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Abstract—The Goos-Hächen (GH) shift at the surface of chiral
negative refractive media is analyzed theoretically. GH shifts are
observed for both perpendicular and parallel components of the
reflected field near the respective critical angles. It is found that
positive and negative shifts can be attained when the incident angle
is larger than the first critical angle, whereas if the angle of incidence
exceeds the second critical angle, only positive shifts can be observed.
In addition, a Gaussian beam is further adopted to illustrate the effect
of the GH shifts.

1. INTRODUCTION

As is known, when a light beam is totally reflected at the boundary of
two different media, the reflected light beam experiences a lateral shift
in the incidence plane from the position predicted by the geometrical
optics, because each plane wave component undergoes a different phase
change. This lateral beam shift is referred to as Goos-Hänchen(GH)
shift [1], which was explained theoretically in terms of stationary-phase
approach [2] and investigated in experiment [3–5]. Due to its potential
applications in optical devices, such as optical sensors [6] and optical
waveguides [7], the GH shift has been studied for a wide range of
materials, including absorptive media [8, 9], nonlinear media [4, 10],
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multilayered structures [11] and photonic crystals [12]. Recently, the
GH shift associated with negative refractive media attracts much
attention. For instance, Berman [13], Lakhtakia [14], Qing et al [15],
and Hu et al [16] extensively studied the lateral shift at an interface
between positive and negative refractive media. Shadrivov et al [17]
further investigated a giant GH shift in reflection from a layered
structure containing a layer of left-handed material. Kong et al [18]
elaborated the lateral displacement of a Gaussian beam reflected from
a left-handed slab. They concluded that the shift is always negative.
On the other hand, Grzegorczyk et al [19] showed that the GH shift
induced by left-handed isotropic slabs could be positive when the
second interface of the slab supports a surface plasmon. Furthermore,
The lateral shift for an electromagnetic beam reflected from an uniaxial
anisotropic slab coated with perfect conductor was studied [20].

In recent years, negative refraction in the chiral medium has
aroused great interest within the scientific communities [21, 22, 23].
Actually, Electromagnetic properties in normal chiral materials have
been studied for a long time, and a chiral medium can be implemented
as a collection of helices [24]. To achieve a chiral medium with negative
refraction, Pendry [25] proposed a Swiss roll structure. In addition,
negative refractive chiral metamaterial, based on the Y structure, has
been designed and tested in the microwave and terahertz frequencies
[26]. Physically, it was demonstrated that when the chirality parameter
is greater than the square root of the product of permittivity and
permeability [27], the backward wave will occur at one of the two
circularly polarized eigenwaves, making negative refraction in the
chiral media possible. Then many new exciting phenomena related to
electromagnetic propagation appear in chiral materials with negative
refraction and should be reconsidered theoretically.

The aim of the present paper is to consider the reflection and
refraction properties of plane electromagnetic waves in a chiral negative
refraction medium, and to investigate the GH lateral shift dependence
on the angle of incidence in such a chiral medium, with attention
mainly focused on the GH effect on the basis of stationary-phase
approach. The numerical results section will compare the data
obtained from the negative refraction chiral medium to those obtained
by the normal chiral medium. We further present a detailed analysis
of the shift from a Gaussian beam to verify the conclusions drawn from
the stationary-phase approach. Finally, we summarize our results in
the last section.
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2. GH SHIFTS IN TERMS OF STATIONARY-PHASE
APPROACH

In this paper, we consider only TE polarized wave (the electric field
in the x direction) and the case for a TM polarized wave can also
be discussed in the similar manner. The geometry for the problem of
interest is shown in Fig. 1, where a TE polarized wave is incident on the
interface from the dielectric side at an angle θi and, as a consequence
of the chirality of the second medium, it splits into two transmitted
waves (one is right-handed circularly polarized (RCP), and the other
is left-handed circularly polarized (LCP)) propagating into the chiral
medium and a reflected wave with both parallel and perpendicular
components propagating back into the dielectric. Two reflected field
components can to first order be represented as two separate reflected
beams, each with its own magnitude, lateral shift in the plane of the
interface.

3. FIGURES

Figure 1. Orientation of the wave vectors at an oblique incidence on
a dielectric-chiral interface. Subscripts ‖ and ⊥, respectively, stand for
parallel and perpendicular with respect to the plane of incidence. In
the chiral medium k1 and k2 waves represent RCP and LCP waves,
respectively.

