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Spectrum is a basic dimension of waves ranging from electromagnetic to acoustic waves where informa-
tion can be encoded and multiplexed. The manipulation of the sound spectrum is desirable in applications
of acoustic communication and voice encryption, which, however, is challenging to realize. Here, based on
temporally modulated waveguides, we create effective gauge fields to generate frequency domain Bloch
oscillations (FBOs) to control the spectrum of sound. The modulation can induce mode transitions in the
waveguide band and form a discrete frequency lattice where the wave vector mismatch during transitions
acts as an effective electric field that drives FBOs. Furthermore, we find the modulation phase accompany-
ing transitions serves as an effective gauge potential that can control the initial oscillation phase. We report
that multiple FBOs with judiciously designed oscillation phases can be further cascaded to realize acoustic
spectrum reconstruction, unidirectional transduction, and bandwidth engineering. This study reveals the
significance of gauge fields in FBOs and functionalizes its cascaded configurations for advanced control
of the sound spectrum. This paradigm may find versatile applications in acoustic secure communication,
information encryption, and processing.
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I. INTRODUCTION

Acoustic waves have found great importance in a vari-
ety of wave physics research and practical applications
[1–3]. Controlling the spatial degrees of freedom of acous-
tic waves, such as using sonic crystals, metamaterials, and
metasurfaces, has received intensive attention. Examples
include acoustic imaging [4–11], vortex [12–16] and accel-
erating beams [17–20], unidirectional diffraction [21–24],
and topological insulators [25–30]. Nevertheless, these
studies mainly concern static acoustic systems, in which
the sound frequency or spectrum is a conserved quantity.
The research of manipulating the sound spectrum is still in
its infancy, while it is highly desirable in versatile appli-
cations such as in acoustic communication, information
encryption, and processing [13]. Previously, the frequency
conversion was achieved via an acoustic nonlinear effect,
namely, the second harmonic wave generation [31–33].
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However, the conversion efficiency is quite low even for
high-intensity acoustic waves. Alternatively, a spectrum
shift for acoustic waves has also been realized through
dynamic scattering from rotating objects [34]. Since this
approach depends on the shape and orientation of the scat-
terers, it is still far from implementing precise control of
the sound spectrum.

Recently, the idea of a synthetic frequency dimension
has received considerable attention in the contexts of
atomic and photonic systems, which provides an alterna-
tive mechanism to control the spectra of atoms and photons
[35–38]. Typically for photons, the synthetic frequency
dimension is usually constructed by inducing photonic
transitions among a set of optical modes with equal fre-
quency intervals under external dynamic modulation. Fur-
thermore, by controlling the modulation phase and wave
vector, one can also create effective gauge potentials and
electric fields in this frequency dimension, thus provid-
ing new functionalities to control the spectrum of light
[39–44]. Although the concept of a synthetic dimension
was first proposed in atomic and photonic systems, the
concept itself is universal and should be applicable to
all classical wave systems. In this regard, it is ready to
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introduce the concepts of a synthetic dimension and the
associated effective gauge fields to the realm of acoustics,
aiming to achieve full control of the sound spectrum.

In this work, we demonstrate the paradigm of a syn-
thetic frequency dimension and effective gauge fields in
temporally-modulated acoustic waveguides and realize
advanced control of the sound spectrum. Consider that
the compressibility of the filling material in an acous-
tic waveguide is subject to an external modulation, such
that mode transitions occur and a synthetic frequency lat-
tice forms. We find that the wave vector mismatch during
transitions acts as an effective electric field force that can
induce frequency domain Bloch oscillations (FBOs). The
initial phase of temporal modulation mimics an effective
gauge potential that can control the initial oscillation phase
of FBOs. By driving two cascaded FBOs with different
oscillation phases in two separated modulation waveg-
uides, we demonstrate a prototype of an acoustic commu-
nication system based on the spectrum self-imaging effect.
By cascading multiple waveguides with out-of-phase time
modulations, we also break the intrinsic localized feature
of FBOs and realize spectral unidirectional transduction
and bandwidth expansion for sound. Our study reveals the
capability of effective gauge fields in the control of the
sound spectrum for a plethora of important applications.

