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Abstract: The lateral shifts from a slab of lossy chiral metamaterial are
predicted for both perpendicular and parallel components of the reflected
field, when the transverse electric (TE)-polarized incident wave is applied.
By introducing different chirality parameter, the lateral shifts can be large
positive or negative near the pseudo-Brewster angle. It is found that the
lateral shifts from the negative chiral slab are affected by the angle of
incidence and the chirality parameter. In the presence of inevitable loss of
the chiral slab, the enhanced lateral shifts will be decreased, and the pseudo-
Brewster angle will disappear correspondingly. For the negative chiral slab
with loss which is invisible for the right circularly polarized (RCP) wave,
we find that the loss of the chiral slab will lead to the fluctuation of the
lateral shift with respect to the thickness of the chiral slab.The validity of
the stationary-phase analysis is demonstrated by numerical simulations of a
Gaussian-shaped beam.
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1. Introduction

The Goos-Hänchen (GH) effect [1] has been analyzed both theoretically [2–4] and experi-
mentally [5–7]. This phenomenon has already been extended to other areas such as acoustics,
surface optics, nonlinear optics, and quantum mechanics. Furthermore, with the development
of near-field scanning optical microscopy and lithography [8], the GH shift has attracted more
and more attention for potential device applications in optical modulations. On the other hand,
there exist some other lateral shifts, which are quite different from the GH effect, since the
magnitude of the reflection coefficient is dependent on the angle of incidence for the partial
reflection. For instance, at an oblique incidence, the lateral shifts were found to be large pos-
itive or negative for both reflected and transmitted beams in different media such as dielectric
surfaces or slabs [9, 10], metal surfaces [11], dielectric-chiral surface [12–15], absorptive me-
dia [16–18], and so on. Later, Lima et al reported that a normally incident beam reflected from
an antiferromagnet can result in a lateral shift too [19].

Recently, the lateral shift associated with metamaterial [20–22] is of interest owing to its
very unusual properties. For these metamaterials, their permittivity and permeability are both
negative. On the other hand, Pendry found that the chiral medium with the Swiss roll structure
may also possess negative refraction [23]. After that, chiral metamaterial with negative refrac-
tion (or negative chiral metatamaterial) received great interest from both theoretical [24, 25]
and experimental views [26, 27]. Since the realistic chiral material is dissipative, in this paper,
we would like to investigate the lateral shift of the reflected beam from a chiral metamaterial
slab with inherent loss. We demonstrate that these perpendicular and parallel polarized waves
can, to the first order, be independently separated, each with its own lateral shifts. As a con-
sequence, the validity of the stationary phase method is proved and further confirmed with the
numerical simulation. We predict that the lateral shift near the angle of the pseudo-Brewster
dip from such a slab can be large, and both positive and negative lateral shifts are possible. It
is also shown that the lateral shift depends on the thickness of the slab, the angle of the inci-
dent wave and the constitutive parameters of the negative chiral metameterials. Throughout the
paper, only transverse-electric (TE) polarized incident wave is discussed below, and the results
for transverse-magnetic (TM) polarized wave can be easily obtained in the same way.

2. Formulation

2.1. Reflection and transmission amplitudes

The configuration for the chiral slab is shown in Fig. 1. We assume that a linearly TE polarized
wave is incident at an angle θi upon the surface of a chiral slab with the thickness d. For
simplicity, time dependence exp(−iωt) is applied and suppressed. The constitutive relations of
the chiral slab are defined as [28]

D = εε0E+ iκ
√

ε0μ0H, B = μμ0H− iκ
√

ε0μ0E, (1)

where κ is the chirality parameter, ε and μ are the relative permittivity and permeability of the
chiral medium, respectively (ε0 and μ0 are the permittivity and permeability in vacuum). The
electric and magnetic fields of an incident TE wave can be written as