The constitutive relations used for the chiral medium are defined
as [22]:

D = ε2ε0E − iκ
√

ε0µ0 H (1)
B = µ2µ0H + iκ

√
ε0µ0 E (2)
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where ε2 and µ2 are the relative permittivity and permeability of
the chiral medium, respectively (ε0 and µ0 are the permittivity and
permeability in vacuum). The chirality parameter κ measures the
degree of the handedness of the material. It gives the angle of
polarization rotation of a plane wave with respect to the phase angle
of the wave in free space, and the sign of κ is positive (negative)
if the rotation is left-handed (right-handed) in the direction of
propagation [28]. A monochromatic time-harmonic variation exp(iωt)
is assumed throughout this paper, but omitted. Inside the chiral
medium there are two eigenmodes of propagation: a RCP wave with
phase velocity ω/k1 and a LCP wave with phase velocity ω/k2, where
the wave numbers are given by

k1, 2 = k0(
√

ε2µ2 ± κ) (3)

where k0 ≡ ω/c denotes the wavenumber in vacuum. The
electromagnetic field in the chiral medium can be expressed as [22]:

E = E1 + E2 (4)
H = H1 + H2 (5)

The relations between electric fields and magnetic fields are

H1, 2 = ±jE1, 2/η2 (6)

where E1 and E2 associated with these two eigen-modes can be
expressed by [23]

E1 = E01 (−ix − sin θ+y + cos θ+z) e−ik1yye−ik1zz (7)

E2 = E02 (ix − sin θ−y + cos θ−z) e−ik2yye−ik2zz (8)

E01 and E02 denote the amplitudes of the electric fields for RCP and
LCP transmitted waves, respectively, and θ± are the refracted angles
of the two eigen-waves (see Fig. 1). The refractive indices are thus
given as

n1, 2 =
√

ε2µ2 ± κ (9)

It is evident that if κ >
√

ε2µ2, the refractive index n2 ≡ √
ε2µ2 − κ

will become negative. Correspondingly, nagative refraction will occur
to LCP wave and the LCP wave in the chiral medium is transmitted
into another side of the normal axes.

In order to study the GH shift for total internal reflection between
normal and chiral negative refractive medium, the reflection coefficients
will be calculated according to the boundary conditions at y = 0. From
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Ref. [23] and Ref. [24], the coefficients associated with perpendicular
R11 and parallel R21 components of the reflected wave are obtained:

R11=
2η1η2(cos2 θi−cos θ+ cos θ−)+(η2

2−η2
1)cos θi(cos θ−+cos θ+)

G
(10)

R21=
i2η1η2 cos θi(cos θ− − cos θ+)

G
(11)

with

G = (η2 cos θ+ + η1 cos θi)(η1 cos θ− + η2 cos θi)
+ (η2 cos θ− + η1 cos θi)(η1 cos θ+ + η2 cos θi)

where ηi =
√

µi/
√

εi (i = 1, 2) are wave impedances in the normal
and chiral medium. From the boundary conditions, we have ki sin θi =
kr sin θr = k1 sin θ+ = k2 sin θ−.

According to the stationary-phase approach, GH shifts (∆) for
both perpendicular component (R11) and parallel component (R21) in
total internal reflection can be calculated in terms of the phase shift of
reflection coefficients as [2, 25]

∆ = dΦ/dkz (12)

where Φ is the phase difference between the reflected and incident
waves. In generally, at the interface between normal material and left-
handed materials, the phase of R is constant for angles of incidence less
than the critical angle, no GH shift is observed until the critical angle
of total reflection is reached. While for the case of a dielectric-chiral
interface, there exists two eigenwaves inside the chiral medium, thus
one or two critical angles θc+, c− = arcsin

(
(
√

ε2µ2 ± κ)/
√

ε1µ1

)
[23],

corresponding to RCP and LCP waves, may exist [26]. A general
point should be quite clear: one corresponding to the refractive
index n2 (smaller critical angle) and the other to the refractive index
n1 (larger critical angle). Only beyond the latter occurs a “true”
(complete) total reflection. While between those two critical angles,
RCP wave would still be propagating through the interface into the
chiral medium. Only when the angle of incidence increases to θ > θc−,
the reflection coefficients become complex. The phase of the reflected
wave experiences change with respect to the incident wave, and the
GH lateral shifts for parallel component and perpendicular component
in the reflected wave as a function of the angle of incidence can be
obtained.