II. THE MAIN RESULTS

A. Acoustic frequency domain Bloch oscillations
driven by effective gauge fields

We start by revealing the effect of FBOs induced in
one time-modulated acoustic waveguide. The waveguide is
filled with silicone rubber [45–47], a waterlike ultrasonic
material. Suppose the material compressibility is subject
to a time modulation β(t) = β0 + �βcos(�t +φ), where
β0, �β, �, and φ are the background compressibility,
modulation amplitude, frequency, and initial phase, respec-
tively. In practice, as shown in Fig. 1(a), the modulation
can be realized by compressing the filling medium through
piezoelectric actuators [46,47]. The general acoustic wave
equations under time modulation are given by [3,46]

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ρ(r, t)
∂t

= −ρ0∇ · v(r, t),

∂v(r, t)
∂t

= −∇p(r, t)
ρ0

,

∂ρ(r, t)
∂t

= ρ0
∂[β(t)p(r, t)]

∂t
,

(1)

where ρ(r, t), p(r, t), and v(r, t) are the medium mass
density, pressure, and particle velocity. ρ0 is the time-
independent background mass density. The governing
equation for the acoustic wave thus reads

∇2p(r,t) − ρ0
∂2

∂t2
[β(t)p(r, t)] = 0. (2)

(a)

(b)

(c)

FIG. 1. Schematic sketch of the frequency conversion through
FBOs in a temporally-modulated acoustic waveguide filled with
silicone rubber. The compressibility of the filling material is sub-
ject to a sinusoidal modulation with modulation frequency � and
initial phase φ. The input and output frequencies are denoted
by ω0 and ω0 ± n� (n = 0, 1, 2,. . . ). (b) Phononic intraband
transitions in the linear acoustic waveguide band induced by
the temporal modulation. � and �k represent, respectively, the
frequency and propagation constant intervals between adjacent
ordered modes, with ±φ being the phase shift in the upward and
downward transitions. c0 is the sound of speed in the waveguide.
(c) Band structure for the modulation-induced frequency lattice
with a modulation phase of φ = 0, in which FBOs occur under
the drive of an effective electric-field force of Feff =−�kc0.

For simplicity, we consider the one-dimensional case
with ∇2 = ∂2/∂z2 and r replaced by z. As shown in
Fig. 1(b), the time-periodic modulation can induce mul-
tiple intraband transitions in the linear waveguide band
and create an artificial frequency lattice with a lattice
constant �. The instantaneous pressure field is thus p(z,
t) = ∑

npn(z)exp[i(ωnt − knz)], where ωn =ω0 + n� and
kn = k0 + n�k (n = 0, ±1, ±2,. . . ) are the angular fre-
quency and wave number of the nth-order fundamental
mode. Substituting p(z,t) into Eq. (2), we can derive the
coupled-mode equation (see Appendix)

i
∂pn(z)

∂z
= Cn[ei(φ+�kz)pn−1(z) + e−i(φ+�kz)pn+1(z)], (3)

where Cn = C = k0(�β/4β0) is the coupling strength
between adjacent modes in the frequency lattice.

To understand the acoustic spectrum evolution, we
first consider the eigen Bloch mode in the frequency
lattice, namely, an infinite-width frequency comb
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pn(z) = p0exp(inφ0)exp(ikzz), where p0 is the uniform
amplitude, φ0 is the Bloch momentum in the frequency
dimension, and kz is the collective propagation constant
along the waveguide direction. Plugging the Bloch mode
into Eq. (3), we can obtain the lattice effective band
structure

kz[φω(z)] = −2C cos[φω(z) − φ], (4)

where φω(z) =φ0−�kz is the z dependent Bloch momen-
tum. Since z = c0t, the Bloch momentum also varies in time
φω(t) = φ0−�kc0t, where c0 is the speed of sound in the
medium. As denoted in Fig. 1(c), the linearly time-varying
Bloch momentum corresponds to a constant electric field
force applied along the frequency dimension

Feff = ∂φω(t)
∂t

= −�kc0, (5)

which stems from the wave vector mismatch during fre-
quency transitions. Equation (4) shows that φω(z) is shifted
by φ in the band structure, indicating that the modula-
tion phase φ plays the role of an effective gauge potential
through

∫ ωn+1

ωn

Aeffdω = φ, (6)

from which we have Aeff = φ/�. Denoting φω(z) = kω(z)�,
the band structure can be rewritten as kz[kω(z)] = −2Ccos
[(kω(z)−Aeff)�]. The band structure shift induced by
the gauge potential is analogous to the situation where
the kinetic momentum of an electron is substituted
by the conical momentum in the presence of an elec-
tromagnetic vector potential [48,49]. For the input of
a real finite-width Bloch-mode wave packet centered
at an initial Bloch momentum φ0, the group veloc-
ity in the frequency lattice is z periodic, vg(z) = −∂kz
[kω(z)]/∂kω(z) = −2C�sin(φ0−�kz−φ), which gives rise
to a frequency shift ω(z) = ω(0) + ∫z