Ei = Eiey = E0ey exp[iki(cosθiz+ sinθix)], Hi =

√
ε0

μ0
Ei(−cosθiex + sinθiez), (2)
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Fig. 1. Schematic diagram of a light beam propagating through the chiral slab placed in
free space.

with the wave number ki = k0 ≡ ω/c. It is known that, an electric or magnetic excitation will
produce both the electric and magnetic polarizations in a chiral material simultaneously. As
a consequence, the reflected wave must be a combination of both perpendicular and parallel
components in order to satisfy the boundary conditions. In our paper, the linearly polarized
incident wave is considered, and then we express the reflected wave in terms of the combination
of the perpendicular and parallel polarized waves [12, 13, 29]. Then, the electric and magnetic
fields of the reflected wave are expressed as,

Er = E0[R⊥ey +R‖(−cosθiex − sinθiez)]exp[iki(−cosθiz+ sinθix)], (3)

Hr =

√
ε0

μ0
E0[R‖ey +R⊥(cosθiex + sinθiez)]exp[iki(−cosθiz+ sinθix)], (4)

where R⊥ and R‖ are, respectively, the reflected coefficients associated with perpendicular and
parallel components. Here we note that for linearly polarized incident wave, when the angle
of incidence is the Brewster angle, the reflected wave is still linearly polarized but its plane of
polarization is rotated with respect to the plane of polarization of the incident wave [28,30,31],
which explains the phase difference between perpendicular and parallel components.

On the other hand, there are two propagation modes inside the slab: a right circularly polar-
ized (RCP) wave with the phase velocity ω/k1 and a left circularly polarized (LCP) wave with
the phase velocity ω/k2. The wave numbers k1 and k2 have the form k1,2 = k0(

√
ε√μ ± κ)

and the refractive indices of the two eigen-waves are n1,2 =
√

ε√μ ±κ [28]. It is evident that
for κ >

√
ε√μ , which can occur at least at or near the resonant frequency of the permittivity

of a chiral medium [24], the refraction index n1 ≡
√

ε√μ +κ will still be positive, but the re-
fraction index n2 ≡

√
ε√μ −κ will become negative. Correspondingly, negative refraction will

arise for LCP wave. In the chiral slab, there exist four waves in total: two propagating toward
the interface z = d and the other two propagating toward the interface z = 0 (see Fig. 1). The
electric and magnetic fields of these waves propagating inside the chiral medium toward the
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interface z = d are written as,

E+
c = E+

cr +E+
cl and H+

c = iη−1 (E+
cl −E+

cr
)
, (5)

with E+
cr = E0[A1iey +A1(cosθ1ex − sinθ1ez)]exp[ik1(cosθ1z+ sinθ1x)], E+

cl = E0[−A2iey +

A2(cosθ2ex − sinθ2ez)]exp[ik2(cosθ2z+ sinθ2x)], and η =
√

μ/ε .
Similarly, the total electromagnetic fields of the other two waves toward the interface z = 0

are
E−

c = E−
cr +E−

cl and H−
c = iη−1 (E−

cl −E−
cr
)
, (6)

with E−
cr = E0[B1iey + B1(−cosθ1ex − sinθ1ez)]exp[ik1(−cosθ1z + sinθ1x)], and E−

cl =
E0[−B2iey+B2(−cosθ2ex−sinθ2ez)]exp[ik2(−cosθ2z+sinθ2x)]. In addition, in Eqs. (5) and
(6), A1(2) and B1(2) are the transmitted coefficients, and θ1(2) denote the refracted angles of the
two eigen-waves in the chiral slab, respectively.

Outside the slab (z > d), the total transmitted wave can be expressed as

Et = E0[T⊥ey +T‖(cosθtex − sinθtez)]exp[iki(cosθt z+ sinθt x)], (7)

Ht =

√
ε0

μ0
E0[T‖ey +T⊥(−cosθtex + sinθtez)]exp[iki(cosθt z+ sinθt x)], (8)

where θt is the transmitted angle, T⊥ and T‖ are coefficients associated with perpendicular and
parallel components of the transmitted wave.