The numerical results section will compare the data obtained from
the negative chiral medium to those obtained by the normal chiral
medium using the stationary-phase approach. Different situations
where one or two critical angles exist will be examined respectively.
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4. DISCUSSION AND NUMERICAL RESULTS

4.1. ε2µ2 > ε1µ1 Case

In this case, the chiral medium is denser than the dielectric. No
critical angles of total internal reflection exist when κ = 0. As κ
increases, a single critical angle exists only for LCP when

√
ε2µ2 +√

ε1µ1 > κ >
√

ε2µ2 − √
ε1µ1. The LCP wave becomes evanescent

wave, thus we choose k2y = ik2

√
k2

i sin2 θ

k2
2

− 1 for the chiral negative

refraction medium and k2y = −ik2

√
k2

i sin2 θ

k2
2

− 1 for the normal chiral

medium), while the RCP wave still transmits into the chiral medium,

k1y = k1

√
1 − k2

i sin2 θ

k2
1

. The phase of both reflection components can

be solved:

Φ1
R11

= tan−1 A1

B1
(13)

Φ1
R21

= tan−1 C1

D1
(14)

with

A1 = −2 cos2 θ cos θ+ cos θ−
(
4η2

1η
2
2 + η4

2 − η4
1

)
−4η1η

3
2 cos θ cos θ−

(
cos2 θ + cos2 θ+

)
B1 = 4η1η

3
2 cos θ cos θ+

(
cos2 θ − cos2 θ−

)
+

(
η4
2−η4

1

)
cos2 θ

(
cos2 θ+−cos2 θ−

)
+4η2

1η
2
2

(
cos4 θ − cos2 θ+ cos2 θ−

)
C1 = 4η2

1η
2
2 cos θ cos θ+

(
cos2 θ− − cos2 θ

)
+2 cos2 θη1η2

(
η2
1 + η2

2

) (
cos2 θ− − cos2 θ+

)
D1 = 4η2

1η
2
2 cos θ cos θ−

(
− cos2 θ − cos2 θ+

)
−4 cos2 θ cos θ+ cos θ−η1η2

(
η2
1 + η2

2

)

where cos θ− =
√

k2
i sin2 θ

k2
2

− 1, cos θ+ =
√

1 − k2
i sin2 θ

k2
1

in this situation.

The GH lateral shifts of perpendicular component and parallel
component in the reflected wave are calculated according to (12)

∆ =
dΦ
dkz

=
dΦ

ki cos θdθ
(15)
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(a)

(b)

(c)

(d)

Figure 2. The GH shifts for the perpendicular component and the
parallel component of the reflected field as a function of the incident
angel with ε1 = 1, µ1 = 1, ε2 = 4, µ2 = 1, at different values of
chirality: (a) κ = 1.55, (b) κ = 2.45, (c) κ = 1.05, (d) κ = 2.95.

When the angle of incidence is greater than the θc, the phase of the
reflection coefficient experiences change with respect to the incident
wave, the GH lateral shift will appear. In this case there never exists
two critical angles. As shown in Fig. 2, GH shift does arise when the
incident angles are larger than the critical angle. In this connection,
the GH shift is purely a consequence of the chirality. Figs. 2(a) and 2(c)
correspond to the case of normal chiral medium (κ <

√
ε2µ2), while

Figs. 2(b) and 2(d) correspond to the negative refractive chiral medium
(κ >

√
ε2µ2). By comparing Figs. 2(a) with 2(b), it can be easily found

that the same critical angle occurs at θc = 26.8◦, which is mainly due to
the fact that the values of |n2| are identical (similarly in Figs. 2(c) and
2(d)). Note that the shifts for both reflection components in negative
refractive chiral medium are negative, indicates that the reflected
components will shift to −z direction with respect to the incident
wave. These results are directly opposite to those in the normal chiral
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medium. Further investigation, we find that the signs of GH shift are
consistent with that of n2 except for in the vicinity of the critical angle
(see Figs. 2(c) and 2(d)). In that region, the shifts of perpendicular
components have opposite signs, which means that the range near the
critical angle is quite angle-sensitive. Note that the shifts divergent
near θc due to the fact that the method of stationary phase fails at the
critical angle.