0 vg(z′)dz′

ω(z) = ω(0) + 2C�

�k
[cos(φ − φ0) − cos(�kz + φ − φ0)],

(7)

where ω(0) denotes the initial central frequency. The
center-of-mass of the wave packet undergoes an oscillatory
motion in the frequency lattice, which is FBOs. The corre-
sponding oscillation period is ZB = 2π /|�k| = 2πc0/|Feff|,
which is inversely proportional to the magnitude of the
driving force. Furthermore, we point out that the initial
oscillation phase is determined by the gauge potential,
namely, the initial modulation phase φ. In the following,
we shall exploit this gauge degree of freedom by cas-
cading multiple FBOs with different oscillation phases,
aiming to provide new functionalities of acoustic spectrum
manipulation that are unattainable in a single FBO process.

B. Spectrum reconstruction for acoustic
communication with two cascaded FBOs

In this section, we will apply two cascaded FBOs to
the scenarios of acoustic secure communications. A typ-
ical communication system usually comprises three basic
parts: the modulation, demodulation modules, and the in-
between transmission channel. As shown schematically in
Fig. 2(a), the two waveguides modulated with the same
frequency � but different phases (φ1 and φ2) can func-
tion as the modulation and demodulation modules, with
the central unmodulated waveguide serving as the trans-
mission channel. Moreover, we assume the information to
be transmitted is encoded in the spectrum of an acoustic
signal. To achieve secure communication, the spectrum of
the input signal should be deformed through the first FBO
process in the modulation module such that the encoded
information can be protected from being detected in the
transmission channel. In the demodulation module, the
deformed spectrum should then return to its input formula
through the second FBO process. The question lies in how
to design the two modulated waveguide lengths and mod-
ulation phases such that spectrum reconstruction can be
realized for an arbitrarily input acoustic signal.

To reveal the conditions for spectrum reconstruction
in the proposed communication system, we first con-
sider a frequency comb wave packet incidence in the

(a)

(b)

FIG. 2. (a) Schematic diagram of the frequency multiplexed
acoustic communication system, which consists of two mod-
ulated waveguides separated by an unmodulated transmission
channel. The two waveguides with lengths of L1 = ZB/3 and
L2 = 2ZB/3 are modulated with the same frequency � but dif-
ferent phases of φ1 = 0 and φ2 = 2π /3. The length of the unmod-
ulated channel is Lp = ZB/3, where ZB = 2π /|�k| is the period of
the FBOs. (b) The variation of Bloch momentum of an input fre-
quency comb wave packet during the cascaded FBOs in the two
modulated waveguides.
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system. As shown in Fig. 2(b), the wave packet with
initial Bloch momentum φ0 manifests FBOs (repre-
sented by the dashed red curve) in the encoding waveg-
uide, with the instantaneous Bloch momentum being
φω(z) = φ0−�kz, which reaches φ0−�kL1 at its end. In
the central unmodulated waveguide, though no FBOs
occur, the phase difference between adjacent order modes
still accumulates due to the presence of waveguide dis-
persion (denoted by the green arrows). Here, we assume
the channel waveguide length is Lp and the phase dif-
ference thus evolves into φ0−�kL1 + �kLp at its end.
When entering the decoding waveguide, FBOs restart
and the Bloch momentum again manifests a linear shift
as φω(z) = (φ0−�kL1 + �kLp )−�k(z−L1−Lp ) = φ0 + 2
�kLp−�kz (represented by the blue dashed curve). Due to
the distinct gauge potentials in the two modulation waveg-
uides, the Bloch momentum undergoes different shifts in
the two phase reference frames of φ1 and φ2. Thus, we can
obtain the relative Bloch momentum φω(z)−φm (m = 1, 2)
in the two waveguides

φω,m(z) =
{

(φ0 − �kz) − φ1, (m = 1)

(φ0 + 2�kLp − �kz) − φ2, (m = 2)
.

(8)

To realize the spectrum reconstruction at the output port
of the whole system, two conditions must be simulta-
neously satisfied. Condition 1: The Bloch momentum at
the output port of the encoding waveguide should equal
that at the input port of the decoding waveguide, namely,
φω ,1(L1) =φω ,2(L1 + Lp ). Condition 2: The total lengths
of encoding and decoding waveguides should be integer
multiples of the Bloch period. The two conditions can be
summarized as