The coefficients R⊥, R‖, T⊥, and T‖ are determined by matching the boundary conditions at
two interfaces z = 0 and z = d, and the following matrix can be obtained,

(
[Ψ]11 [Ψ]12

[Ψ]21 [Ψ]22

)
•

⎛
⎜⎜⎝

R⊥
R‖
T⊥
T‖

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

iη cosθi + icosθ1

−iη cosθi + icosθ1

−iη cosθi − icosθ2

iη cosθi − icosθ2

⎞
⎟⎟⎠ , (9)

where

[Ψ]11 =

(
i(η cosθi − cosθ1) −cosθi +η cosθ1

−i(η cosθi + cosθ1) cosθi +η cosθ1

)
(10)

[Ψ]21 =

(
i(−η cosθi + cosθ2) −cosθi +η cosθ2

i(η cosθi + cosθ2) cosθi +η cosθ2

)
(11)

[Ψ]12 =

(
i(η cosθi + cosθ1)ei(kiz−k1z)d (−cosθi −η cosθ1)ei(kiz−k1z)d

i(−η cosθi + cosθ1)ei(kiz+k1z)d (cosθi −η cosθ1)ei(kiz+k1z)d

)
(12)

[Ψ]22 =

( −i(η cosθi + cosθ2)ei(kiz−k2z)d (−cosθi −η cosθ2)ei(kiz−k2z)d

i(η cosθi − cosθ2)e−i(kiz+k2z)d (cosθi −η cosθ2)ei(kiz+k2z)d

)
. (13)

The analytic solutions to four coefficients can be obtained after some lengthy mathematic ma-
nipulations, but the final results are too complicated to be reproduced here.

2.2. Stationary phase method for chiral slab

Next, in order to derive the approximate expressions for the lateral shift from the chiral slab, we
adopted the angular spectrum representation approach [32]. We consider the two-dimensional
(2D) incident TE wave as a sum of plane waves,

Ei(x,z = 0) = ey

∫ ∞

−∞
A(kx)exp(ikxx)dkx, (14)
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where A(kx) is the amplitude angular-spectrum distribution. Then, the reflected field admits the
form,

Er(x,z = 0) = ey

∫ ∞

−∞
R⊥(kx)A(kx)exp(ikxx)dkx

−
∫ ∞

−∞

⎡
⎣ex

√
1−

(
kx

k0

)2

+ ez
kx

k0

⎤
⎦R‖(kx)A(kx)exp(ikxx)dkx. (15)

For simplicity, let Rj(kx) = ρ j(kx)exp[iΦ j(kx)] ( j =⊥,‖), where ρ j(kx) is the reflection ampli-
tude and Φ j(kx) is the phase of the reflectance.

Note that if the incident light beam is well collimated and wide enough, A(kx) should be
sharply peaked around kx0. In the case of a wide enough beam, there will only be significant
contributions to the integrals of Eq. (15) within a narrow distribution of kx values around kx0. As
a consequence, we can expand ρ j(kx), Φ j(kx), and the quantity for the polarization direction

ex

√
1− (kx/k0)

2 + ezkx/k0 as a Taylor series [19]. Keeping terms to the first order of Δkx =
kx − kx0 , we have

ρ j(kx)≈ ρ j(kx0)+Δkxρ ′
j(kx0), Φ j(kx)≈ Φ j(kx0)+ΔkxΦ′

j(kx0), (16)

and,

ex

√
1−

(
kx

k0

)2

+ ez
kx

k0
≈

⎛
⎝ex

√
1−

(
kx0

k0

)2

+ ez
kx0

k0

⎞
⎠+Δkx

⎛
⎝ex

−1√
k2

0 − k2
x0

kx0

k0
+ ez

1
k0

⎞
⎠

≡ e‖+Δkxe‖2. (17)