4.2. ε2µ2 < ε1µ1 Case

In this situation, the dielectric is denser than the chiral medium. If κ =
0, the medium is simply a dielectric medium, and there is one critical
angle for the dielectric-dielectric interface. As κ increases from zero
to κ <

√
ε1µ1 − √

ε2µ2, two critical angles will arise: smaller critical
angle corresponds to LCP wave and larger critical angle corresponds
to RCP wave. When the angle of incidence exceeds the larger critical
angle, total internal reflection will occur, and both LCP wave and
RCP wave become evanescent waves. For each evanescent wave, we

will select k2y = ik2

√
k2

i sin2 θ

k2
2

− 1 and k1y = −ik1

√
k2

i sin2 θ

k2
1

− 1 for the

chiral negative refraction medium to ensure the evanescent wave decay
away from the interface. The phase of both reflection components can
be expressed as:

Φ2
R11

= tan−1 A2

B2
(16)

Φ2
R21

= tan−1 C2

D2
(17)

with

A2= 4η1η2 cos θ (cos θ− − cos θ+)
(
−η2

1 cos2 θ + η2
2 cos θ+ cos θ−

)
B2= 4η2

1η
2
2

(
cos4 θ−cos2 θ− cos2 θ+

)
−cos2 θ (cos θ−−cos θ+)2

(
η4
1−η4

2

)
C2= 2η1η2 cos2 θ

(
cos2 θ− − cos2 θ+

) (
η2
1 + η2

2

)
D2= −4η2

1η
2
2 cos θ (cos θ− + cos θ+)

(
cos2 θ + cos θ+ cos θ−

)

here cos θ− =
√

k2
i sin2 θ

k2
2

− 1, cos θ+ =
√

k2
i sin2 θ

k2
1

− 1. From (15), one

could obtain the GH lateral shifts of two reflection components. If κ
keeps increasing, the larger critical angle will disappear. It implies that
by introducing the chirality (e.g., distributing helices) into a dielectric,
one could enhance the transmission at large oblique incident angles.
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Numerical results have been presented in Fig. 3. In Figs. 3(a) and
3(c), (κ <

√
ε1µ1 − √

ε2µ2 and κ <
√

ε2µ2), it should be noted
that the parallel reflected component undergoes a positive shift within
two critical angles, while the shift of the perpendicular component is
positive near the first critical angle and negative near the second critical
angle. When the incident angle is larger than the second critical angle,
this shift also becomes positive.

(a)

(b)

(c)

(d)

0 1.5

Figure 3. As in Fig. 2 but in different cases. ε2 = 1, µ1 = µ2 = 1.
(a) ε1 = 4, κ = 0.05; (b) ε1 = 4, κ = 2.95; (c) ε1 = 9, κ = 0.95; (d)
ε1 = 9, κ = 1.05.

For large κ, the refractive index of the chiral medium n2 will
become negative (κ >

√
ε2µ2). Within this category, Fig. 3(b) stands

for an example of the case of κ >
√

ε1µ1 −
√

ε2µ2, in which the second
critical angle vanishes and the shifts behave similarly to the case in
Fig. 2(b). However, in Fig. 3(d) (representing κ <

√
ε1µ1 − √

ε2µ2),
there still exist two critical angles even when the negative refraction
appears in the chiral medium. Within two critical angles, one may find
that the sign of GH shift for the parallel component is consistent with
that of n2, while the perpendicular component experiences a maximum
positive (negative) shift for negative (normal) chiral medium, as shown
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in Figs. 3(c) and 3(d). This unusual phenomenon is also reflected in
the observation of the phase of the perpendicular reflection coefficient.
It is clear from the inset of Fig. 3(c) that the phase curve has a
valley near the first critical angle, and the negative relative minimum
corresponds to the maximum negative shift for normal chiral medium.
While from the inset of Fig. 3(d), we can see that a distinctive peak
appears near those regions in the phase curve of the perpendicular
reflection coefficient, and the positive relative maximum corresponds
to the maximum positive shift for negative chiral medium. When
the incident angle is greater than the second critical angle, both
components always experience a positive shift. This can also be seen
from the phase curves of respective reflection coefficients. The first
derivative of each phase curve is negative (∆ = −dΦ/dkz), regardless
of the sign of n2. Additionally, these shifts decrease firstly and then
increase with increasing the angle of incidence.