{
δφ = �φ − �φp = 0,
L1 + L2 = vZB, (v = 1, 2, . . . ), (9)

where �φ =φ2−φ1 and �φp =�kLp . In Eq. (9), Con-
dition 1 indicates that the modulation phase difference
in the two modulation waveguides should be compen-
sated by the propagation phase difference between adjacent
ordered modes in the central transmission channel. Con-
dition 2 guarantees the recovery of Bloch momentum
after two FBO processes. Only when the two conditions
are simultaneously satisfied will the output spectrum per-
fectly return to its input state. For a general case, the
band structures and group velocities in the two modula-
tion waveguides are kz ,m[kω(z)] =−2Ccos[φω(z)−φm] and
vg ,m(z) =−2C�sin[φω(z)−φm] with m = 1, 2, leading to
the frequency comb evolution

ω(z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ω(0) + 2C�

�k
[cos(φ1 − φ0) − cos(�kz + φ1 − φ0)], (0 ≤ z ≤ L1)

ω(L1), (L1 ≤ z ≤ L1 + Lp)

ω(L1) + 2C�

�k
[cos(�kL1 − �kLp + φ2 − φ0)

− cos(�kz − 2�kLp + φ2 − φ0)].
(L1 + Lp ≤ z ≤ L1 + Lp + L2)

(10)

When Condition 2 is satisfied, namely, �k(L1 + L2) = 2π ,
the output frequency center is

ωout = ω(0) − 8C�

�k
sin

(
�kL1

2

)

sin
(

δφ

2

)

× cos
(

φ1 − φ0 + �kL1

2
+ δφ

2

)

. (11)

If Condition 1 is also satisfied with δφ = 0, we have
ωout = ω(0). The frequency comb center comes back to its
initial position, verifying the two conditions in Eq. (9) for
spectrum reconstruction.

The above theoretical analysis can be verified with
numerical simulations of acoustic spectrum evolution.
The simulations are performed by solving coupled-
mode Eq. (3) under different input conditions. Here, we
choose ρ0 = 990 kg m−3 and β0 = 9.824 × 10−10 Pa−1 for
silicone rubber, such that c0 = 1/(ρ0β0)1/2 = 1014 m s−1

[45–47]. The compressibility modulation depth is chosen
as �β/β0 = 0.05 � 1, indicating that the modulation can
be regarded as a weak perturbation. Other parameters are
ω0/2π =ω(0)/2π = 50 kHz, �/2π = 200 Hz, L1 = ZB/3,
L2 = 2ZB/3 (L1 + L2 = ZB), and Lp = ZB/3 (�φp = 2π /3).
Figure 3(a) shows the output spectrum evolution ver-
sus the phase difference δφ = �φ−�φp under a fre-
quency comb input with a sound pressure distribution
of pn(0) = exp[−(n�/W)2]exp(inφ0), where W = 5� is the
width of the Gaussian envelope and φ0 = 0 is the ini-
tial Bloch momentum. The envelope manifests sinusoidal
variation with respect to δφ, in good agreement with the
theoretical result denoted by the blue curve prediction by
Eq. (11). Then we input a single frequency instead of a fre-
quency comb into the system. As shown in Fig. 3(b), the
output spectrum evolution manifests a breathing pattern as
δφ varies, which returns to a single frequency as δφ = 0,
also verifying the condition in Eq. (9).
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. (a) Acoustic spectrum evolution versus
the phase difference of δφ =�φ−�φp for a fre-
quency comb input with an initial Bloch momen-
tum φ0 = 0 and comb width of W = 5�. The blue
curve represents the theoretical result predicted by
Eq. (11). (b) Acoustic spectrum evolution versus
δφ for a single frequency input. Spectrum evo-
lutions in the proposed acoustic communication
system with the input of (c) a frequency comb,
(d) a single frequency, (e) a periodic discrete
spectrum, and (f) a continuous spectrum under
the condition of δφ = 0, respectively. The blue
curve in (c) denotes the theoretical trajectory of
the frequency comb envelope evolution predicted
by Eq. (10). In (f), the width of the continu-
ous Gaussian spectrum wave packet is W = 2�.
The white dashed lines denote the boundaries
among the encoding, unmodulated, and decoding
waveguides.

To visualize the process of spectrum reconstruction, we
fix δφ = 0 and input different kinds of spectra into the
system. Figure 3(c) denotes the spectrum evolution for
a frequency comb input under the modulation phase of
φ1−φ0 = 0. The frequency comb manifests cosine oscil-
lation during FBOs in the encoding waveguide, remains
unchanged in the transmission channel, and exhibits oscil-
lation again in the decoding waveguide, ultimately return-
ing to the input state. The envelope evolution trajectory
also agrees well with the theoretical prediction in Eq. (10).
In Fig. 3(d), a single frequency instead of a frequency
comb is incident into the system, which also returns to
a single frequency at the output port. In terms of Fourier
analysis, a single frequency can be regarded as the super-
position of all frequency comb components with Bloch
momentum covering the entire Brillouin zone. Since all
frequency combs are reconstructed, the superimposed sin-
gle frequency will exhibit self-focusing.

