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Thermal metamaterials have served as a practical way to manipulate heat flow thanks to their judiciously
designed structures, which achieve various functionalities. However, the connection and interplay between
various possible structural configurations and their functions’ switchability have long been neglected and
this is usually perceived as “one configuration, one function.” Here, we propose a doublet thermal metade-
vice in which we utilize the local configuration of two unequal conductivity phases to manipulate global
temperature distribution. Based on effective medium theory, we apply the phase interchange identity to
show that the functionalities of transparency, cloaking, concentrating, and rotating can be unified. The
doublet thermal metadevice is capable of realizing tunable multifunctions by simply adjusting the angular
displacement of specific sublayers of the assembly. The functional diversity of the device can be further
extended in two ways. One way is to use a secondary transformation and the other way is to alter the
shape parameter of the unit phase. This work provides a different framework to understand and design
thermal metamaterials, which might be extended to other disciplines such as optics, electromagnetics, and
acoustics.
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I. INTRODUCTION

Various types of thermal metamaterials or metadevices
have been designed and realized based on the theory
of transformation thermotics [1–8] or scattering cancella-
tion [9–17], in order to achieve previously inconceivable
thermal properties or functions such as thermal cloaking
[1–4,9–13], thermal concentrating [2,13,14], thermal rotat-
ing [4,13], thermal converging [5], thermal transparency
[15–17], and thermal illusion [6–8,17]. Recently, the con-
trollability of the functionalities of thermal metamaterials
has drawn a lot of research interest. The scheme of active
metamaterials [18,19] has been proposed and thermoelec-
tric components [19] have offered a method for actively
controlling heat flux. Temperature-dependent transforma-
tion thermotics [20] has been developed and a series
of alternative functional devices using nonlinear material
have been demonstrated, such as a switchable thermal
cloak [20], a switchable thermal concentrator [21], a ther-
mal cloak–concentrator [22], and a temperature-trapping
device [23]. The design of tunable multifunctional thermal
metamaterials is realized by programmed reassembly of
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unit-cell thermal shifters [24]. However, tunable metama-
terials with no need for altering their physical construction
remain to be explored.

Here, an alternative method is used to design metade-
vices with doublet unequal thermal conductivity phases.
It is well known that most thermal metamaterials are
designed with anisotropic thermal conductivity, which is
usually realized by alternating layered isotropic media,
such as the layered structure of a cloak and the sensu-
shaped structure of a concentrator. For traditional thermal
metamaterials, once the structure is adopted, the func-
tion of the device is confined as designed because the
anisotropic conductivity of alternating bulk materials can-
not be adjusted after construction. Here, we discretize two
unequal conductivity materials into unit cells and arrange
the two phases in a staggered layout as a chessboardlike
structure. Every movable sublayer consists of a string of
two alternating phases, so the local conductivities in the
two principle directions take variable values when the sub-
layers are rotated between each other. In this way, the local
heat flux can be manipulated and the global temperature
distribution can be switched.

Based on effective medium theory, we use duality rela-
tions to obtain the exact formula for the effective con-
ductivity of a two-phase thermal conducting medium. By
applying the phase interchange identity, we demonstrate
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that the design theory of thermal transparency, cloak-
ing, concentrating, and rotating can be unified into the
same framework. We develop a tunable metadevice that
enables the realization of multiple functions with the same
assembly but different configurations, and the functions
can be switched by simply adjusting the angular displace-
ment of specific sublayers. Then we provide two kinds of
schemes using anisotropic phases through a second trans-
formation or using isotropic phases by altering the shape
parameter in order to extend the functional diversity of
the device. We demonstrate the multiple functions of the
proposed device in simulations. In contrast to previous
approaches, our tunable doublet metadevice is expected
to be freely controlled without out-of-plane deformation
and rapidly adjustable without disassembly of constituting
parts.

