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Abstract—This paper studies the mitigation of phase noise
(PHN) in orthogonal frequency-division multiplexing (OFDM)
data detection. We present a systematic probabilistic framework
that leads to both optimal and near-optimal OFDM detection
schemes in the presence of unknown PHN. In contrast to the
conventional approach that cancels the common (average) PHN,
our aim is to jointly estimate the complete PHN sequence and
the data symbol sequence. We derive a family of low-complexity
OFDM detectors for this purpose. The theoretical foundation on
which these detectors are based is called variational inference, an
approximate probabilistic inference technique associated with the
minimization of variational free energy. In deriving the proposed
schemes, we also point out that the expectation-maximization
algorithm is a special case of the variational-inference-based joint
estimator. Further complexity reduction is obtained using the
conjugate gradient (CG) method, and only a few CG iterations are
needed to closely approach the ideal joint estimator output.

Index Terms—Conjugate gradient (CG), expectation maximiza-
tion (EM), orthogonal frequency-division multiplexing (OFDM),
phase noise (PHN), variational inference.

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing (OFDM)
is becoming the technology of choice in fourth generation

wireless communication systems. Wireless applications that use
OFDM include wireless LAN IEEE 802.11 a/g, fixed broadband
wirelessaccess IEEE802.16a, terrestrialbroadcastofdigital tele-
vision (DVB-T), HiperLAN2 in Europe, and HiSWANa in Japan.
While OFDM is considered a practical scheme to combat fre-
quency selective channel fading and to increase data rate, many
practical challenges still face OFDM system designers [1]. In this
paper, we consider the phase noise (PHN) problem that arises
fromtheimperfectionsofapracticalvoltage-controlledoscillator
(VCO).ImprovedRFcircuitdesignmayconceivablyalleviate the
problem but cannot eliminate it. Therefore, it is necessary to de-
sign digital signal processing techniques to combat residual PHN
in the high-performance systems envisioned for the future, which
are very sensitive to PHN. Despite the efforts of many researchers
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working in this area, most results are still based on over simpli-
fied models and are suboptimal.

The PHN problem appears similar to the channel estima-
tion problem in that data detection must be accomplished in the
presence of unknown channel effects. However, a channel im-
pulse response (CIR) changes slowly with respect to the OFDM
symbol rate, and, hence, channel estimates obtained at some
time in the past remain valid in the present and can be used
for data detection. On the other hand, PHN varies rapidly and
estimates obtained in one OFDM symbol are not strongly cor-
related with the PHN process in another symbol interval, and,
hence, PHN cannot be easily mitigated using a training symbol
approach.

In [2], the effect of PHN on the system performance was
studied and it was found that OFDM is much more sensitive
to PHN than a single carrier system. Tomba [3] provides a
more detailed treatment on the OFDM error probability in the
presence of PHN for different modulation schemes. Various
methods to estimate and mitigate the effect of PHN have
also been presented in the literature [4]–[6], where PHN is
commonly decomposed into two components: the common
PHN, also known as the common phase rotation (CPR), which
depends on the average value of the PHN over one OFDM
symbol and has the same effect on all subcarriers, and the
random PHN which induces intercarrier interference (ICI).
Common PHN can be mitigated with a few pilot tones, as in
[4], for example. Nikitopoulos and Polydoros [5] assume that
the common PHN evolves slowly over consecutive OFDM
symbols so that previous estimates of common PHN may be
used in the processing of the current OFDM symbol. In [6],
an MMSE equalization technique was used to suppress the
common PHN after modelling the ICI caused by the random
PHN as extra additive noise.