More generally, since the spectrum reconstruction relies
only on the conditions of Eq. (9), it should apply to
arbitrarily input spectra, including both discrete and con-
tinuous ones. To verify this, we also input a periodic
spectrum with a frequency interval of 10� into the sys-
tem. As shown in Fig. 3(e), these equally distributed
frequencies can be regarded as the different channels in the
frequency division multiplexing communication systems.
The periodic spectrum manifests channel crosstalk in the
encoding waveguide and remains unchanged in the center

transmission waveguide, ultimately returning to its initial
state at the output port. Thus, we can reconstruct a peri-
odic spectrum through the cascaded FBOs. Moreover, we
input a Gaussian pulse into the system, which possesses a
continuous Gaussian spectrum. The width of the Gaussian
spectrum envelope is W = 2� and the modulation phase
with respect to the pulse arrival time is chosen as φ1 = 0.
As shown in Fig. 3(f), the spectrum manifests bandwidth
expansion in the encoding waveguide and then bandwidth
compression in the decoding waveguide, which can also be
perfectly reconstructed at the output port.

To further confirm the above calculated results obtained
by solving coupled-mode Eq. (3), we also perform first-
principle simulations by solving the time-dependent wave
equation of Eq. (2) with the finite-element method (FEM)
based on COMSOL Multiphysics. For comparison purposes,
both the coupled-mode and FEM simulation results are
shown in Fig. 4. Here, we choose a frequency comb and
single frequency inputs in Figs. 4(a) and 4(b), correspond-
ing to those in Figs. 3(c) and 3(d). The modulation depth
in Fig. 4 is �β/β0 = 0.01, with all other parameters kept
the same as those in Fig. 3. For the frequency comb input
shown in Fig. 4(a), the FEM simulation spectra at z = 0,
L1, L1 + Lp , and L1 + Lp + L2 are represented by the blue
curves, which agree well with the coupled-mode simula-
tion results denoted by the green dots. Moreover, both the
FEM and coupled-mode simulation results show that the
frequency comb evolves along the theoretical trajectory

064012-5



CHENGZHI QIN et al. PHYS. REV. APPLIED 11, 064012 (2019)

(a)

(b)

FIG. 4. The comparisons between the coupled-mode equation
simulation results using Eq. (2) and the FEM simulation results
using Eq. (3) under (a) a frequency comb and (b) a single fre-
quency input. In both (a) and (b), the blue curves denote the FEM
simulation spectra at z = 0, L1, L1 + Lp , and L1 + Lp + L2, while
the green dots represent the corresponding coupled-mode sim-
ulation spectra. The background thermal figures in (a) and (b)
denote the whole spectrum evolutions.

predicted by Eq. (10), further validating the theoretical
analysis. In Fig. 4(b), we input a single frequency into
the system and both the FEM and coupled-mode sim-
ulations show that the single frequency evolves into a
frequency comb in the encoding waveguide and remains
unchanged in the central transmission channel, ultimately

converging back onto a single frequency at the end of the
decoding waveguide. The FEM simulations further con-
firm the spectrum reconstruction functionality for a secure
communication system.

As indicated in Sec. A, the modulation phase acts as
an effective gauge potential that can control the initial
oscillation phase of FBOs, so we now exploit the modula-
tion phase to manipulate the spectrum evolution processes.
Figures 5(a)–5(d) illustrate the frequency comb evolutions
as the modulation phases are chosen as φ1−φ0 = 0, π , π /2,
and −π /2, respectively. Other parameters are the same as
those in Fig. 3. The theoretical trajectories are denoted
by the blue curves, which agree well with the simulated
results. The evolution trajectory for φ1−φ0 = 0 manifests
mirror symmetry with respect to that for φ1−φ0 = π , indi-
cating the opposite frequency shifts during each FBO
process. This mirror symmetry also applies to the cases
for φ1−φ0 =π /2 and −π /2. In Figs. 5(e)–5(h), we input a
continuous Gaussian spectrum instead of frequency combs
into the system. The modulation phases with respect to the
pulse arrival time are chosen as φ1 = 0, π , π /2, and −π /2,
respectively. Similar to the situations of frequency comb
inputs, the continuous spectrum evolutions also manifest
mirror symmetries for φ1−φ0 = 0 and π as well as for
φ1−φ0 =π /2 and −π /2.