II. THEORETICAL ANALYSIS

Duality transformations were first applied to conductiv-
ity problems by Keller [25]. A phase interchange identity is
obtained in binary periodic composites, which relates the
effective conductivity of two-dimensional (2D) microge-
ometries of two isotropic phases with that of the reciprocal
system obtained by interchanging its constituent materials.
The relation is that the macroscopic effective conductivity
along a principal direction is proportional to the inverse
of the conductivity along the orthogonal direction of the
reciprocal system, and the proportionality constant is the
product of the conductivities of two constituent materials.
Then this result, known as Keller’s theorem, is generalized
to a general form [26] and locally anisotropic 2D compos-
ites [27]. Special cases are discussed and some applications
have been developed [28,29]. Although Keller’s theorem
was originally presented in terms of electric conductiv-
ity, it also holds in other problems governed by Laplace’s
equation, such as the dielectric permittivity, the elastic
moduli, or the thermal conductivity [29]. A vital theme in
the derivations of duality relations is that a curl-free field
(e.g., an electrostatic field or a thermal gradient) produces
a divergence-free field (e.g., an electric current or a heat
flux), when the 2D system is rotated pointwise by 90°, and
vice versa, so that a rotated excitation (response) field in
the 2D system may be interpreted as the response (exci-
tation) field for its reciprocal system. Detailed derivation
of the reciprocal theorem is provided in the Supplemental
Material [30].

Here, we rewrite Keller’s theorem in the terms of ther-
mal conductivity. For a series of symmetric materials,
interchanging the two phases has no effect on the prop-
erties of the material. Hence, this means that the two
kinds of constituent phases are completely equivalent. The
effective conductivity tensor κ∗ is related to the conduc-
tivities of constituent materials κ1 and κ2 of the system

by

det κ∗ = κ1κ2. (1)

In Cartesian coordination, the effective thermal conduc-
tivities in the x and y directions (κ∗

x and κ∗
y ) are related

by κ∗
x κ∗

y = κ1κ2. A special example of such a symmetric
material, which is isotropic as far as its effective conduc-
tivity, is a chessboard. Then Eq. (1) immediately gives
κ∗ = √

κ1κ2, which means the macroscopic effective con-
ductivity is given simply by the geometrical mean of the
conductivities of its two phases. Imagine a chessboard
composed of two unequal conductivity materials κ1 and κ2,
surrounded by the background κ0 = √

κ1κ2. If we extract
the high-conductivity phase placed in the background, a
diffusion effect on the temperature gradient is shown in
Fig. 1(a), while the low-conductivity phase, which is now
alone embedded in the background, exhibits a concentrat-
ing effect on the temperature gradient as shown in Fig. 1(b).
Combining the two phases into a chessboard structure,
we obtain a neutral temperature gradient and an effec-
tive conductivity equal to that of the background as in
Fig. 1(c).

In polar coordination, Eq. (1) can be written in the form
as follows:

κ∗
r κ∗

θ = κ1κ2, (2)

where κ∗
r and κ∗

θ are the effective thermal conductivities
in the radial and tangential directions, respectively. The
counterpart of a chessboard in polar coordination is shown
in Fig. 1(d). If the two-phase structure in polar coordi-
nation is macroscopically isotropic just as the chessboard
in Cartesian coordination, which means that the effective
conductivities in radial and tangential directions satisfy
κ∗

r = κ∗
θ , we need to hold ln(ri+1/ri) = �θ , where �θ is

the central angle of a unit phase and ri (i = 1,2,. . . ,n) is the
inner radius of the ith annular layer of the structure.

The 2D geometry structure shown in Fig. 1(d) forms
a macroscopically homogenous and isotropically hollow
cylinder. Imagine every annular layer of the device is mov-
able and rotatable. Here, we consider the ideal case, which
ignores all the thermal resistances of the interfaces. If
we keep the odd-numbered layers at their original loca-
tions and rotate the even-numbered layers in Fig. 1(d) by
the central angle of a unit phase �θ , we obtain a struc-
ture with the same kind of material aligned along the
radial direction as shown in Fig. 1(e). On the basis of
the structure shown in Fig. 1(e), if we fix the 1st (5th,
9th) layer, continue to rotate the 2nd (6th, 10th) layer by
�θ/2, rotate the 3rd (7th, 11th) layer by �θ , and rotate
the 4th (8th, 12th) layer by 3�θ/2, then we have the struc-
ture shown in Fig. 1(f). No matter by which angle each
layer is rotated, Keller’s theorem holds and the relation
κ∗

r κ∗
θ = κ1κ2 exists.
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(a) (b) (c)

(d) (e) (f)

FIG. 1. Structures with two equivalent phases. Diagram of periodic structure of a chessboard in (a)–(c) Cartesian coordination and
(d)–(f) polar coordination. Isothermal lines in (a)–(c) exhibit the effect of different conductive phases on the temperature profile. (d)–(f)
illustrate the configurations of the device at the modes of transparency, concentration, and rotation, respectively.

