nops) — E(swz — i),
(23)

1 o] ee] oo ) ,

+e M0 E (5w — ens) — p(swy
— no3)]. (24)

As can be seen from equations 2224, triple infinite integrals of x,
v, and z are involved in the solution. In the numerical evaluation, a
cylindrical transformation in the wavenumber space is invoked. Let
i be the rotation angle in the § — #-plane, and we have

E=kcos i, (25a)
7 =ksin i, (25b)

o0 © [ 2 0 o)
f J f dédnds = f dy J kdk f ds. (25¢)
—od —od —x 0 0 —®

Thus, equations 22—24 can be rewritten as

2 % ®©
f Ay f kdk f ds
0 0 -

. N N i
,ezkcos W(x x)ezk sin ¢(y y)etc(z z')

1
Hxx(r) = (2 71_)3

*(2ks sin Yws, — k? sin® Yws; — s2wyy),
(26)
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1 2 ] o0
H,(r) = Wfo di//fo kdkj_wdg

. SN Ty e(m ot
.ezk cos (x—x )ezk sin ¢(y—y )ezs(~ Z')
“(Swy, — ks sin pwz—

+ k2 cos i sin Yws;), (27)

_ 1 o - 2 N
sz(r)_mfo dlﬂJO dkk f_ocdg

,eik cos t/l(xfx')eik sin w(yfy’)ei;(zfz’) A (k sin2 l/fw13

ks cos Yws,

— k sin ¢ cos wyz — ssin Yw, + 5COS Ywy,).
(28)

Magnetic-field components generated by a unit y-directed
magnetic dipole M = (0,1,0)"

For a y-directed magnetic dipole M = (0,1,0)" at r’ = (x',y",z'),
following a similar derivation procedure, we can obtain the solution
for the space-domain magnetic field components as follows:

1 o0 o] o0
H,,(r) = —(277)3ij_wf_wd§d7]d§

. eif(x—x’)ein(y—>")eis(z—z’)[77(§w33 — sws))

— s(éwy; — swy)], (29)

1 w o
Hyy(r) = —(27)3f_mfwfxd§d77ds‘

.ei‘f(x*x’)eiﬂ(y*y')eis'(Z*z')

Ew3), (30)

H,(r) = (lepf_mfxfwdfdndg

.et’é(}fﬂf’)el‘rl(.v*_v’)eic(zfz’)[g(gw23 — 5wy
— (w3 — swyy)]. (31)

Equations 32-34 are actually used in the numerical evaluation by
transforming the Cartesian coordinates into cylindrical coordinates:

] 2 o 3 ) ,
Hyu0) = 503 fo dy fo dkk f | dseften v

s N AN |
,ezk sin y(y—y )elc(z z )'(9‘20)21

‘(2séw); — STy —

- kg Sin l//(l):;]

— ks cos hwy; + K cos i sin hws3), (32)

1 2
Hy(r) = ) f di f dkk f dgek s P =x")

. pik sin a,b(yfy')ei;(Z*z')(Zkg cos s

- kz 0052 1//w33 - 920)11), (33)

1 2 o o ) ,
H. - d dkk2 d ik cos (x—x")
0= g, 48], ]

P N )
< etksin hly=y") yis(z—z )~(g sin oy — 5 cos Yy,

— k cos i sin w5 + k cos® Pawys). (34)

Note that H,, has the same expression as H,,. This is because of the
reciprocity of the medium. We see in the following equations that H,,
and H, as well as H,, and H,, have the same expression because of
reciprocity.

Magnetic-field components generated by a unit z-directed
magnetic dipole M = (0,0,1)”

Similarly, for a z-directed magnetic dipole M = (0,0,1)” at r’
= (x’,y’,z'), the magnetic fields in the space domain are

oo || seanis

<00 gy (s — Ewsy)

H,(r) =

— s(nwy — fwzz)], (35)
H,(r) = (2;)3f f_ f_ dédndse€=x)ein ="
'€i§(z_z/)[9(77w11 —Ewp) — E(nws — §w32)],
(36)

Ho(r) = —— f f fwddd
zzr_(zﬂ_)3 ). _mg nas

.et’f()f—x')ei??(y—y’)eis(z—z/)[g(nw21 — Ewyy)
— (o — Ewp)]. (37)