Substituting Eq. (17) into Eq. (15), we have the perpendicular component (along y−axis)
and parallel component (in x− z plane) for the electric field of the reflected beam, which can
be rewritten as

Er(x,z = 0) = eyEr
⊥− [e‖Er

‖+ e‖2Er
‖2], (18)

with
Er
⊥(‖)(x,z = 0) =

∫ ∞

−∞
R⊥(‖)(kx)A(kx)exp(ikxx)dkx, (19)

Er
‖2(x,z = 0) =

∫ ∞

−∞
ΔkxR‖(kx)A(kx)exp(ikxx)dkx. (20)

Substitution of Eq. (16) into Eqs. (19) and (20) gives

Er
⊥(‖)(x,z = 0) = r⊥(‖)(kx0)

∫ ∞

−∞
A(kx)exp{ikx[x+Φ′

⊥(‖)(kx0)]}dkx

+r′⊥(‖)(kx0)
∫ ∞

−∞
(kx − kx0)A(kx)exp{ikx[x+Φ′

⊥(‖)(kx0)]}dkx, (21)

Er
‖2(x,z = 0) = r‖(kx0)

∫ ∞

−∞
(kx − kx0)A(kx)exp{ikx[x+Φ′

‖(kx0)]}dkx

+r′‖(kx0)
∫ ∞

−∞
(kx − kx0)

2A(kx)exp{ikx[x+Φ′
‖(kx0)]}dkx, (22)

with r j(kx0) = ρ j(kx0)exp[iΦ j(kx0) − ikx0Φ′
j(kx0)] and r′j(kx0) = ρ ′

j(kx0)exp[iΦ j(kx0) −
ikx0Φ′

j(kx0)].
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Fig. 2. the magnitude of (a) the first and second components in Er
‖ (see Eq. (21)) and

(b) Er
‖ in Eq. (21) and Er

‖2 in Eq. (22) as a function of x. The relevant parameters are

ε = 0.64+0.01i, μ = 1+0.02i, κ = 2, w0 = 20λ , d = 1.5λ , and θi = 50o.

For a Gaussian-shaped incident beam, the electric field of the incident beam has the form
Ei(x,z = 0) = exp(−x2/2w2

x + ikx0x), where wx = w0 secθi, w0 is the beam width at the waist.
As a consequence, from Eq. (14), the amplitude angular-spectrum distribution is derived to
be A(kx) = wx/(2π)1/2 exp[−w2

x(kx − kx0)
2/2] [10, 12]. Since we have assumed that the beam

is well collimated and wide enough, A(kx) should be a sharply distributed Gaussian function
around kx0. By comparing these two terms on the right hand of Eq. (21), it is expected that the
first term dominates for a narrow distribution of kx values, and we can ignore the second term
as a first approximation. In Fig. 2(a), it is numerically demonstrated that the second term can
be regarded as a perturbation to the first term. Similarly, comparing the magnitude of Er

‖2 [see
Eq. (20) or Eq. (22)] with that of Er

‖ [see Eq. (19) or Eq. (21)], one can ignore Er
‖2, as shown in

Fig. 2(b). Therefore, as a first approximation, we have,

Er(x,z = 0) = eyEr
⊥− e‖Er

‖ = eyr⊥(kx0)
∫ ∞

−∞
A(kx)exp{ikx[x+Φ′

⊥(kx0)]}dkx

−e‖r‖(kx0)
∫ ∞

−∞
A(kx)exp{ikx[x+Φ′

‖(kx0)]}dkx. (23)

Note that the integral for the reflected beam Er
⊥(‖) is identical to that for the incident beam [Eq.

