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Abstract—This letter presents a field expansion of the solution
to three-dimensional electromagnetic problems in a material char-
acterized by the general gyrotropic media. Both and tensors
are gyrotropic, specified by six components and considered in the
present analysis under spherial coordinates. Electromagnetic fields
in general gyrotropic media are solved by using the method of sep-
aration of variables. Much effort is paid to the solution of a coupled
set of second-order differential equations. Some specific situations
of the parameters are investigated in detail. By properly grouping
some terms, the electromagnetic fields are represented in a com-
pact form. Compared to the existing results in the spherical coor-
dinate system, the material properties investigated in this letter are
more general. The general expressions of the fields are found to be
reducible to those existing results for simplier cases.

Index Terms—Field representations, gyrotropic media, spherical
coordinates.

I. INTRODUCTION

REPRESENTATION of electromagnetic (EM) fields in gy-
rotropic media (where both permittivity tensor and per-

meability tensor have six nonzero elements) has been an im-
portant topic in electromagnetic theory. This is especially true
when the electromagnetic fields are described in spherical co-
ordinates. In spherical coordinate systems, such a material is
characterized by six tensor elements (three for permittivity and
three for permeability) and is inhomogeneous since the rota-
tional symmetry imposes an origin and constraints the material
principal optical axes to be orthogonal to the surface of a sphere
or conformal with it.

Due to the advances in material science and technology which
have manifested fabrications of various kinds of gyrotropic ma-
terials, considerable attention has been paid in recent years to the
interactions of electromagnetic waves with gyrotropic materials
[1]–[5]. Some other works developed certain methods such as
scalar Hertz potentials [6] and scalar superpotentials [7]. Due to
the complexity in expression forms of the electromagnetic fields
in spherical coordinate systems, the formulations of EM fields
are tedious, lengthy, and complicated. The relevant works [8],
[9] studied only electromagnetic waves and interactions in gy-
rotropic media in spherical coordinates and the materials have
only electric gyrotropy, though. Other works dealt with the fields
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and eigenvalues either in uniaxial anisotropic media [10] or in
the Cartesian and cylindrical coordinate systems [11], where the
formulations are much simplier than what follows in the current
work. It appears that no other work is available in the literature
to represent, in the present way, the EM fields in this kind of
materials containing both electric and magnetic gyrotropies.

In this work, we study a kind of general gyrotropic media
which are characterized by constitutive tensors of permittivity
and permeability in the following forms:

(1a)

(1b)

where the identity dyadic is expressed as .
In the present study, much effort is made toward solving the

second-order differential equations and then obtaining all the
electric and magnetic field components of TE and TM waves
with respect to . Different cases, both specific and general, are
considered. In addition, this letter makes some corrections of
some of the field expressions in [8] when the solution is reduced
to that of the simplier case discussed in [8].

II. BASIC FORMULATIONS

For anisotropic media, the constitutive relationships as used
in the Maxwell equations are given below

(2a)

(2b)

where the time dependence has been assumed but sup-
pressed.

To solve the Maxwell’s equations, it is more convenient to
pose the problem in terms of only the radial functions and
[8]. After a somewhat lengthy but careful algebra manipulation,
we arrive at a coupled set of differential equations involving
only radial components and

(3a)
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(3b)

From the properties of the associated Legendre polynomials, we
will have

(4)

where the bullet denotes the separated part of either or
according to a specific case, but it should be, however, con-

formal through (4). Certainly, this will lead to the Legendre
polynomial as its solution.

Using the method of separation of variables, it is found
that the solutions are composed of superpositions of spherical
Bessel functions, associated Legendre polynomials, and har-
monic functions, which is similar to that in [8]

(5)

where the forms of and depend on the specified cases
discussed later.

For the neat and simplicity of the further derivations, let us
introduce some identities first

(6)

In (6), and denote spherical Bessel functions of
the first kind and the second kind, respectively. The
and represent spherical Hankel functions of the first
kind and the second kind, respectively. The order , when used
to describe the waves and fields in isotropic media, is usually an
integer; but it is not necessarily an integer for characterize waves
in gyrotropic media. In this case, it depends on the medium pa-
rameters and has two values

(7a)

(7b)

III. FIELD REPRESENTAIONS IN DIFFERENT CASES

In the last section, the eigenvalues and the angular functions
were obtained. In this section, much effort will be made on (3)
dealing with the radial functions. Subsequently, we will solve
(3) for different cases.

A. Case 1: ( and )

In this case, the (3) is decoupled into

(8a)

(8b)

Substitute (5) into (8) and after some lengthy manipulations, we
obtain

(9a)

(9b)

where

(10a)

(10b)

In (9) and (10), we have the following interparameters:

(11a)

(11b)

(11c)

(11d)

(11e)

In order to obtain the complete field representation, the tangen-
tial components of electromagnetic fields are needed and they
are expressed as follows:

(12a)

(12b)
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and

(13a)

(13b)

To make the solution more straightforward, we need to separate
the field components into TE- and TM-field modes subsequently
with respect to .

1) TE-field Modes to .: For TE-field modes, (12) is reduced
to

(14a)

(14b)

Substituting (14) into (13), we have

(15a)

(15b)

After careful manipulations, we finally obtain

(16a)

(16b)

(16c)

(16d)

2) TM-field Modes to : For TM-field modes, (13) is simi-
larly rewritten as

(17a)

(17b)

Substituting (17) into (12), we have

(18a)

(18b)

Again after careful manipulations, we finally have

(19a)

(19b)

(19c)

(19d)

B. Case 2:

In this case, the coupled terms in (3) are not zero anymore,
which will increase the complexity of obtaining the solutions.
Note that in (7) if . Hence, to be neat,
we let in the following derivation. Similarly, much
effort is made to get the expressions of and , which are
bases of obtaining the tangential comppnents of the fields.
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In this case, (5) should be revised into

(20)

In the given relationship between the parameters, with (4) ob-
tained, (7) is reduced to

(21a)

(21b)

We find it feasible to decouple (21) by taking (21a) (21b).
After a very lengthy manipulation, we will arrive at two dif-
ferential equations based on (21a) (21b) in the form of the
Coulomb wave functions, and the solutions of those kinds of dif-
ferential equations have been solved for in [12] and expressed
in terms of cylindrical Bessel functions.

Substituting (20) into (21), we find actually that (21) is associ-
ated with and . Finally, with the solutions of the Coulomb
wave differential equations in [12], we obtain

(22)

where the interparameters , and are defined as follows:

(23a)

(23b)

(23c)

Hence, we obtain

(24a)

(24b)

After obtaining the and , the tangential components of
electromagnetic fields can be expressed by following the proce-
dures similar to those in Section A.

C. Case 3:

If and bear the uniaxial anisotropic form, namely
, field representations were given in [8]. However, the

representations of , and are incorrect due to

typos. Herein, we present the corrected forms for those items
with the notations used by Liu et al.

(25a)

(25b)

(25c)

IV. CONCLUSION

In this letter, electromagnetic fields in general gyrotropic
mediaare formulatedanddiscussed inspherical systems.Starting
from the radial field components, all tangential components of
electromagnetic fields are obtained for some cases by means
of separation of variables and solving some special differential
equations, which lead to the Coulomb wave functions for ex-
ample. By grouping TE- and TM- wave components together, the
fields are finally expressed in a compact form. It is shown that the
expressions are reducible to those of a simplier case, i.e., uniaxial
anisotropic cases and isotropic cases. The present procedure may
be extended to some other cases of more complicated constitutive
relations of and , which may have more than six parameters.
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