Transforming the integral variables £ and 7 into k and ¢/, we have

1 2 o o0 ' /
H,(r) = ng dlﬁJO dksz dge'k cos blx—x")

,eik sin w(yf)*’)eis'(:’,*z’) . (k Sil’l2 l/f(x)g,]
— ksin ¢ cos w3, — s sin Pwy; + 508 Ywyy),
(38)

HZ),(I’) Wf de dksz dgek cos ¥lx—x "

o ]
-k s VO35 (g sin ey — s cos Yoy,

— k cos i sin ywy; + k cos? Ywsy), (39)

1 2
Hir) =53 f dy f s f dse't s V=)
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sk sin 0 =y)eise =2 (2 sin o cos Yoy,

— cos? fw,, — sin® Ywy,). (40)

In fact, for the case where the instrument’s transducer axes are
aligned parallel to the principal axes of the conductivity tensor (i.e.,
all dipping angles, azimuth angles, and tool angles are zero, & = 8
= vy =0°), all cross-coupling terms are zero. However, in general,
the axes of the instrument are not parallel to the principal axes of the
conductivity tensor, and the nondiagonal terms in the coupling ma-
trix are not zero. Therefore, it is necessary to find out the full cou-
pling matrix in a more general case.

Full magnetic-field response with arbitrary tool axis

In practice, the orientation of the transmitter and receiver coils are
arbitrary with respect to the principal axes of the formation’s con-
ductivity tensor. In this section, we consider the magnetic-field re-
sponse of a triaxial induction tool in a homogeneous biaxial aniso-
tropic medium with an arbitrarily oriented tool axis.

Figure 2 (Zhong et al., 2008) shows the formation coordinate sys-
tem described by (x,y,z) and a sonde coordinate system described by
(x",y",z'). In Figure 2, a, B, and y denote the dipping, azimuthal,
and orientation angles, respectively. Angle « is the relative deviation
of the instrument axis z’ with respect to the z-axis of the conductivity
tensor. Angle /3 is the angle between the projection of the instrument
axis z’ on the surface of the x-y-plane and the x-axis of the formation
coordinate. Angle vy represents the rotation of the tool around the
7/-axis.

The formation bedding (unprimed) frame can be related to the
sonde (primed) frame by a rotation matrix R, given by

Ry Ry Rys

R=1Ry Ry Ry

Ry Ry Ra
cosacos Bcosy —sinfsiny —cosacosfsiny —sinfcosy sinacosf

= | cosasinBcosy+cosBsiny —cosasinfsiny+cosBcosy sinasinf

—sin a cos y sin a sin y cos a
(41)
z z!
A y X
w» /.
N\ ) ' ,
Rarizidd
/ .
Ry B
Rz .
0 .
\SAFW '
e .
7 '
A —>y
T, S~ .
Tz Y N !
7 Ta T
R4
/
X ’/'
/

Figure 2. A schematic of the formation coordinate system (x,y,z) and
sonde coordinate system (x',y’,z').

To find the magnetic-field response in the sonde system, the magnet-
ic moments of the transmitter coils in the sonde coordinates are first
transformed to effective magnetic moments in the formation coordi-
nates by the rotation matrix. Then, the magnetic fields in the forma-
tion coordinates excited by the magnetic moments M can be ob-
tained readily by

~

H = HM, (42)

where H is the dyadic corresponding to unit dipole source given by
equation 17. Once the magnetic fields at the location of the receiver
coils in the formation system are determined, the magnetic fields re-
ceived at the receiver coils in the sonde system can be obtained by
applying the inverse of the rotation matrix (the rotation matrix is or-
thogonal; therefore, its inverse is equal to its transpose). Conse-
quently, the coupling between the magnetic-field components and
the magnetic dipoles in the sonde system are given by (Zhdanov et
al.,2001)

—

H =R7HR. (43)

Computing the triple integrals

In the previous section, we obtained the expressions for all nine
components of the magnetic fields. As can be seen from equations
26-28,32-34, and 38—40, to compute the field quantities, we have to
calculate integrals over &, ¢, and s in the numerical evaluation. The
integral over ¢ is a definite integral, so any numerical integral meth-
od is applicable. For the semi-infinite integral over k, we use a modi-
fied Gauss-Laguerre quadrature (Burkardt, 2008). The order of
Gauss-Laguerre quadrature is determined mainly by the dipping an-
gle. Figure 3 shows the relative error of the magnetic field (imagi-
nary part) as a function of the Gauss-Laguerre quadrature order for
different dipping angles. As the dipping angle increases, a larger or-
der of Gauss-Laguerre quadrature is required to achieve sufficient
accuracy. When the dipping angle is 0°, 60°, 85°, and 89°, Gauss-La-
guerre quadrature needs 16, 16, 48, and 90 points to guarantee the
relative error smaller than 0.4%.