(14)], except that x is replaced by x+Φ′
⊥(‖)(kx0). This indicates that the center of the peak of

the reflected field is given by

x+Φ′
⊥(‖)(kx0) = 0, (24)

and correspondingly, the reflected beam is shifted along the surface of the chiral slab by a
distance Δ⊥(‖),

Δ⊥(‖) =− dΦ⊥(‖)(kx)

dkx

∣∣∣∣
kx0

. (25)

Here we mention that for chiral materials, the reflected wave will have two polarizations
(perpendicular and parallel components) due to the chirality. Fortunately, these two polarized
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reflected waves can be independently separated, each with its own magnitude and lateral shift.
Note that the derivation is for the chiral materials, but it is actually equivalent to the classic
expression of stationary phase method [2]. Actually, although Artmann’s formula was derived
initially for an isotropic material, it was further successfully used to investigate lateral shifts in
antiferromagnet with anisotropic dielectric tensors [19], an anisotropic metamaterial slab [33],
and a gyrotropic slab [34].

3. Results and discussion

Fig. 3. The dependences of the lateral shifts Δ/λ (a,c) and the phases of the reflection
coefficients (b,d) for perpendicular (a,b) and parallel components (c,d) on the angle of
incidence θi. The insets of (a) and (c) show the absolute values of perpendicular and parallel
reflection coefficients, respectively. Solid line and dashed line correspond to positive chiral
slab with κ = 0.4 and negative chiral slab with κ = 1.4.

We are now able to present numerical results on the lateral shifts of the chiral slab. Actual chiral
materials are usually dissipative in the resonant frequency in which the chirality is significant
but has a lossy part. In this connection, the parameters are taken to be ε = 0.64+ 0.01i, μ =
1+ 0.02i, ω = 2π × 10 GHz, and d = 1.5λ [12]. Without loss of generality, we consider two
types of chiral slabs: (1) a positive (conventional) chiral slab with κ = 0.4, whose refraction
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indices of RCP and LCP waves are both positive (Re(n1)= 1.2 and Re(n2)= 0.4); (2) a negative
chiral slab with κ = 1.4 whose refraction indices of RCP wave and LCP wave are Re(n1) = 2.2
and Re(n2) =−0.6, respectively. For the two cases above, there are no critical angles for RCP
waves, but for LCP waves, there exists the critical angle at θc � 23.6◦ for a positive chiral slab
and θc � 37◦ for a negative chiral slab. Under such critical situations, only LCP waves in the
chiral slab become evanescent waves when the angle of incidence exceeds the critical angle,
while the RCP waves will still propagate through the chiral slab. Correspondingly, the angle
of incidence is defined as pseudo-critical angle. However, the true total internal reflection will
never arise under these parameters.

Figure 3(a) and 3(c) show the lateral shifts of the reflected waves for both perpendicular
and parallel components. In addition, the insets show, respectively, the absolute values of per-
pendicular and parallel reflection coefficients for two cases. It is easily found that there is a
dip in each reflection curve, at which |R| reaches the minimum. The corresponding angle of
incidence is defined as the pseudo-Brewster angle. Note that the pseudo-Brewster angles for
both perpendicular and parallel components are always smaller than the pseudo-critical angles.
From Fig. 3(a) and 3(c), we clearly see that the behavior of the lateral shifts for perpendicular
and parallel components are similar, and the shifts will be greatly enhanced near the angle of
pseudo-Brewster dip. To one’s interest, there exist large negative (positive) lateral shifts near
the angle of pseudo-Brewster dip for the positive (negative) chiral slab. The phenomenon can be
easily explained in terms of the change of phases, as shown in Fig. 3(b) and 3(d). Near the angle
of pseudo-Brewster dip, the phase of reflection experiences a distinct sharp variation, which de-
creases quickly for the negative chiral slab. As a result, one predicts a large positive lateral shift
for a negative chiral slab. On the other hand, for the positive chiral slab, both components have
negative lateral shifts near the angle of pseudo-Brewster dip, and then experience small positive
shifts over other angles of incidence. We conclude that the lateral shifts of both perpendicular
and parallel components can be greatly enhanced near the pseudo-Brewster angle for both the
positive and negative chiral slabs, and the dependence of lateral shifts on the angle of incidence
θi for a negative chiral slab is opposite to that for a positive chiral slab.