These papers represent state-of-the-art PHN mitigation
techniques, where common PHN is the target of estimation
and cancellation while random PHN is treated as unavoidable
noise. However, the removal of the complete PHN sequence
(common PHN + random PHN) must lead to much improved
performance since then the ICI introduced by random PHN
can be suppressed, but it has never been rigorously studied
due to the difficulty of jointly estimating both the PHN profile
and data symbols. In this paper, we will show that joint data
detection and PHN estimation is feasible through a relaxation
of the form of the likelihood function containing both the data
and PHN. We will not distinguish between the two components
of PHN, and instead investigate the general PHN issue, by first
developing a probabilistic model, and then deriving efficient
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algorithms to solve the problem. A significant paradigm change
is made, in that rather than generating “hard” estimates of the
data and PHN profile, we derive probability distributions for
the data and PHN, which provide measures of the reliability
of the estimator outputs, or alternatively our uncertainty over
those estimates.

The mathematical foundations of our solutions are the ap-
proximate probabilistic inference algorithms. One instance of
probabilistic inference, the sum-product algorithm in factor
graphs [7], has been actively researched in recent years in
connection with the decoding of Turbo codes and low-density
parity-check (LDPC) codes, as well as LDPC decoding in the
presence of PHN [8]. Recently, probabilistic inference has
also been successfully used in image processing to perform
scene analysis [9]. Motivated by these pioneering works, we
apply approximate probabilistic inference algorithms, namely
variational inference and its variants, to alleviate the PHN
problem in OFDM. This novel approach leads to surprisingly
low-complexity solutions.

The rest of the paper will be organized as follows. Sec-
tion II discusses the statistical (prior) distribution of the PHN
process and presents the signal model. Section III summarizes
the conventional PHN cancellation algorithm and derives the
optimal OFDM symbol detector. Section IV presents a family
of algorithms based on the variational inference framework that
jointly detect the data symbols and estimate PHN. Section V
provides complexity analysis on the proposed algorithms and
derives complexity reduction methods based on the conjugate
gradient (CG) algorithm. Section VI presents simulation results
that test the proposed algorithms in terms of the bit-error rate
(BER) of detected OFDM symbols, and Section VII contains
the conclusion.

Notation: Upper and lower case bold face letters indicate ma-
trices and column vectors; , , and denote conjuga-
tion, transpose, and Hermitian transpose, respectively; rep-
resents the all-one column vector; represents the all-zeros
column vector or matrix; is a diagonal matrix with the
vector on its diagonal; is a diagonal matrix with the
diagonal elements of square matrix on its diagonal;
and denote the real and imaginary part of a vector or ma-
trix; and stand for the expected value and variance of
a random variable; and represent, respec-
tively, real and circularly symmetric complex Gaussian random
vectors with mean and covariance matrix . In particular,
for an -dimensional circularly symmetric complex Gaussian
random vector

(1)

II. SYSTEM DESCRIPTION

A. Prior Statistics of PHN

Two different models of PHN are available in the literature
[10]. The first one models a free-running oscillator and assumes
the PHN process to be a Wiener process that is nonstationary,
with its variance growing with time. The second one models

an oscillator controlled by a phase-locked loop (PLL) and ap-
proximates the PHN process as a zero-mean coloured Gaussian
process that is wide sense stationary (WSS) and has finite
variance. In this paper, our solution covers both scenarios. For
simplicity, we will refer to the first one as Wiener PHN and
the second one as Gaussian PHN, even though both assume
Gaussian statistics.

In both cases, denoting the phase noise process at the output
of the VCO by , the samples of within the th OFDM
symbol, , has a multivariate Gaussian prior distribution:

, where the samples are taken at a rate of
samples per second, is the number of OFDM sub-

carriers, and is the period of the OFDM symbol. For this
model to be useful, however, the covariance matrix, , must
be available. [11] explains how can be determined from the
power spectral density (PSD) of the VCO output. The main
results are summarized as follows.

1) Wiener PHN: The Wiener PHN process is modelled as
, where is zero-mean white Gaussian

noise. The discrete-time samples of form a random-walk
process , , where

. Setting due to perfect synchronization at the
beginning of the OFDM symbol, the Gaussian-distributed PHN
vector has covariance matrix

...
...