For the infinite integral of s, the integrands become highly oscilla-
tory as s increases, so special integration methods must be consid-
ered. Here, the integration over s is performed using contour integra-
tion.

From equation 13, we can see that the integrands in equations
26-28, 32-34, and 38—40 have four poles on the axial wavenumber
plane: *+s, and *s,. The four poles correspond to the two eigen-
modes for forward and backward propagation, describing the two
polarizations of the electromagnetic wave in the anisotropic medi-
um. Assume s, (s.) represents the poles between s, (s,) and
—s,(—s.) whose imaginary part is greater than zero. For
7z —z' > 0, one obtains contributions only from two poles at s, and
s.; for z — z' < 0, the contributions are from two poles at —s, and
-5,

Using the contour integration (Zhang and Qiu, 2001) for s, the re-
sult of the integration over s in equation 26 is
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Figure 3. Relative errors as a function of Gauss-Laguerre quadrature
order for different dipping angles: (a) @ =0°, (b) @ = 60°, (¢) «
= 85°.

0
f dse’ = (2ks sin gy — K2 sin® Prog; — W)
—o0

ic(z—z" . .
=) ks sin pawly — K2 sin® Yl — SPwhy]

=2ri-
K(s+s)(s+s)(s—s))

9295
- ) .
N €57 2k sin o}, — K sin® Yol — ol >0
. z2—2'>0,
5:5'5

s+ s)(s—s)(s+5s)

- (44)
f dse’sE=) (ks sin sy — k2 sin® rwy; — w20
—©
- &) kg sin gy, — K sin® ol — Swd,]
=2
k?(s— s)s+s)s—s)) =
€56 [2ks sin o), — K2 sin? Yol — 2w}
N [ Yo, Yo 2] L L—z<o,
k(s +s))(s=s))(s = s.)
(45)

where w},, w};, and w), are the numerators of ws,, ws;, and wy,, re-
spectively.
Then equation 26 can be rewritten as

2 £
Ho(r) = — f dy f kdk
(2m)? o o

¢S [2kssin Py, — k2 sin® oy — Sl

E(s+s)(s+s)(s—s) s=s7

io(z—7' . .
&) [2ks sin o, — K2 sin® Yrwl; — o)

z—2'>0,
K(s+s)(s—s)(s+5s.) s=5"
S (46)
i
H)=—— | ay f kdk
(2m)? o 0
&5 [2ks sin Yk, — K sin® oty — o))
K(s—s)(s+s)(s—s.) = — o>
&5 [2ks sin Ywl, — K2 sin® oy — o)
N [ Vw3, Yo 3] L i—z<o.
K(s+s.)(s=s,)(s—s,) e
(47)

The integration over s in equations 27, 28, 32-34, and 38—40 can be
performed by following the same procedure. The integrands are not
separable functions of k, ¢, and s; therefore, the integrals over &, i,
and s cannot be performed independently.

NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical examples calculated using
the Fortran code based on the present theory.

Example 1

First, we compare the apparent resistivity obtained from the
present code with the available data given by Gianzero et al. (2002).
For consistency with the reference, the TRI2C40 triaxial tool (dis-
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tance between transmitters and receivers is 40 inches; no bucking
coils) is used. The operating frequency is assumed to be 20 KHz.

The voltage responses at 20 KHz for one coaxial (2C40..) and
two mutually perpendicular transverse, coplanar (2C40,,,2C40,,)
arrays were converted to units of apparent conductivity. As we know,
the quadrature component of the magnetic field (R-signal) is gener-
ated by currents in the formation, and the in-phase component of the
field (X-signal) is not easy to observe because of the large primary
field. So the signal in the air is subtracted from the signal in the biaxi-
al formation before being converted to apparent resistivity. The for-
mula presented by Wang et al. (2006) is used to calculate the appar-
ent resistivity.