Fig. 4. (a) Δ/λ and the absolute values of reflection coefficients as a function of θi for a
typical negative chiral slab. The inset of (b) is the phase of reflection coefficients.

Lateral shifts and the reflection amplitudes of reflected waves for perpendicular and parallel
components from a negative chiral slab with a large chirality parameter κ = 2.0 are shown in
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Fig. 4. In this situation, there are no critical angles for both the RCP and LCP waves. It can
be seen that there is only one dip in the perpendicular reflection curve, at which the reflection
coefficient reaches a minimal magnitude and the corresponding phase is monotonically increas-
ing as a function of the angle of incidence [see Fig. 4(b)]. As a consequence, one expects that
the lateral shift of the reflected perpendicular component has a negative peak near the angle
of the dip [see Fig. 4(a)]. In contrast, there are two dips for the parallel component, where the
absolute values of the reflection coefficient are very close to zero, and the corresponding phase
in the vicinity of these two dips monotonically decreases quickly [see the inset in Fig. 4(b)].
Thus the shifts of the parallel component can be greatly enhanced to be large positive near the
pseudo-Brewster angles where the phase decreases. Note that the lateral shift can be one order
in magnitude greater than the wavelength. By comparing Fig. 3 to Fig. 4, we find that for the
negative chiral slab, as the chirality parameter becomes large, the lateral shifts for the perpen-
dicular component can change from positive to negative, while they are always positive for the
parallel component. But the number of the peaks of the enhanced lateral shifts may increase at
the angles of the dips, due to the resonant conditions.

Fig. 5. Δ/λ as a function of d of the negative chiral slab for different θi. Reflected perpen-
dicular component for (a) and (b) and reflected parallel component for (c) and (d).
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In what follows, we discuss the lateral shifts as a function of the thickness of the slab under
different angles of incidence. First, we consider the lateral shifts of the reflected wave from a
negative chiral slab with the same parameters as in Fig. 3. We find that when θi is smaller than
the pseudo-critical angle (θc � 37◦), the lateral shifts of the reflected perpendicular compo-
nent could reach large positive or relatively small negative values, but there exists no periodic
fluctuation of the lateral shifts with respect to the thickness as shown in Fig. 5(a). Similar phe-
nomenon can be found from the shifts of the parallel component [see Fig. 5(c)]. The large
positive enhancement corresponds to the dip of the reflection coefficients, which follows previ-
ous discussions. However, when θi is at the critical angle of the LCP wave, as shown in Figs.
5(b) and 5(d), the lateral shifts of both reflected components are always negative and the peri-
odic fluctuation of the lateral shifts arises especially for the parallel component. Moreover, the
fluctuations of the lateral shifts of both components first reach a maximally shifted distance,
and then become saturated, keeping periodically fluctuating with respect to the thickness of the
slab. In addition, if the angle of incidence θi is larger than the pseudo-critical angle and keeps
increasing, the lateral shifts with periodic fluctuation under the same thickness of the slab will
decrease, as shown in Figs. 5(b) and 5(d).

Fig. 6. The dependence of the lateral shift on the angle of incidence at different absorption
scales. (a)μ = 1+0.02i, (b)ε = 0.64+0.02i.