Then we introduce the application of Keller’s theorem
in the design of a multifunctional thermal device. First, we
consider a hollow cylinder with anisotropic thermal con-
ductivity tensor κc = diag(κr, κθ ) embedded in an isotropic
background material κ0. Considering the structure placed
in a uniform thermal gradient field without internal heat
sources, the steady-state conduction equation satisfies the
Laplace equation

∇ · (−κ · ∇T) = 0. (3)

By variable separation, we obtain the expression of Eq. (3)
in polar coordinates

1
r

∂

∂r

(
rκr

∂T
∂r

)
+ 1

r
∂

∂θ

(
κθ

θ

∂T
∂r

)
= 0. (4)

For the anisotropic cylinder embedded in backgrounds
with thermal conductivity κ0, the condition κrκθ = κ2

0
ensures that the external thermal flux is kept undistorted
[9,14,16], that is, the temperature mismatch in the exter-
nal regime is cancelled out at the interfaces of thermal
metamaterials and the external environments.
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As far as our periodic structure of two isotropic phases
shown in Figs. 1(g)–1(i), the phase interchange identity
gives κ∗

r κ∗
θ = κ1κ2. We set κ1κ2 = κ2

0 , which gives κ∗
r κ∗

θ =
κ2

0 , so that the external thermal flux remains undistorted
during the changing of the configuration of the geomet-
ric structure. But the value of κ∗

r /κ∗
θ makes a difference in

the thermal gradient inside the hollow cylinder. The multi-
functional device can be designed based on the following
criteria. Namely,

(1) When κ∗
r = κ∗

θ , as shown in Fig. 1(d), the structure
serves as a thermal transparency device.

(2) When κ∗
r > κ∗

θ , as shown in Fig. 1(e), the structure
serves as a thermal concentrator.

(3) When κ∗
r > κ∗

θ , if we rotate the anisotropic con-
ductivity tensor diag(κr, κθ ) by a rotation matrix R, the
structure serves as a thermal rotator. The rotation matrix
R is denoted as follows

R =
[

cos β − sin β

sin β cos β

]
,

where β can be roughly calculated by β = arctan{�θ/

[2(e�θ − 1)]} for the structure [see Fig. 1(f)].
(4) When κ∗

r < κ∗
θ , the structure serves as a thermal

cloak. The effect of the cloak especially tends to be perfect
when κ∗

r /κ∗
θ → 0.

Although the structures shown in Figs. 1(d)–1(f) cannot act
as a cloak through rotating several layers of the device, we
can still achieve the cloak function by using two kinds of
anisotropic phases through a second transformation or by
changing the shape of the unit phase, which is explained in
detail in the next section.

III. RESULTS

A. Doublet metadevice with two isotropic phases

First, without loss of generality, we take a hollow cylin-
der consisting of 12 sublayers with each layer divided into
72 fan-shape unit cells as an example to validate the pro-
posed scheme. Two kinds of isotropic materials are alter-
nately aligned in every annular layer, which can be rotated
freely [see Figs. 2(a), 2(d), and 2(g)]. The thermal conduc-
tivities of phase 1, phase 2, and the background materials
are defined as κ1 = 20 W/(K · m), κ2 = 0.05 W/(K · m),
and κ0 = 1 W/(K · m), respectively. Here, we choose the
parameters r1 = 4.5 cm and ri (i = 2,3,. . . ,13) as calcu-
lated by the formula ln(ri+1/ri) = �θ .

On the premise of neglecting the thermal resistance at
all the interfaces, full-wave simulations are carried out in a
commercial software, COMSOL MULTIPHYSICS. In the sim-
ulation set up, the computational domain is a square with
a side length of 40 cm. The top and bottom sides of the
computational domain are set as fixed temperatures of 373

and 273 K, respectively, while the left and right sides take
insulation boundary conditions.