In Tables 1-3, a small range of resistivity tensor principal values is
chosen and the corresponding apparent resistivity from the
TRI2C40 triaxial tool is presented. The first three columns — p,, p,,
and p. — in each table represent the principal components of the re-
sistivity tensor of the biaxial formation. In Tables 1 and 2, columns
4-6 present the R-signal apparent resistivity pg, X-signal apparent
resistivity py, and percentage difference between py and p, obtained
from our method. The percentage difference %diff p, is computed
using %diff p. = (pg — p.)/ p. (Gianzero et al., 2002). In columns
7-9, the results in Gianzero et al. (2002) are presented for compari-
son. The percentage difference between py and p, should be positive
because of its definition; therefore, the minus sign in Gianzero’s pa-
peris a typo thatis corrected here.

In Table 3 for 2C40.,, there is an additional column (column 4)
that gives the geometric mean of the horizontal resistivities p,
= \ﬁ Columns 5-7 show pg, py, and the percentage difference
between px and p, [%diff p, = (px — p,)/p,] obtained from our
method. Columns 8-10 give the results in Gianzero et al. (2002).

Comparison of p, and py in Tables 1 and 2 implies that the H,, and
H,, coupling are primarily sensitive to p.. This is mostly evident in
the highly resistive media where skin effect has minimum impact.
Comparison of p, with p, in Table 3 indicates that the H, coupling is
primarily sensitive to the geometric mean of the horizontal resistivi-
ties. It suggests that a biaxial medium characterized by p, and p, is
approximately equivalent to a uniaxial medium characterized by a
single p, = p,, confirming Worthington’s (1981) conjecture. Fur-

thermore, the R-signal apparent resistivity becomes a better approxi-
mation of transverse resistivity as resistivity increases.

From these tables, we can see that for formations with low resis-
tivities, the apparent resistivities obtained from our method are very
close to those obtained by Gianzero et al. (2002); for formations with
high resistivity, the apparent resistivities from our method are closer
to the expected one. The discrepancies between the methods may be
caused by the evaluation of the inverse Fourier transforms.

Gianzero et al. (2002) only consider the case where the instrument
axes are parallel to the principal axes of the conductivity tensor;
there are no available data for comparison of mutual coupling re-
sponses.

Example 2

To further validate the present method and quantify the numerical
errors of the program, we consider isotropic and TI cases where ex-
act solutions are available.

First, we consider a homogeneous isotropic medium with a con-
ductivity of 500 mS/m. The relative dipping angle is 45° and the fre-
quency is 20 KHz. We change the spacing between the transmitter
and receiver coils from 10 inches to 60 inches. Figure 4a shows the
axial component H_, obtained from the present code and the exact so-
lution. Although totally different methods are used, the two results
are almost the same, validating our method.

Then, we consider a homogeneous TI medium with o, = o,
=500 mS/m and o, = 125 mS/m. The relative dipping angle is
still 45° and the frequency is 20 KHz. Figure 4b shows the axial
component H_, obtained from the present code and the exact solution
given by Moran and Gianzero (1979). Again, the results obtained
from the two solutions are almost the same. The discrepancy begins
from the sixth digit after the decimal point.

Example 3

After validating the derived formulation and the code, we study
the sensitivity of a real practical three-coil tool that is similar to the
3D ExplorerSM tool jointly developed by Baker Atlas and Shell
(Kriegshiuser et al., 2000; Rabinovich et al., 2006). The tool com-

Table 1. Response of a 2C40,, sonde in a biaxial anisotropic formation.

Results from present method

Results in Gianzero et al. (2002)

Px Py p: Pr Px Jodiff p, Pr Px Jodiff p,

2 2 14.89 22.17 86.1 14.89 23.34 86.1

2 4 10.51 39.24 314 10.51 39.68 314

4 4 10.47 39.68 30.9 10.47 40.14 30.9

20 20 80 95.18 590.33 19.0 93.97 583.84 17.5
20 40 80 87.40 1091.56 9.25 86.6 1108.7 8.25
40 40 80 87.32 1105.43 9.15 86.5 11232 8.13
200 200 800 820.85 14,092 261 839.54 17,433 4.94
200 400 800 806.80 29,377 0.85 819.77 33,754 247
400 400 800 806.40 29,873 0.8 819.49 34,209 2.44
2000 2000 8000 8003.41 3,954,041 0.043 8118.4 534,262 1.48
2000 4000 8000 8000.83 1,240,184 0.0104 8059.4 1,040,553 0.74
4000 4000 8000 8000.74 1,221,581 0.00925 8058.5 1,053,855 0.73
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prises one transmitter and two receivers, respectively, at 1 and 1.5 m
from the transmitter. The tool response o, (apparent conductivity) is
defined as