In order to demonstrate the role of the loss of the chiral slab, we further investigate the
lateral shifts of the reflected perpendicular component at different absorption scales. Here we
discuss two types of lossy chiral slabs, whose parameters are: (a) μ = 1+0.02i, Re(ε) = 0.64,
(b) ε = 0.64+ 0.02i, Re(μ) = 1. The other parameters are the same: κ = 1.4, d = 1.5λ . The
dependence of the lateral shifts on the angle of incidence is shown in Fig. 6. It can be seen
that when the absorption of the chiral slab is weak, for the reflected perpendicular component,
the behaviors of its lateral shift with respect to the angle of incidence for different dielectric
loss or hysteresis loss are similar. However, the enhanced lateral shifts at the dip of the pseudo-
Brewster angle will be always damped when the dielectric loss (see Fig.6(a)) or hysteresis loss
(see Fig.6(b)) increases. On the other hand, when the absorption of the chiral slab becomes
strong, the pseudo-Brewster angle disappears and the lateral shift becomes larger at close-to-
grazing incidence. The insets of Fig. 6 show the reflected coefficients, from which we can also
predict that the pseudo-Brewster angle (corresponding to the minimum of reflected coefficients)
will disappear with increasing loss of the chiral slab. Here we notice that the high dielectric loss
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and the high hysteresis loss will lead to the different behaviors of the lateral shifts with respect to
the angle of incidence, i.e., the high dielectric loss results in the large positive lateral shift while
the high hysteresis loss leads to the large negative lateral shift at close-to-grazing incidence. In
addition, for reflected parallel component, the behavior of the lateral shifts in the presence of
dielectric loss is analogous to that in the presence of hysteresis loss (not shown here).

Fig. 7. The dependence of the lateral shift on the thickness of an invisible (for RCP wave)
chiral slab at different θi.(a,b) lossless chiral slab; (c,d) lossy chiral slab.

Apart from the aforementioned negative chiral slab, we also consider the other lossless chi-
ral metamaterial slab, as shown in Fig. 7. Here, we set the parameters of the chiral medium as
ε = 0.2, μ = 0.2, and κ = 0.8 in Fig. 7(a) and (b). In this situation, the wave number matching
condition k1 = k0 and the wave impedance matching condition η = η0 are satisfied simultane-
ously. Therefore the RCP wave is transmitted through the chiral medium without either reflec-
tion or refraction. Thus, the medium is invisible for RCP wave [35], whereas the LCP wave can
be refracted and reflected, or totally reflected from the material. This unusual phenomenon can
be physically understood as a destructive interference of electric and magnetic responses, due
to the mixing through the chirality parameter. For k2 =−0.6k0, the critical angle for LCP wave
is θc = arcsin0.6 � 37◦. Therefore, LCP wave is totally reflected with θi > 37◦ and it is easy to
see that both reflected components have the same negative lateral shift. This is due to the fact
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that the reflected wave only has LCP wave, and the RCP wave contributes to the transmitted
wave. Hence the perpendicular and the parallel reflection coefficients have the same absolute
values, while their phases are different. We further find the lateral shifts will fluctuate with re-
spect to the thickness of the slab when the angle of incidence is smaller than the critical angle
of the LCP wave (θi < θc), while for θi ≥ θc, the lateral shifts will vary with the thickness
monotonously. We believe that the difference of the behavior of the lateral shifts is caused by
the change of the properties of the LCP wave, i.e, the LCP wave changes from the transmitted
wave to an evanescent wave. Meanwhile, when the angle of incidence is close to the critical an-
gle of the LCP wave, the lateral shifts are large and increase as the slab thickness increases. If
the angle of incidence is greater than θc, the lateral shifts will increase quickly and then gradu-
ally approach to an asymptotic negative value with increasing the slab thickness(see Fig. 7(b)).
In this connection, the phenomenon that the lateral shifts become saturated as the thickness
increases is due to the Hartman effect.

Furthermore, in order to show the influence of the absorption of the chiral slab on the lateral
shifts, we plot the dependence of the lateral shift on the thickness of a lossy chiral slab for
ε = 0.2+0.01i, μ = 0.2+0.02i, and κ = 0.8, as shown in Fig. 7(c) and 7(d). The results show
that: (1) both reflected components almost have the same lateral shifts; (2) the lateral shifts of
both reflected components will fluctuate strongly with respect to the thickness of the slab for
θi < θc. Moreover, for θi > θc, the larger the angle of incidence is, the stronger the periodic
fluctuation becomes along the lossy chiral slab.