. . .
(2)

2) Gaussian PHN: The Gaussian PHN process is mod-
elled as a stationary random process with autocorrelation func-
tion . It can be shown that the th row and th column of
the PHN covariance matrix is

(3)

where is the sampling period.
In (2) and (3), both and can be determined from

the PSD of the VCO output. In the subsequent derivations, since
both types of PHN can be sufficiently characterized by the co-
variance matrix , we shall not distinguish between the two un-
less specifically stated.

B. Signal Model

We consider a slow fading frequency-selective channel where
the CIR is assumed to remain constant during each packet of
transmission which consists of multiple OFDM symbols in-
cluding the initial preambles for synchronization and channel
estimation, as well as the variable-length payload that follows.
In practice, both the preambles and payload suffer from dam-
aging effects caused by transmitter and receiver oscillator jitter,
which translate into carrier frequency offset (CFO) and PHN.

Since frame synchronization is commonly performed using
autocorrelation based metrics [12], [13] which are not sensitive
to CFO and PHN disturbances, perfect frame synchronization
can be safely assumed. Thus, we may concentrate on one OFDM
symbol period. The system block diagram, including the trans-
mitter, channel and receiver, is given in Fig. 1, where the CFO
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Fig. 1. OFDM transmitter/receiver structure and phase noise channel model. The channel is estimated using the joint CFO/PHN/CIR estimator (JCPCE) [14].

and PHN effects are explicitly shown as multiplicative distur-
bances to the received signal.

PHN does distort CFO and CIR estimates, however. To
resolve this issue, the channel estimation module in Fig. 1
has already been studied in [14], where an optimal joint
CFO/PHN/CIR estimator (JCPCE) was proposed that performs
almost as well as if no CFO or PHN existed. The exact CFO
and PHN that distort the channel estimation training symbols
are also estimated. It is, therefore, reasonable to assume that
the CIR and CFO (which are quasi-static) are known at the data
detection stage. However, the same assumption cannot be made
about PHN since it is time varying and differs from one OFDM
symbol to the next. This is what motivates this work—our goal
is to investigate methods for efficient OFDM data detection in
the presence of unknown PHN distortion assuming known CIR
and removal of CFO (as depicted in the data detection module
in Fig. 1).

In the subsequent description of the signal model for data de-
tection, we will assume that the CFO is perfectly estimated at the
channel estimation stage and removed. The complex baseband
received signal of one OFDM data symbol within the payload
section sampled at rate can be written as an point se-
quence for

(4)

where is the discrete-time PHN sequence;
is the channel frequency response at subcarriers 0 to ;

are the transmitted data symbols belonging to
an -QAM constellation, and is complex white
Gaussian noise with variance per dimension. (4) may be
written in matrix form as

(5)

where is the DFT matrix with the th
element being ;

is the data vector;
is the noise vector; is the PHN
matrix; and is the
channel matrix. Notice that although a full OFDM symbol
contains time samples, being the length of the
cyclic prefix, in this signal model we assume the CIR has a
length so that the cyclic prefix can be removed and
there are only samples per OFDM symbol.

Note that, in contrast to many papers discussing PHN, we do
not assume that the channel is perfectly equalized before PHN
estimation and cancellation, which would be difficult, looking
at (5).