XX Xy XZ
(Ta a a a-ll

o,=|o) oF orF|, (48)

X 2y Z
a a a o a

o

where o/ is the apparent conductivity of the jth receiver when the ith
transmitter is excited. The tool response o, is a function of the rela-
tive dip angle &, azimuth angle 3, and conductivity at each direction
0., 0y, and 0. The sensitivity of &, to the dip angle, azimuth angle,
and conductivities in each direction are the derivatives of the re-
sponse with respect to

Jo, 00,
—(mS/m/°), ——(mS/m/°),
da B

E109
o, J0, a0,
s , and
do, do, Jdo,
Consider a homogeneous biaxial formation with o,

=500 mS/m, o, =250 mS/m, and o, = 125 mS/m. The sensitiv-
ity of the triaxial tool to «, 8, 0, 0, and o, is shown in Figures 5-9.
In each figure, the horizontal axis is the relative dipping angle and
the vertical axis is the azimuth angle. The color represents the sensi-
tivity. Figure 5 shows sensitivity functions for all nine components.
The cross pairs xy/yx, xz/zx, and yz/zy have the same sensitivity
function in a homogeneous formation. Therefore, in Figures 6-9, we
only show six components — xx, xy, xz, yy, vz, and zz — for length
limitation.

From these figures, we can observe two things. First, apparent
conductivity is more sensitive to the dipping and azimuth angle than
to formation conductivities. Second, the sensitivity of the cross-cou-

Table 2. Response of a 2C40,, sonde in a biaxial anisotropic formation.

Results from present method

Results in Gianzero et al. (2002)

Px Py p: Pr px Todiff p, Pr px Todiff p,

2 2 8 14.889 22.171 86.1 14.889 22.343 86.1

2 4 8 14.388 23.004 79.9 14.378 23.185 79.7

4 8 10.471 39.683 30.9 10.470 40.144 30.9

20 20 80 95.183 590.57 18.9 93.971 583.84 17.5

20 40 80 94.579 616.93 18.2 93.290 608.32 16.6
40 40 80 87.319 1106.3 9.15 86.502 11232 8.13
200 200 800 820.85 14,230 2.61 839.54 17,433 4.94
200 400 800 818.30 14,842 2.29 837.81 18,184 473
400 400 800 806.40 30,498 0.8 819.49 34,209 2.44
2000 2000 8000 8003.4 1,064,692 0.043 8118.4 534,262 1.48
2000 4000 8000 8002.7 979,117 0.034 8113.3 556,384 1.42
4000 4000 8000 8000.7 664,477 0.00875 8058.5 1,053,855 0.73

Table 3. Response of a 2C40,, sonde in a biaxial anisotropic formation.

Results from present method

Results in Gianzero et al. (2002)

—_—

[ Py p: Py =\P:py Pr %diff p, Pr Px %diff p,
2 2 8 2.00 2.307 17.347 154 2.308 17.346 154
2 4 8 2.83 3.200 27.835 131 3.200 27730 132
4 8 4.00 4422 47138 10.6 4.419 46859 105
20 20 80 20.00 20.836 509.26 418 20.888 493.15 4.44
20 40 80 28.28 29.33 862.26 3.71 29.37 798.23 3.84
40 40 80 40.00 41.272 1571.55 3.18 41.241 1375.20 3.10
200 200 800 200.00 203.30 11,540.16 1.65 20273 15,087.83 1.36
200 400 800 282.84 286.40 17,539.70 126 286.19 2451356 118
400 400 800 400.00 403.10 28,849.37 0.775 403.84 42,482.95 0.961
2000 2000 8000 200000 2000.89 817,171.2 0.045 2008.61 471,693.0 0.430
2000 4000 8000 282843 2829.19  3561,097.7 0.027 2839.05 759,772.4 0.376
4000 4000 8000 400000 400045 5,089,149 00113 401226 1,291,113 0.306
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plings xz/zx and yz/zy are comparable to that of the diagonal cou-
pling while the cross-couplings xy and yx are less sensitive.