Now we discuss the influence of the initial width
of the incident spectrum on its evolution process. In
Figs. 6(a)–6(c), the input Gaussian spectra have widths of
W = �, 2�, and 5�, respectively. As the width increases,
the spectrum experiences greater bandwidth expansion
during propagation. This can be interpreted in terms

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 5. (a)-(d) Influence of modulation phase φ1−φ0 on the spectrum evolution for a frequency comb input during cascaded FBOs.
The modulation phase is (a) φ1−φ0 = 0, (b) φ1−φ0 =π , (c) φ1−φ0 = π /2, and (d) φ1−φ0 = −π /2, respectively. All other parameters
are kept the same as those in Fig. 3(c). The blue curve in each panel denotes the theoretical evolution trajectory of the frequency comb
envelope. (e)-(h) Spectrum evolutions for a continuous Gaussian spectrum input under different modulation phases of φ1 = 0, π , π /2,
and −π /2, respectively. The modulation phase here is defined with respect to the pulse arrival time. The white dashed lines denote the
boundaries between the encoding, unmodulated, and decoding waveguides.
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 6. (a)-(c) Influence of the initial spectrum
width on the frequency evolution for a contin-
uous Gaussian spectrum input. The initial width
of the Gaussian spectrum envelope is (a) W = �,
(b) W = 2�, and (c) W = 5�, respectively, where
�= 2π × 200 Hz is the modulation frequency.
All other parameters are kept the same as those in
Fig. 3(f). (d)-(f) One-dimensional spectrum distri-
butions at distances of z = 0, L1, and L1 + Lp + L2
in (a)-(c), respectively.

of the uncertainty principle: A spectrum wave packet
with a narrower bandwidth contains more Bloch momen-
tum components in the Brillouin zone, giving rise to
more obvious bandwidth expansion during propagation.
Figures 6(d)–6(f) show the one-dimensional spectra at
z = 0, L1, and L1 + L2 + Lp , all of which manifest spectrum
reconstructions at the output port. The narrower spec-
trum also manifests a more obvious spectrum shift and
distortion in the propagation process.

Finally, we will discuss the advantages of cascaded
FBOs for acoustic secure communications. In principle, a
freely propagating waveguide can also transmit an acous-
tic signal without any spectrum distortion. However, the
information encoded in the spectrum can be detected
during propagation if there exists only a free transmis-
sion channel. Therefore, the modulation and demodula-
tion modules are necessary to encode and decode the
transmitted information. In addition, due to the peri-
odic nature of FBOs, one FBO process is, in principle,
enough to achieve spectrum reconstruction. Nevertheless,
in practical situations, especially for long-distance acoustic
communication, one FBO process requires a modulation

waveguide with sufficient length. This scheme could dra-
matically increase the system complexity and cost. In view
of all of the above drawbacks for a freely propagating
waveguide and one FBO process, it is most appropriate to
use the modulation-transmission-demodulation configura-
tion to realize acoustic secure communications.

C. Spectrum transduction and band engineering with
multiple cascaded FBOs

Due to the periodically oscillatory nature for FBOs
[50], the frequency shift in a single FBO process is lim-
ited within the range of |�ω|max = 4C�/|�k|. To break
this intrinsic localized feature of FBOs and realize spec-
trum directional transduction, we can cascade multiple
FBOs with appropriately designed oscillation phases.
For simplicity, we consider M modulation waveguides
are directly cascaded without unmodulated channels in
between. The length and modulation phase of the mth
waveguide are Lm and φm, for which the band structure
and group velocity are kz ,m(φω(z)) =−2Ccos[φω(z)−φm]
and vg ,m(z) =−2C�sin[φ0−�kz−φm], (m = 1, 2,. . . , M ).
The evolution trajectory of the frequency comb is

ωm(z) =

⎧
⎪⎪⎨

⎪⎪⎩

ω(0) + 2C�

�k
[cos(φ1 − φ0) − cos(�kz + φ1 − φ0)], (m = 1)

ω

(
m−1∑

i=1
Li

)

+ 2C�

�k

[

cos
(

m−1∑

i=1
�kLi + φm − φ0

)

− cos(�kz + φm − φ0)

]

. (m ≥ 2)

(12)
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To realize unidirectional spectrum transduction, we can
fix each waveguide length as Lm = ZB/2 and choose out-
of-phase modulations �φ =φm+1−φm =π in adjacent
waveguides. For an initial phase difference φ1−φ0 = 0 or
π , the frequency comb will exhibit a unidirectional blue or
red shift

ωm(z) = ω(0) ± 4C�(m − 1)