III. CONVENTIONAL AND OPTIMAL PHASE

NOISE CANCELLATION

A. Conventional Schemes

In this section, we describe the essence of conventional
PHN cancellation schemes [4]–[6]. The discrete Fourier
transform (DFT) of the time-domain received signal vector

expressed in (4) produces a frequency
domain sequence which can be written as

(6)

for to . is times
the DFT of the PHN vector , and

is the DFT of the noise vector .
stands for . It can be shown that

, and the ICI term
is approximated as zero-mean complex Gaussian noise with
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variance , where
and is the symbol energy per dimension per sub-

carrier. Assuming pilot symbols transmitted on carriers with
index set , the least-squares (LS) estimate of the common
PHN term is

(7)

Given the estimated common PHN, the general phase noise sup-
pression (GPNS) scheme [6] estimates as

(8)

where is the effective additive noise vari-
ance. In [6], pilots are used to estimate both and . GPNS
will be simulated in Section VI as the “conventional scheme” to
be compared with our proposed schemes, where no pilots are
necessary. Therefore, for comparison purposes, we will simply
assume is known perfectly when simulating GPNS. Further-
more, with channel knowledge and known PHN statistics,
can be calculated exactly in advance. With these assumptions,
pilots are not needed in the simulations, even for GPNS.

B. Maximum Likelihood Detector

Here, we give an original derivation of the optimal detector
(also called exact inference in probabilistic inference literature)
given the prior distribution of PHN and show that it has com-
plexity exponential in .

From (5), the received signal can be expressed alternatively
as

(9)

where . The approximation is
tight since is small. We, thus, have the following prior and
conditional pdfs:

(10)

The ML estimate of is derived using classical estimation
theory by treating as a nuisance parameter and “integrating it
out” [15] to obtain . As derived in Appendix I, we find
that

(11)

Unfortunately, the maximizer of (11) does not have a closed
form and the optimal can only be found if each symbol hy-
pothesis is tested, resulting in complexity of , where
is the constellation size.

IV. JOINT ESTIMATION VIA VARIATIONAL INFERENCE

Our basic problem is the estimation of , whose optimal so-
lution is the maximization of . This is

hard to do because is drawn from a discrete sample space,
and, hence, the problem is NP-complete. The variational infer-
ence approach first relaxes the problem constraints by allowing

to be continuous; then it approximates with a func-
tion that has convenient properties, such as

. This last assumption is equivalent to assuming
that and are independent conditioned on , and immediately
leads to the result that the vector that maximizes over

and also maximizes . In other words, the joint
estimation of and directly yields the optimal estimate of .
Finally, and must be chosen so that they can be
easily manipulated. Details will now be provided.

A. Variational Inference

First applied in statistical physics in the so-called Ising model
that describes magnetic spin glasses [16], [17], variational infer-
ence is a versatile technique for approximating complex distri-
butions. Instead of going into abstract details about its physics
applications, we will merely concentrate on the problem at hand
and offer a simple interpretation.

Consider the optimization of over and . The
heart of the variational technique is that it looks for a pa-
rameterized -distribution, , which closely resembles

, and then finds and that maximize .
The versatility and simplicity of the variational technique lies
in the fact that when is properly selected (e.g., as a
Gaussian distribution), its maximizers can be easily deduced. It
can be shown that the problem has been transformed from the
maximization of itself to that of its lower-bound [9],
yielding enormous computational savings.

To derive the variational inference algorithm, we first intro-
duce a concept called variational free energy (also called Gibbs
free energy) [18] in the context of the PHN problem

(12)

Here, we use instead of because they
are proportional and, hence, equivalent in the free energy
formulation. This expression is exactly the Kullback–Leibler
(KL) divergence [19] between and , denoted

, to within an additive constant. By
minimizing over the parameters of , we obtain
a -distribution that most “resembles” in
terms of KL divergence.

In cases where there are multiple arguments in the -func-
tion, an additional simplification can be made by factorizing

into a product form (also known as mean-field approx-
imation), i.e., . The mean-field approx-
imation is also important for justifying the use of the compo-
nent of the maximizer of as the optimal estimate of ;
without it, we should find , and then maximize the
result, which may turn out to be infeasible.

For PHN estimation, we assume that (after dropping the sub-
scripts of the -functions for simplicity of notation)

(13)
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TABLE I
UPDATING EQUATIONS FOR VARIATIONAL INFERENCE ALGORITHM

It is worth noting that the posteriors of and are now parame-
terized by their means and variances (namely, , , , and

), which then become the targets of optimization instead of
the -functions themselves.