Example 4

Finally, we investigate the effects of frequencies on the responses
of the same three-coil tool in example 3. For clarity, we use resistivi-
ty instead of conductivity in this example. We consider two cases:
(1) resistive formation and (2) conductive formation.

For the resistive case, we assume the resistivities of the formation
are p, = 200 ohm-m, p, = 400 ohm-m, and p, = 800 ohm-m. Fig-
ure 10 shows the apparent resistivity as frequency increases from
20 to 220 KHz when a=p8=7y=0° At a low frequency
(20 KHz), the transverse components p** and p}* are directly propor-
tional to p, and can reproduce p.. Further, p}* and p)” exhibit much
stronger skin effect than the conventional coaxial component p=. To
compensate for this effect, measurements at lower frequencies are
preferred. For higher frequencies, data at multiple frequencies must
be acquired and a multifrequency skin-effect correction technique

a) T T T T T T T T T T T
0E E
2 —0—Real (H,), present code
L - O--Ilmag (H ), present code -
i —0—Real (H)), exact solution
1k \ - O--Imag (H,,), exact solution
= | - 5
3 I \D i
< O T~ 3
: \D ]
[ oo ]
001 | T~ J
E ~O- < _ B
r = =0 - _ ]
L = ~0 - - _ 4
L --o ]
1 L 1 L 1 L 1 L 1 L 1
10 20 30 40 50 60
Spacing (inches)
b) T T T T T T T T T T T T T
10 E =
F —0O—Real (H,), present code 3
- - -lmag (H,,), present code ]
—O—Real (H,), exact solution ]
i L - -O--lmag (H_), exact solution |
i o ]
€ - \o 1
< o L \o E
Iu F \o
[oN - 1
001 | TSl 3
E Tt -oo E
TS0~ ]
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Spacing (inches)

Figure 4. Comparison of the axial component H_. obtained from the
present code and the exact solution for (a) an isotropic medium and
(b) a TI medium.

must be used. On the other hand, the coaxial component p:*is less af-
fected by the skin effect than p* and p)’; p* can reflect the geometric
mean of the horizontal resistivities (\epxpy) within the frequency
range 20—220 KHz.

Figure 11 shows the apparent resistivity of the same tool for the
same resistive formation at & = 75°, 8 = 30°, and y = 0° as fre-
quency increases from 20 to 220 KHz. Comparison of Figure 11
with Figure 10 shows that, in this case, the diagonal and cross com-
ponents of the apparent resistivity are less sensitive to frequency
than with zero dipping and azimuthal angles. Also, the cross terms
py and p} are negative. The apparent resistivities are inversely pro-
portional to the induced magnetic field, so negative cross terms im-
ply that the induced magnetic field is phase shifted 180° with respect
to the transmitter current.

For a relative conductive case, the resistivities of the form-
ation are supposed to be p,=2 ohm-m, p,=4 ohm-m, and

2) 60w 360—
320 08
06
280 04
~ 240 240 0.2
< 200 200 0
g -0.2
E 160 o4
< 120 -0.6
80 “1)-8 80
40 4o 40
0 0 0
020406080 020406080 020406080
yy yz
360 360 360 ==
0.8
320
320 06 6
280 0.4 280 5
__.240 0.2 240
£ 200 O 200 a4
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E 160 o4 160 /INR
< 120 06 120
08 2
80 :
40 12
0 e
0020406080 % 20406080 020406080
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b) zy

—~
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80 80
40 40
0 0

!

020406080 020406080
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Figure 5. Sensitivity of a three-coil triaxial tool with respect to the
dip angle 9,/ da(mS/m/°) in a homogeneous biaxial anisotropic
formation.
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p. = 8 ohm-m. Figure 12 shows the apparent resistivity of the
same tool for &« = 60°, 8 = 30°, and y = 0° as frequency increases
from 20 to 220 KHz. All of the diagonal components of the appar-
entresistivity pi, pi*, and pZ increase as the frequency increases. As

XX
360 360
320 3 320
280 2 280
> 240 1 240
K
§ 200 0 200
5 10 » 160}
120 > 120
80 5 80
40
40 »
0 0 0
020406080 020406080 020406080
Yy zz
360 360 360
320 ( 5 320 5 320
4
280 280 280
1 3
240 240 2
K
5 200 0 200 1
= 160 , 160 0
8 _
120 120
80 2 g
40 -3 40
0020406080 02040 60 80 0020406080
Dip (°) Dip (° Dip (°)

Figure 6. Sensitivity of a three-coil triaxial tool with respect to the
dip angle dd,/9B(mS/m/ °) in a homogeneous biaxial anisotropic
formation.
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Figure 7. Sensitivity of a three-coil triaxial tool with respect to
o(86,/90,) inahomogeneous biaxial anisotropic formation.