�k

± 2C�

�k

{
1 − cos(�kz) (m is odd)
1 + cos(�kz) (m is even) , (13)

where we choose +(−) for φ1−φ0 = 0(π ). For both cases,
the total accumulated frequency shift is |�ω|max = ωm
(mZB/2)−ω(0) = 4MC�/�k, which is proportional to
the number of modulation waveguides. On the con-
trary, for φ1−φ0 =±π /2, the frequency shift will vanish
with |�ω| = 0. For other choices of phase differences
φ1−φ0 �= 0, π , or ±π /2, the frequency shift satisfies
0<|�ω|<|�ω|max, which can be precisely tuned by vary-
ing the modulation phases. The theoretical analysis has
also been verified by simulations in Fig. 7, where we
fix M = 4 and Lm = ZB/2. Figure 7(a) shows the spectrum
evolution for a frequency comb input as φ1−φ0 = 0. The
spectrum experiences a directional blue shift with vanished
bandwidth expansion, consistent with the theoretical tra-
jectory denoted by the blue curve predicted by Eq. (13).

While for φ1−φ0 =π /2 shown in Fig. 7(b), the frequency
shift vanishes and the bandwidth expansion reaches the
maximum. By choosing φ1−φ0 =π /3 in Fig. 7(c), both
frequency shift and bandwidth expansion exist, where the
amounts are less than the cases of φ1−φ0 = 0 or π /2.
Finally, we input a single frequency into the system, as
shown in Fig. 7(d), and the spectrum manifests discrete
diffraction during propagation, with the bandwidth reach-
ing the maximum of 2|�ω|max = 32C�/|�k| at the output
port.

The functionalities of spectrum transduction and band-
width expansion can also be generalized to continuous
spectra. Figures 8(a)–8(c) denote the spectrum evolutions
under the modulation phase of φ1 = 0 with the initial
spectrum widths of W = 1�, 2�, and 5�, respectively.
As the initial width increases, the spectrum expansion
will decrease, giving rise to better directionality for the
spectrum transduction. In Figs. 8(d)–8(f), the modulation
phase is chosen as φ1 = π /2 with all other parameters
kept unchanged. The Gaussian spectra with initial widths
of W = 1�, 2�, and 5� all experience band expansion
during propagation. As the initial width decreases, the
bandwidth expansion becomes more obvious. For a suffi-
ciently narrow width, the spectrum evolution will approach
the situation of a single frequency input as shown in
Fig. 7(d). Thus, to obtain better directionality for the spec-
trum transduction, one should choose a spectrum with

(a)

(b)

(c)

(d)

FIG. 7. Acoustic spectrum evolutions for a fre-
quency comb input with φ0 = 0 and W = 5�

in four cascading waveguides under out-of-
phase modulation. The initial phase differences
are (a) φ1−φ0 = 0, (b) φ1−φ0 =π /2, and (c)
φ1−φ0 =π /3, respectively. The length of each
waveguide is fixed as Lm = ZB/2 (m = 1, 2, 3, 4).
The blue curves in (a), (b), and (c) denote the
theoretical trajectories of the acoustic frequency
comb envelopes. (d) Acoustic spectrum evolution
for a single frequency input. The white dashed
lines denote the boundaries of the four-section
time-modulated waveguides.
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 8. Influence of initial spectrum width on the frequency transduction and bandwidth expansion in four cascading modulation
waveguides. (a)-(c) Directional blue shifts for a continuous Gaussian spectrum input under φ1 = 0 and �φ = φm+1−φm = π , where
φ1 is the modulation phase in the first waveguide with respect to the spectrum arrival time and �φ is the modulation phase difference
between adjacent waveguides. The width of the Gaussian spectrum envelope is (a) W =�, (b) W = 2�, and (c) W = 5�, respectively,
where �= 2π × 200 Hz is the modulation frequency. All other parameters are kept the same as those in Fig. 6. (d)-(f) Spectrum
evolutions for a continuous Gaussian spectrum input for the modulation phase of φ1 =π /2 in the first waveguide with respect to the
pulse arrival time.

a broad bandwidth. On the contrary, to achieve a more
obvious bandwidth expansion, the initial spectrum width
should be chosen to be as narrow as possible. Thus, by
exploiting multiple cascaded FBOs, we can achieve flexi-
ble control over the both the spectrum shifts and bandwidth
expansion for acoustic signals.