Fig. 8. Dependence of the lateral shift on the incident angle. The theoretical result is shown
by the line; the numerical results (for w0 = 20λ ) are shown by scatters, all the other optical
parameters are the same as in Fig. 3(a).

In the end, to show the validity of the stationary-phase method, we further perform numeri-
cal simulations with a two-dimensional incident Gaussian-shaped light beam. The electric fields
(Er

⊥ and Er
‖ ) of the reflected beam are directly determined from Eq. (23). The calculated beam

shift can be obtained by finding the location where
∣∣Er

⊥
∣∣
z=0 or

∣∣∣Er
‖
∣∣∣
z=0

is maximal [10]. Fig-

ure 8 shows the simulated data of curves in Fig. 4(a). For comparison, both the numerical and
theoretical results are shown in Fig. 8. At w0 = 20λ , the peaks of the numerical shifts are:
−4.5λ for the perpendicular reflected field; and 16.5λ (dip I), and 18λ (dip II) for the parallel
reflected field. The peaks of the theoretical shifts are about −4.54λ for the perpendicular field
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and 24.25λ ( 19.66λ ) for dip I (dip II) of the parallel field. It is noted that the discrepancy be-
tween theoretical and numerical results is due to the distortion of the reflected beam, especially
when the waist of the incident beam is narrow [36]. Further numerical simulation shows that
the wider the incident beam is, the smaller the discrepancy is.

4. Conclusion

In summary, an investigation on the lateral shifts of both reflected parallel and perpendicular
components for the lossy chiral metamaterial slab has been done by using the stationary-phase
approach. We show that the lateral shifts of the reflected perpendicular components can be large
negative as well as positive near pseudo-Brewster angle, at which |R| reaches a minimum. In
addition, at a given incident angle, the dependence of the lateral shifts on the slab thickness for
a negative chiral slab has also been studied. It is shown that, when the angle of incidence is
at the critical angle of the LCP wave, the lateral shifts of both reflected components oscillate.
Along with the increasing thickness of the slab, the shifted distance is increasing first, experi-
ences a maximum value, and then arrive at the saturation (i.e., the periodic fluctuation of the
lateral shifts when the slab’s thickness is sufficiently big). Moreover, when the angle of inci-
dence is larger than the critical angle and keeps increasing, the lateral shifts of both reflected
components will decrease along with slab’s thickness. In addition, we calculate the lateral shifts
of an invisible chiral medium with and without loss. In order to demonstrate the validity of the
stationary-phase approach, numerical simulations are made for a Gaussian-shaped beam.

Some other comments are in the following. Though the lossless parameters of the chiral
material have been discussed in references [12, 13, 37–39], the realistic chiral material is dissi-
pative. Here we take the absorption into account by adding imaginary parts to the parameters
(such as ε and μ). Alternatively, one can also adopt the Drude model for ε and μ , and the
Condon model for the chirality κ [40], in order to consider the effect of the dispersion within
our method. As for the observability of the lateral shift in our paper, the magnitude of the re-
flectivity from the chiral slab is about 0.001 ∼ 0.02, which is larger than that (10−3) of the
semiconductor [41]. Therefore, the lateral shift of the reflected beam near the Brewster angle is
also detectable as discussed in Ref. [41]. In this regard, the shift may be determined by finding
the spot of the maximum intensity with detectors, since the reflection (although it is weak) is
still Gaussian as long as the incident beam is Gaussian with a large beam width. In our case,
since the 2D TE incident wave is considered, one only needs to investigate the lateral shift, i.e.,
we confine ourselves to a 2D problem to focus on the lateral shift. However, for a 3D incident
wave on an isotropic material, both lateral and transversal (Imbert-Fedorov) shifts may appear
simultaneously [42–44]. It would be of great interest to study the Imbert-Fedorov shifts from
the chiral metamaterial slab.
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