The complete likelihood function in (12) may be
written as , where and

are given in (10). In addition, we let .
Note that instead of defining a discrete distribution over the
signal constellation, we have made a Gaussian approximation,
which leads to a linear detector. Substituting the -functions
from (13) into (12), we have the closed-form expression of

, now expressed as a function of the parameters of the
-functions, as derived in Appendix II

(14)

Obviously, the optimal parameters are hard to obtain ana-
lytically in one step. The usual practice is to update each one
of them in turn, while holding the others constant, a simple
technique termed coordinate descent in the optimization liter-
ature [20]. The algorithm is guaranteed to converge to a local
minimum of the free energy expression [21]. Taking the par-
tial derivative of w.r.t. each parameter and
equating to zero, we obtain the following set of equations, with
detailed derivations in Appendix III:

(15)

(16)

(17)

(18)

where and .
We summarize the parameter updating procedure in Table I.

In each iteration, the parameters are updated in turn to

generate new posterior estimates of and that decrease
monotonically. This particular update

order was chosen based on the dependence of and on
and . For initialization, a tentative data decision is made

assuming zero PHN and fed back as . is set to the
all-zero matrix. At the last iteration, approximate posterior
distributions of and are extracted. Since is assumed to
be Gaussian, it is maximized at , and so hard decisions
can be obtained from slicing , or can be used as a soft
estimate of for further error control decoding.

The difference between the variational inference and the ML
approach in Section III-B lies in the fact that in variational infer-
ence the posterior density is “forced” to be a product of
Gaussian densities and , making final symbol deci-
sions easy to make since no integration over is necessary, and
the mean of is its maximizer. These approximations mean
that the algorithm in general does not converge to the global
maximum of the complete likelihood function, but it has been
found to work very well in many applications.

In the sequel, we investigate a few important variants of the
variational inference algorithm. Although each is given a spe-
cific name, they only differ from the original version in their
use of different functions.

B. Iterative Conditional Mode (ICM)

Variational inference has made a very complex problem com-
putationally tractable, but a further simplification is possible by
assuming the posteriors and to be delta functions in-
stead of Gaussian.

In this case, the -functions are and , respec-
tively. The notation denotes a vector Dirac delta func-
tion with the following properties: ,
and . The minimization of variational free en-
ergy over the parameters and is equivalent to minimizing

over and . An
algorithm based on coordinate descent will iteratively perform
optimal point estimation for one of the two unknowns while
holding the other fixed, hence the name iterative conditional
mode.

Since , is evaluated to
be

(19)
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TABLE II
UPDATING EQUATIONS FOR ICM ALGORITHM

As derived in Appendix IV, solving and
leads to

(20)

(21)

where and .
The ICM algorithm is shown in Table II. The saving in ICM is

that we no longer require the covariance matrices and of
the posterior distribution. The drawback is that point estimates
do not model the uncertainties at each iteration, thus ICM, in
general, produces inferior results compared to variational in-
ference. It should be noted, however, though ICM resembles
the heuristic decision-directed approach where the data symbols
and PHN are detected/estimated iteratively until decisions are
made for both unknowns, it is, in nature, rather different, as no
symbol hard decisions (constrained to the symbol constellation)
are made during the iterations.