III. CONCLUSIONS

In summary, we establish a framework to control
a sound spectrum through cascaded FBOs in time-
modulation waveguide systems. The wave vector mis-
match in frequency transition acts as an effective electric
field that drives FBOs, and the modulation phase plays
the role of an effective gauge potential, which determines
the initial oscillation phase of FBOs. Utilizing a pair of
time-modulation waveguides with judiciously designed
modulation phases and lengths, we demonstrate acous-
tic secure communication via spectrum self-imaging. By
cascading multiple waveguides under out-of-phase time
modulations, we realize unidirectional spectrum shift and
bandwidth expansion. Finally, since all the effects do not
rely on the explicit choice of incident spectrum, our work
may find important applications in spectrum engineering
with the operation bandwidth ranging from audible up to
ultrasonic regimes.
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APPENDIX: COUPLED-MODE EQUATION OF
FBOS

Here, we provide the detailed derivation for the coupled-
mode equation of Eq. (3) and discuss the algorithm of
numerically solving the equation. As shown in the main
text, the acoustic pressure distribution under time modula-
tion is given by

∇2p(r,t) − ρ0
∂2

∂t2
[β(t)p(r, t)] = 0, (A1)

where the compressibility is assumed to be subjected to a
sinusoidal modulation

β(t) = β0 + �β cos(�t + φ). (A2)
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For a one-dimensional case with ∇2 = ∂2/∂z2 and r
replaced by z, the modulation can induce acoustic intra-
band transitions in the linear waveguide band, giving rise
to the acoustic pressure

p(z, t) =
∑

n

pn(z) exp[i(ωnt − knz)], (A3)

where ωn =ω0 + n� and kn = k0 + n�k (n = 0, ±1,
±2,. . . ) are the angular frequency and the propagation con-
stant of the nth-order fundamental mode. Substituting Eqs.
(A2) and (A3) into (A1), we have the following equation

∂2p(z, t)
∂z2 − ρ0β0

∂2p(z, t)
∂t2

= ρ0�β
∂2

∂t2
[cos(�t + φ)p(z, t)].

(A4)

By applying a slowly varying amplitude approximation
and ρ0β0ω

2
n − k2

n = ω2
n/c2

0 − k2
n = 0, the left side of Eq.

(A4) is

∑

n

[
∂2pn(z)

∂z2 − 2ikn
∂pn(z)

∂z
+

(
ω2

n

c2
0

− k2
n

)]

ei(ωnt−knz)

= −
∑

n

2ikn
∂pn(z)

∂z
ei(ωnt−knz). (A5)

With ωn ±� =ωn±1 and kn ± �k = kn±1, the right-hand
side of Eq. (A4) is

ρ0�β
∂2

∂t2

{
1
2

[ei(�t+φ) + e−i(�t+φ)]
∑

n

pn(z)ei(ωnt−knz)

}

= ρ0�β

2
∂2

∂t2
∑

n

pn(z)
(
ei(ωn+�)te−i(kn+�k)zei(φ+�kz)

+ ei(ωn−�)te−i(kn−�k)ze−i(φ+�kz))

= −ρ0�β

2

∑

n

pn(z)
(
ω2

n+1ei(ωn+1t−kn+1z)ei(φ+�kz)

+ ω2
n−1ei(ωn−1t−kn−1z)e−i(φ+�kz)) . (A6)

Substituting (n ± 1) with n, we have

∑

n

pn(z)ω2
n±1ei(ωn±1t−kn±1z) =

∑

n

pn∓1(z)ω2
nei(ωnt−knz).

(A7)

Therefore, we can obtain the coupled-mode equation

i
∂pn(z)

∂z
= Cn[ei(φ+�kz)pn−1(z) + e−i(φ+�kz)pn+1(z)],

(A8)

where the coupling strength between the nth and (n ± 1)th-
order mode is given by

Cn = ρ0�βω2
n

4kn
= �β

4β0
kn. (A9)

Since � � ω0, the coupling strength for each order can
be considered as a constant Cn = C = k0(�β/4β0). By
truncating the order to the maximum n = M and denot-
ing |ϕ(z)〉 = [p1(z), p2(z),. . . , pN (z)]T with N = 2M + 1,
the coupled-mode equations can be rewritten as a time-
dependent Schrödinger equation

i
∂|ϕ(z)〉

∂z
= H(z)|ϕ(z)〉, (A10)

with the z dependent matrix H(z) given by

H(z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 Ce−i(φ+�kz) 0 · · · 0 0
Cei(φ+�kz) 0 Ce−i(φ+�kz) · · · 0 0

0 Cei(φ+�kz) 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 Ce−i(φ+�kz)

0 0 0 · · · Cei(φ+�kz) 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (A11)

The dynamics of FBOs can thus be obtained by numeri-
cally solving Eq. (A10).
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