We first examine the performance of thermal trans-
parency in the chessboardlike configuration [see Fig. 2(a)].
The corresponding simulated temperature distribution is
shown in Fig. 2(b). It is noted that when the device is at the
mode of transparency, the radial effective conductivity κ∗

tra,r
and the tangential effective conductivity κ∗

tra,θ are equal to
that of the background κ0. Therefore, the temperature dis-
tribution outside and inside the device is undistorted as
nothing is there except for some local perturbations around
the boundaries of the discrete units. Figure 2(c) shows the
result of a theoretical reference model, which comprises
the background material in both the interior and exterior of
the annulus, with the annular material given the theoretical
effective thermal conductivity of the device. Here, the tem-
perature distribution is uniform with straight isothermal
lines [see Fig. 2(c)].

We then investigate the performances of a thermal con-
centrator and a thermal rotator. Figures 2(d) and 2(g)
present the configurations of the concentrator and the rota-
tor, respectively. The corresponding simulated temperature
profiles and isothermal lines are illustrated in Figs. 2(e) and
2(h), respectively. The simulation reveals the properties
of the proposed tunable device, namely, no external dis-
tortion exists and the internal temperature gradient varies
with the layout of the device. For example, a much greater
internal gradient is observed in Fig. 2(e), while a rotated
internal gradient is observed in Fig. 2(h). Similarly, results
of theoretical reference models with the annular material
given the macroscopically anisotropic effective conduc-
tivity are shown in Figs. 2(f) and 2(i). For the concen-
trator in Fig. 2(f), the effective conductivity is calculated
by effective medium theory κ∗

con,r = (κ1 + κ2)/2, κ∗
con,θ =

2κ1κ2/(κ1 + κ2). As for the rotator shown in Fig. 2(i), the
effective conductivity is calculated by κ∗

rot = Rκ∗
conRT.

B. Transformation-based metadevice with anisotropic
phases

To add the cloak function into our doublet metade-
vice, we introduce the method of transformation ther-
motics. Compressing every unit phase along the radial
direction (see Fig. 3), the transformation equations can be
expressed as

�r′
i = k�ri, �θ ′ = �θ , (5)

where �ri = ri+1 − ri and k < 1. Note that the material
parameters in the transformed space can be expressed as

κ ′ = �κ�T

det �
, (6)

where � = ∂(x′, y ′, z′)/∂(x, y, z) is the Jacobian transfor-
mation matrix.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. Schemes of thermal devices with isotropic phases and corresponding simulated performances and comparison simulations,
(a)–(c) thermal transparency, (d)–(f) thermal concentrator, (g)–(i) thermal rotator.

Then for each unit phase of conductivity κ1 and κ2, we
have the corresponding conductivity after transformation

κ ′
1 =

[
kκ1 0
0 κ1/k

]
, κ ′

2 =
[

kκ2 0
0 κ2/k

]
. (7)

According to Keller’s theorem, the structure resembling a
chessboard shown in Fig. 3(a) is macroscopically homoge-
nous with an isotropic effective conductivity κ∗ = √

κ1κ2.
Then we have the transformed effective conductivity
shown in Fig. 3(b)

κ∗′ =
[

k
√

κ1κ2 0
0

√
κ1κ2/k

]
. (8)

Note that det κ∗′ = κ1κ2 still exists after transformation.
Then we can constitute a thermal cloak for we have
κ∗′

r < κ∗′
θ after transformation. Similarly, we can calcu-

late the transformed effective thermal conductivity of the
structures under different configurations.