C. Expectation-Maximization (EM) Algorithm

In the algorithms of Tables I and II, the -functions were
chosen to be Gaussian and delta functions, respectively. We now
show that these choices can be seen as the two extremes in a
spectrum of choices that can be related to the EM algorithm
[22]. The EM algorithm is used to estimate a vector of parame-
ters, say , from observations that are termed incomplete data,
with the help of some auxiliary or hidden variables, say . The
algorithm iteratively carries out two operations: the E-step and
the M-step. The th iteration effectively computes a probability
density , where is the estimate of in the
previous iteration, and then maximizes

(22)

over , yielding .
In any given problem, the EM algorithm requires us to

separate the unknown parameters from the unknown hidden
variables. In other words, all unknowns are grouped into two
classes. In each iteration, hard estimates are obtained for the
parameters, while soft estimates in the form of probability den-
sities are obtained for the hidden variables. The link between
EM and variational inference is made in [21], where it was
shown that the EM algorithm is equivalent to jointly estimating
the hidden variables and parameters by minimizing a single
free-energy expression over a postulated distribution for the
hidden variables, and over the parameters.

This can be generalized even further: Suppose we are simply
faced with a problem with multiple unknowns. There are some
unknowns which we want hard estimates of, and the rest we
want soft estimates of. Using delta functions for the postulated
distributions of the “hard” unknowns, and exact (or postulated)
distributions for those of the “soft” unknowns in the variational
inference algorithm will lead to the EM algorithm with the
hard unknowns as parameters, and the soft unknowns as hidden
variables.

With this perspective, the algorithm in Table I can be seen as
an EM algorithm with only hidden variables of Gaussian postu-
lated distributions, and the ICM algorithm in Table II is an EM
algorithm with only parameters. In between these extremes, we
can set one unknown to be a variable and the other a param-
eter by simply adjusting the corresponding -functions. Specif-
ically, we have two options.

• Option I: and . The
free energy expression becomes

(23)

where . Minimizing this free energy yields
the EM I algorithm in Table III.

• Option II: and . The
free energy expression becomes

(24)

where . Minimizing this free energy
yields the EM II algorithm in Table IV.

We omit the formal derivations for EM I and EM II since
they are straightforward simplifications to the original varia-
tional inference derivation. The fact that the above algorithms
are equivalent to EM may be verified through the conventional
EM formulation by setting the hidden variables and parame-
ters appropriately. It should be noted that in the EM algorithm
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TABLE III
UPDATING EQUATIONS FOR EM I ALGORITHM

TABLE IV
UPDATING EQUATIONS FOR EM II ALGORITHM

TABLE V
COMPARISON OF VARIANTS OF VARIATIONAL INFERENCE ALGORITHM

the posterior distribution of the hidden variables is not neces-
sarily Gaussian.1 However, our Gaussian parameterization for
the -functions is correct here because and
are Gaussian distributions.

Following the conventional convergence analysis of the EM
algorithm, it can be shown that EM I monotonically increases

with each iteration, while EM II monotonically increases
. However, the convergence point may not be the global

optima of or , due to their local maxima.

D. Summary of Variants of Variational Inference

Through the preceding investigation, we have proposed not
one, but a spectrum of algorithms, for the joint detection/estima-
tion problem at hand, all under the unified framework of varia-
tional inference and all rigorously derived via free energy mini-
mization. Among these, we have covered the EM algorithm as
a special case. This framework admitted new insights into the
problem and enabled us to look beyond conventional signal pro-
cessing methods. Table V provides a summary of the above-men-
tionedvariantsof thevariational inferencealgorithm, inwhichthe

1If the true distribution is non-Gaussian, but we assume it to be Gaussian, or
some other more convenient distribution, we have a variational EM algorithm
[9].

term “objective function” stands for the function that the corre-
sponding algorithm guarantees to improve after each iteration.

V. COMPLEXITY ANALYSIS AND REDUCTION

We consider ICM to be the most promising candidate for
practical application, since it has the simplest form while re-
taining almost exactly the same performance as others. How-
ever, applying it directly may still substantially increase the
complexity of a practical OFDM receiver. Further complexity
reduction has to be devised to avoid a full matrix inver-
sion, which requires a complexity order of .