5. LATERAL SHIFT OF A GAUSSIAN-SHAPED
INCIDENT BEAM

To demonstrate the validity of the stationary-phase approach, we
consider a Gaussian-shaped incident beam located at y = 0 in this
section. The incident field on the interface at angle θi has the form of

Eix =
∫ ∞

−∞
A(kz) exp(−ikyy − ikzz)dkz (18)

where A(kz) = wz√
2π

exp[−w2
z

2 (kz −kz0)2], wz = w0 sec θi, kz0 = ki sin θi,
and w0 is the beam width. The reflected fields (Er

⊥ and Er
‖),

determined from the transformation of the incident beam, can be
written as:

Er
⊥ =

∫ ∞

−∞
R11A(kz) exp(ikyy − ikzz)dkz (19)

Er
‖ =

∫ ∞

−∞
R21A(kz) exp(ikyy − ikzz)dkz (20)

The calculated lateral shift can be obtained by finding the location
where |Er

⊥|y=0 or
∣∣∣Er

‖

∣∣∣
y=0

is maximal [33, 34]. Numerical results

are shown in Fig. 4 for the beam width w0 = 10λ. The shift for
the parallel reflected field is found to be −5.5λ, while it is 4.5λ
for the perpendicular reflected field. In comparison, −8.11λ and
6.07λ for parallel and perpendicular fields are found respectively based
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Figure 4. Comparison of the shapes for the perpendicular reflected
field |Er|PER. and the parallel reflected field |Er|PAR., for a Gaussian
beam |Ei| at an incident angle of 72◦ in y = 0 plane. The parameters
are the same as in Fig. 2(d). The magnitudes of the two reflected
components have been scaled by respective factors in order to make
the peak positions more distinguishable in the illustration.

on Artmann formulation Eq. (12) [also see Fig. 2(d)]. Therefore,
simulation data for the Gaussian wave in qualitative agreement with
numerical results for Artmann formulation, and the discrepancy results
from small beam width we choose for the Gaussian approach. Actually,
one would expect that the lateral shifts for Artmann formulation will
be close to the results for Gaussian approach with sufficiently large
beam width [33, 34]. In addition, we predict that the magnitude of the
perpendicular reflected field is greater than that of parallel component
from both approaches.

6. CONCLUSION

In conclusion, GH shift for both parallel and perpendicular components
of the reflected field at the surface of negative chiral medium has been
analyzed by the stationary-phase method. We have shown that the
sign of the shift is generally consistent with that of n2 where there
exists only one critical angle (corresponds to LCP wave). When there
exist two critical angles which correspond to LCP wave and RCP wave,
respectively, if the angle of incidence is greater than the first critical
angle and less than the second critical angle, both positive and negative
GH shifts for perpendicular reflected component are possible, and they
are directly opposite to the normal chiral media. While the shift for
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parallel component is also in consistence with the sign of n2 within
these two critical angles. As the incident angle increases larger than
the second critical angle, both components experience a positive shift
whether the chiral medium is normal or negative. Therefore, negative
refraction, even though very small, has great impact on the GH shift.
Furthermore, we perform the numerical results for a Gaussian-shaped
incident beam to demonstrate the validity of the stationary-phase
approach.

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation
of China under Grant No. 10674098, the National Basic Research
Program under Grant No. 2004CB719801, the Key Project in
Science and Technology Innovation Cultivation Program of Soochow
University, and the Natural Science of Jiangsu Province under Grant
No. BK2007046.

REFERENCES

1. Goos, F. and H. Hänchen, “Ein neuer und fundamentaler versuch
zur totalreflexion,” Ann. der Phys., Vol. 436, No. 7, 333–346, 1947.

2. Artmann, K., “Berechnung der seitenversetzung des totalreflek-
tierten strahles,” Ann. der Phys., Vol. 437, No. 1, 87–102, 1948.

3. Bretenaker, F., A. Le Floch, and L. Dutriaux, “Direct
measurement of the optical Goos-Hänchen effect in lasers,” Phys.
Rev. Lett., Vol. 68, No. 7, 931–933, 1992.

4. Emile, O., T. Galstyan, A. Le Floch, and F. Bretenaker,
“Measurement of the nonlinear Goos-Hänchen effect for Gaussian
optical beams,” Phys. Rev. Lett., Vol. 75, No. 8, 1511–1513, 1995.