Then, we examine the performance of the doublet
metadevice consisting of two kinds of anisotropic mate-
rials. The device can be rotated to shift among four func-
tions: cloaking, concentrating, rotating, and transparency,
as illustrated in Figs. 4(a), 4(d), 4(g), and 4(j), respectively.
The device is assembled from 13 rotating sublayers, with
each layer divided into 24 fan-shape unit cells. Two kinds
of anisotropic materials are alternately arranged whose
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(a)
(b)

FIG. 3. Schematic of coordi-
nate transformation along the
radial direction for a chessboard
structure. (a) Original space.
(b) Transformed space.

conductivities are calculated from Eq. (7) through com-
pression transformation, as illustrated in Fig. 3. Here,
we take the compression proportionality coefficient k as
k = 1/

√
10. Then the thermal conductivities of phase

1′, phase 2′, and background materials are defined as
κ ′

r1 = 2
√

10 W/(K · m), κ ′
θ1 = 20

√
10 W/(K · m), κ ′

r2 =
0.005

√
10 W/(K · m), κ ′

θ2 = 0.05
√

10 W/(K · m), and
κ0 = 1 W/(K · m), respectively. It is worth mentioning
that the anisotropic phase can be obtained by alternately
stacking two kinds of isotropic layers according to effec-
tive medium theory. We set the inner radius r′

1 = 4 cm
and r′

i(i = 2,3,. . . ,14) is calculated by the revised formula
ln(r′

i+1/r′
i)/�θ ′ = k.

The diagrams and performances of the locally anisotropic
metadevice are summarized in Fig. 4. The left column
shows the configurations of the device in four modes
(cloak, concentrator, rotator, and transparency). The mid-
dle column shows the performances of the device under
a uniform temperature gradient field using COMSOL MUL-
TIPHYSICS software. The right column gives the reference
of theoretical models with the annular material defined
as the theoretical effective thermal conductivity of the
device. As illustrated in Fig. 4(b), the isothermal lines bend
around the cloaking region. The temperature inside the
device is almost constant, with the isothermal lines outside
exhibiting minimal disturbance, similar to the properties
displayed by a thermal cloak. Figure 4(e) shows the per-
formance of a weakened thermal concentrator compared
to that constituted by two isotropic materials with thermal
conductivities of 20 and 0.05 W/(K · m), but the concen-
trating property still exists. Figure 4(h) shows the perfor-
mance of a thermal rotator achieved from the concentrator
by rotating the angle of �θ/2 layer by layer. Here, the
rotator exhibits a larger rotation effect due to the larger
ratio of included angle to thickness of the unit. In addi-
tion, we obtain the function of thermal transparency by
adjusting the relative positions of the annuli, as shown
in Fig. 4(k). Similar performances are obtained between
our simulations in Figs. 4(b), 4(e), 4(h), and 4(k) and
the theoretical models in Figs. 4(c), 4(f), 4(i), and 4(l),
with some inevitable local disturbance of the unsmooth
isotherm lines.

C. Shape parameter-based doublet metadevice with
isotropic phases

Finally, we propose another way to design the radial and
tangential effective thermal conductivities of our device.
For the device with interlaced phases like a chessboard,
the shape of the unit phase can dominate its effective
conductivity in two principle directions. We present the
performances of the device as a function of the shape
parameter η = ln(ri+1/ri)/�θ , while the variation of η

is shown in Fig. 5. The thermal conductivities of two
isotropic phases and background materials are defined
as κ1 = 20 W/(K · m), κ2 = 0.05 W/(K · m), and κ0 =
1 W/(K · m). Structures of different unit shapes with η

taking the values of 1/3, 1, and 3 are illustrated in Figs.
5(a)–5(c), respectively. Figures 5(d)–5(f) show the corre-
sponding temperature profiles and we can see an analogous
cloaking effect in Fig. 5(d) and a concentrating effect in
Fig. 5(f). This means that we can also design the device
with four functions (cloak, concentrator, rotator, and trans-
parency) with only two kinds of isotropic materials when
we choose a small value of η and repeat the above steps.
Here, we propose a formula to estimate the effective
thermal conductivity κ∗

r and κ∗
θ as a function of κ1, κ2 and η

κ∗
r (κ1, κ2, η) =⎧⎪⎨
⎪⎩

√
κ1κ2

[(
1 − 2

√
κ1κ2

κ1+κ2

)
(η − 1) + 1

]
, η ≤ 1

√
κ1κ2(

1− 2√
κ1κ2

κ1+κ2

)(
1
η −1

)
+1

, η ≥ 1
,

κ∗
θ (κ1, κ2, η) =⎧⎪⎨
⎪⎩

√
κ1κ2(

1− 2√
κ1κ2

κ1+κ2

)
(η−1)+1

, η ≤ 1

√
κ1κ2

[(
1 − 2

√
κ1κ2

κ1+κ2

) (
1
η

− 1
)

+ 1
]

, η ≥ 1
.