Observing the expression for in (20), we find that the eval-
uation of only involves the inversion of a diagonal matrix

and multiplications by diagonal or FFT ma-
trices. Hence, the complexity associated with computing is

.
The computation for in (21) is more involved and its com-

plexity depends on our assumptions about . We now present
two simplifying designs for both the Wiener and Gaussian
PHN models. The simplifying techniques used here are similar
to those for estimating PHN within the channel estimation
stage using the JCPCE algorithm [11], suggesting that the
same processing unit may be used for both tasks in actual
implementation.
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TABLE VI
CG ALGORITHM FOR EVALUATING ^���

A. Wiener PHN

The inverse of Wiener PHN covariance matrix has a con-
venient tridiagonal structure [23]. If we let ,

can be written as

. . .
. . .

. . . (25)

Let , where can be computed ef-
ficiently using FFT since all matrices involved in calculating
are either diagonal or FFT matrices. The evaluation of is now
equivalent to solving a linear equation .
This problem can be easily tackled by the CG method. The com-
plete algorithm is presented in Table VI.

The tridiagonal form of helps to reduce the dominant
complexity in Table VI, , to merely opera-
tions. Thus, the overall complexity of every iteration of the CG
algorithm is . The CG algorithm requires a maximum of

iterations to converge to the exact solution. However, simu-
lations in Section VI show that little performance degradation
is introduced by setting . In conclusion, for Wiener PHN,
the complexity of evaluating is , where is the number
of iterations in the CG algorithm.

B. Gaussian PHN

In the case of Gaussian PHN, we notice that , as a Toeplitz
matrix, can be approximated by a circulant matrix [24], [25].
Letting be the first row of , then the

first row of , , may be written as

(26)

It can be shown that this approximation is asymptotically exact
as for an autocorrelation matrix of a first-order au-
toregressive process, which is a good fit to the Gaussian PHN
process assumed in [26]. Replacing by , the modified esti-
mator for becomes

(27)

This problem can be treated similar to the Wiener PHN case
using the CG method in Table VI by replacing with .
Specifically, the evaluation of requires

Fig. 2. Structure of the data detection module incorporating PHN mitigation.

operations. Therefore, for Gaussian PHN, the
overall computational complexity of is .

VI. SIMULATIONS

To verify the effectiveness of the proposed PHN cancellation
schemes, we present a set of simulations as follows. The data
detection module is depicted in Fig. 2, where the received signal
first goes through a preliminary detection stage that detects the
transmitted data ignoring PHN distortion. Such a decision
is inaccurate, but is necessary to initialize the next stage, which
is the focus of this paper. In the proposed schemes, is used
as or . We also simulate the conventional algorithm
(i.e., GPNS in Section III-A) for comparison. It is implemented
differently from the original paper [6] since no pilot symbols are
allocated in our simulation setting for estimating the common
PHN and ICI-plus-noise power . Instead, we assume
perfect knowledge for and calculate from the known
channel response and phase noise statistics. In effect, this results
in the best-achievable performance of GPNS.

The following system parameters are assumed in our simu-
lations: 1) A Rayleigh multipath fading channel with a delay
of taps and an exponentially decreasing power delay
profile that has a decay constant of four taps. 2) An OFDM
symbol size of subcarriers with each subcarrier mod-
ulated in 64-QAM format. 3) Baseband sampling rate
MHz (subcarrier spacing of 312.5 KHz). 4) The Wiener PHN
is generated as a random-walk process with incremental PHN
of . The covariance matrix is as depicted in (2).
5) The Gaussian PHN has a standard deviation of
(i.e., ). It is generated, according to the
Matlab code recommended for the IEEE 802.11g standard [26],
as i.i.d. Gaussian samples passed through a single pole Butter-
worth filter of 3-dB bandwidth KHz. Hence, the PHN
covariance matrix is .