E111

for the cross components of the apparent resistivity, the amplitude
(despite the phase shift with respect to the transmitter current) of

p.7 and p)* increases as the frequency increases, whereas the ampli-
tude of p;’ decreases as the frequency increases. This rule also ap-
plies to the resistive case, as we can see from Figure 11.
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Figure 8. Sensitivity of a three-coil triaxial tool with respect to
0,(d6,/d0,) in ahomogeneous biaxial anisotropic formation.
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Figure 9. Sensitivity of a three-coil triaxial tool with respect to
0.(06,/d0.) in ahomogeneous biaxial anisotropic formation.
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Figure 10. Frequency effect on responses of a three-coil triaxial tool
in aresistive formation (¢ = 8 =y = 0°).
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Figure 11. Frequency effect on responses of a three-coil triaxial tool

in a resistive formation (@ =75°,8 = 30°,y = 0°). (a) Diagonal
term of apparent resistivity. (b) Cross terms of apparent resistivity.
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Figure 12. Frequency effect on responses of a three-coil triaxial tool
in a conductive formation (@ = 60°,8 = 30°,y = 0°). (a) Diago-
nal term of apparent resistivity. (b) Cross terms of apparent resistivi-
ty.

Overall, our method is very efficient because it is quasi-analytical.
The actual CPU time per transmitter varies with dipping angle be-
cause different numbers of integral points are required for sufficient
accuracy. The general CPU time is around 1072 to 10" s on a Pen-
tium 2.4-GHz PC.

CONCLUSIONS

We have presented a theoretical analysis of the response of a tri-
axial induction logging tool in a homogeneous biaxial anisotropic
medium. The logging tool is composed of three mutually orthogonal
transmitter and receiver pairs. The axes of the transmitter and receiv-
er can be oriented arbitrarily with respect to the principal axes of the
medium’s conductivity tensor. A Fortran code has been developed
based on the theory, and the results are compared with the published
data.

The formulas we develop are capable of analyzing cross-coupling
terms, which contain information on relative deviation and relative
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bearing. Therefore, our formulas are more useful and practical than
existing formulas because cross-coupling terms help determine the
three principal components of the conductivity tensor for an arbi-
trarily oriented transceiver system. However, before any interpreta-
tion method can be practical, borehole effects must be corrected. Fu-
ture work includes investigation of the effects of the borehole envi-
ronment, such as borehole fluid, invasion, and tool eccentricity.

ACKNOWLEDGMENTS

The authors would like to acknowledge S. Gianzero for his fruit-
ful discussion. We acknowledge the financial support of the Well
Logging Industrial Consortium, which is composed of 13 oil and ser-
vice companies.

APPENDIX A

DERIVATION OF PARAMETERS a AND b
IN EQUATIONS 14-16

The determinant of the coefficient matrix {2 can be written from
equation 9 directly:

det @ = [k} — (n* + D]k — (&2 + DK — (2 + 77)]
+ 2829767 — 257k, — (62 + )] — [k,
— (7> + )] = E9[k — (&2 + )] (A-1)

By arranging the right-hand side of equation A-1 according to the
mean of ¢, it can be rewritten as

det @ = kZs* — S[k2(k; + k3) — EX(k; + K2) — (K,
+ )]+ (82 + 9 — K(EK, + n°k, — koK),

y
(A-2)
On the other hand, from equation 13, we obtain
det Q = k2s* — 2k26%a + a® — b. (A-3)

Comparing the coefficients of sin equations A-2 and A-3 yields
2 _ 2012 2 2012 2 2012 2
—2kia= — [kz(kx + ky) — &k + k) — 7 (ky + kz)],
(A-4)

a’—b=(&+ 9 —IEK + v’k —kky).  (A-5)

Xy

Therefore, the parameters a and b are

o K2k + k) — E(k, + kD) — Pk, + kD)

2k2 (A_6)
Z
and
2 2 2y £272 2,2 2,2
o (EE N RER R~ K

k2

Zz
(A-7)
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