(9)

We then examine the derived formula by comparing
the analytical results with those calculated by the finite
element method, as illustrated in Fig. 5(g). Letting C =
κ1/κ2, we verify the effectiveness of the derived formula
when η and C take various values. The vertical axis rep-
resents the normalized effective conductivities obtained by
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 4. Schemes of thermal devices with anisotropic phases and corresponding simulated performances and comparison simulations,
(a)–(c) thermal cloak, (d)–(f) thermal concentrator, (g)–(i) thermal rotator, (j)–(k) thermal transparency.

dividing κ∗
r or κ∗

θ by
√

κ1κ2. The triangular and circular
splashes in the graph exhibit the numerical results of radial
and tangential effective conductivities calculated by COM-
SOL MULTIPHYSICS software, while the solid and dash lines

represent the analytical results calculated by the proposed
formula. Good agreement is obtained for the two sets of
data shown in the graph, demonstrating the validity of our
estimation formula.
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(a) (b) (c)

(d) (e) (f)

(g)

FIG. 5. Verification of anisotropic effective conductivities caused by geometric shape properties of the unit phase. Structure schemes:
(a) η = 1/3, (b) η = 1, (c) η = 3. (d)–(f) are temperature distributions corresponding to (a)–(c). (g) Shows the relationship between
the normalized thermal conductivity and the shape parameter η. The triangular and circular splashes exhibit the numerical results,
while the solid and dash lines represent the analytical results.

In practice, our model can be realized by assembling a
group of concentric cylinder shells, and the switching pro-
cess can be implemented by applying torque to each part

through proper design of the transmission mechanism. In
reality, the contact interface in a realistic thermal device
is inevitable, under which condition the thermal contact
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interface would degrade the predesigned performance of
the device. Thus the interface resistance between sublay-
ers should be considered as a design factor. The effect of
interface resistances on the performance of a metadevice is
discussed in the Supplemental Material [30]. The thermal
resistance highly depends on the surface topography of the
interfaces and the fit modes of the parts. An interference
fit can reduce the contact thermal resistance, but causes an
increasing driving torque. A clearance fit is more benefi-
cial to drive movable parts, and we could choose a proper
thermal compound whose conductivity is matched with the
environment as the lubricating material to compensate for
the contact thermal resistance.

We point out that the approach is limited to situations
with rotational symmetry in 2D, that is, the cylindrical
geometry. However, a vital design concept in the doublet
metadevice is that the local conductivities in two principle
directions take variable values when the movable layers
are rotated, and then the local heat flux can be manipu-
lated. This design can also be applied in a doublet flat plate
construction in one dimension. If the concentric annuli are
replaced by parallel straight lines, we can attain a plate
with a wide range of variable thermal conductivities that
would be expected to serve as a continuously tunable ther-
mal switch. The implementation of switching in a real
device is much easier in a one-dimensional (1D) system.

IV. CONCLUSION

In summary, based on the phase interchange identity, we
propose an advanced method for the design of a doublet
metadevice with homogenous two-phase material, which
can be rotated to shift among different functions. We
further provide two schemes to enrich the versatility of
the thermal device and demonstrate that such a metade-
vice can be realized with only two kinds of isotropic or
anisotropic materials arranged in a layered annular con-
figuration. The assembly of sublayers with two phases
spaced around the ring enables four significant functions of
thermal metamaterials, including cloaking, concentrating,
rotating, and transparency. The proposed device exhibits
good performances in different modes. This tunable dou-
blet metadevice can become a promising candidate for
further enhancement of manufacturability for its diverse
functions with only a change in alignment. The scheme
presented here paves a way to actively control thermal
energy through different media, and also provides inspira-
tion to design more varieties of controllable metadevices,
such as concentrators (cloaks) with the tunable concentrat-
ing (cloaking) efficiency, rotators with the tunable rotation
angle, and so on.
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