5. Wang, Y., Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen,
“Electric control of spatial beam position based on Goos-Hänchen
effect,” Appl. Phys. Lett., Vol. 93, No. 9, 091103, 2008.

6. Hashimoto, T. and T. Yoshino, “Optical heterodyne sensor using
the Goos-Hänchen shift,” Opt. Lett., Vol. 14, No. 17, 913–915,
1989.

7. Kogelnik, H., H. P. Weber, and T. Yoshino, “Rays, stored energy,
and power flow in dielectric waveguides,” J. Opt. Soc. Am.,
Vol. 64, 174–185, 1974.

8. Wild, W. J. and C. L. Giles, “Goos-Hänchen shift from absorbing
media,” Phys. Rev. A, Vol. 25, No. 4, 2099–2101, 1982.



Progress In Electromagnetics Research, PIER 90, 2009 267

9. Pfleghaar, E., A. Marseille, and A. Weis, “Quantitative
investigation of the effect of resonant absorbers on the Goos-
Hänchen shift,” Phys. Rev. Lett., Vol. 70, No. 15, 2281–2284, 1993.

10. Jost, B. M., A.-A. R. Al-Rashed, and B. E. A. Saleh, “Observation
of the Goos-Hänchen effect in a phase-conjugate mirror,” Phys.
Rev. Lett., Vol. 81, No. 11, 2233–2235, 1998.

11. Tamir, T. and H. L. Bertoni, “Lateral displacement of optical
beams at multilayered and periodic structures,” J. Opt. Soc. Am.,
Vol. 61, 1397–1413, 1971.

12. Felbacq, D., A. Moreau, and R. Smai, “Goos-Hänchen effect in the
gaps of photonic crystals,” Opt. Lett., Vol. 28, No. 18, 1633–1635,
2003.

13. Berman, P. R., “Goos-Hänchen shift in negatively refractive
media,” Phys. Rev. E, Vol. 66, No. 6, 67603, 2002.

14. Lakhtakia, A., “On planewave remittances and Goos-Hänchen
shifts of planar slabs with negative real permittivity and
permeability,” Electromagnetics, Vol. 23, No. 1, 71–75, 2003.

15. Qing, D.-K. and G. Chen, “Goos-Hänchen shifts at the interfaces
between left-and right-handed media,” Opt. Lett., Vol. 29, No. 8,
872–874, 2004.

16. Hu, X. L., Y. D. Huang, W. Zhang, D. K. Qing, and
J. D. Peng, “Opposite Goos-Hänchen shifts for transverse-electric
and transverse-magnetic beams at the interface associated with
single-negative materials,” Opt. Lett., Vol. 30, No. 8, 899–901,
2005.

17. Shadrivov, I. V., A. A. Zharov, and Y. S. Kivshar, “Giant Goos-
Hänchen effect at the reflection from left-handed metamaterials,”
Appl. Phys. Lett., Vol. 83, No. 13, 2713–2715, 2003.

18. Kong, J. A., B.-L. Wu, and Y. Zhang, “Lateral displacement of
a Gaussian beam reflected from a grounded slab with negative
permittivity and permeability,” Appl. Phys. Lett., Vol. 80, No. 12,
2084–2086, 2002.

19. Grzegorczyk, T. M., X. Chen, J. Pacheco Jr., J. Chen, B.-
I. Wu, and J. A. Kong, “Reflection coefficients and Goos-Hänchen
shifts in anisotropic and bianisotropic left-handed metamaterials,”
Progress In Electromagnetics Research, PIER 51, 83–113, 2005.

20. Kong, J. A., B.-L. Wu, and H. Huang, “Lateral displacement
of an electromagnetic beam reflected from a grounded indefinite
uniaxial slab,” Progress In Electromagnetics Research, PIER 82,
351–366, 2008.

21. Qiu, C. W., H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo,



268 Dong, Gao, and Qiu

“Routes to left-handed materials by magnetoelectric couplings,”
Phys. Rev. B, Vol. 75, No. 24, 245214, 2007.

22. Dong, W. T. and L. Gao, “Negative refraction in chiral composite
materials,” J. Appl. Phys., Vol. 104, No. 2, 023537, 2008.

23. Jin, Y. and S. He, “Focusing by a slab of chiral medium,” Opt.
Express, Vol. 13, No. 13, 4974–4979, 2005.
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