Fig. 3 compares the actual PHN profile with the PHN profile
estimated using the variational inference algorithm (Table I with

3 iterations) at 30-dB SNR . The average PHN is
also plotted. Through variational inference, we have very ac-
curately estimated the phase noise profile, resulting in a much
improved BER performance, as will be shown in Figs. 4 and 5.
Note that the PHN estimated via variational inference is a distri-
bution rather than a fixed value. Thus, in addition to plotting the
mean , we also indicate one standard deviation around the
mean, extracted from the diagonal elements of . The standard
deviation quantitatively predicts the reliability of our estimates.
Such an accuracy measure is also available in , but is not
shown here graphically.

In Fig. 4, we demonstrate the performance of the proposed
joint detector/estimator compared to the conventional method.
The dotted line indicates the BER of a OFDM receiver free of
PHN (the ideal scenario), and the solid line indicates the BER
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Fig. 3. Instance of PHN sequence estimated using the conventional method and
variational inference. (a) Wiener PHN; (b) Gaussian PHN.

of an OFDM receiver with PHN but without PHN mitigation
(the worst case scenario). It should be noted that the system
without PHN mitigation does not fail only because of the sim-
ulation assumption of good phase synchronization at the begin-
ning of each OFDM symbol. In between these two curves are the
BER performance of receivers implementing the conventional
PHN cancellation method (triangles) and the proposed schemes
(crosses and circles). We plot the performance of the proposed
algorithms after one, two, and four iterations (the BER does not
improve significantly with more iterations). It is obvious that
both the variational and ICM algorithms significantly outper-
form the conventional one, even though we assume the conven-
tional scheme has perfect knowledge of . The curves for EM I
and EM II are not shown here since they overlap with the curves
in the plot, implying identical performance. The superiority of
variational inference over ICM is not evident here since we only
consider an uncoded system, where the extra reliability infor-
mation on is not fully utilized. A coded OFDM system via a

Fig. 4. BER performance comparison between the conventional method and
proposed detection schemes. (a) Wiener PHN; (b) Gaussian PHN.

turbo detection scheme is outside the scope of this paper but is
currently under investigation.

In Fig. 5, we study the performance of the low complexity
simplified ICM technique by evaluating through CG
iterations as prescribed in Table VI. Again, we plot the perfor-
mance after one, two, and four ICM iterations as in Table II.
Compared to Fig. 4, it is seen that the OFDM receiver per-
forms almost equally well, demonstrating that the simplified
ICM scheme can be implemented efficiently in a practical re-
ceiver.

VII. CONCLUSION

This paper, together with [14], presents a complete physical
layer design strategy for OFDM receivers in the presence of both
CFO and PHN. Assuming the channel response and CFO have
been accurately estimated adopting the methodology in [14],
here we put forward a novel and low-complexity OFDM detec-
tion scheme based on variational inference techniques that com-
bats PHN impairment. While the theoretical framework we have



LIN AND LIM: VARIATIONAL INFERENCE APPROACH TO JOINT DATA DETECTION 1871

Fig. 5. BER performance of the low complexity detection scheme. (a) Wiener
PHN; (b) Gaussian PHN.

introduced is new, the resulting design solution is simple, ele-
gant, and with intuitive appeal. It is in essence an algorithm that
updates the estimates for data and PHN iteratively. We have also
demonstrated that each step of the iteration can be performed ef-
ficiently using FFT-based computations.

The possible extensions to this work are numerous, and we
summarize a few of them as follows.

• Variational EM Channel Estimation: Additional parameter
estimation can be naturally incorporated in the variational
PHN cancellation scheme. For example, a variational EM
algorithm that iteratively updates the inaccurate channel
information can be derived by including as an uncertain
parameter in the free energy expression (14).

• Coded OFDM: In uncoded systems, the advantage of vari-
ational inference over ICM is not fully seen. One of vari-
ational inference’s special characteristics is that the deci-
sion for data vector is a distribution rather than a value. In
this paper, we have not exploited this “soft decision” fea-
ture, but it is easy to see that in a coded OFDM system, this
feature enables “turbo OFDM detection” where the soft ex-

trinsic information of the data symbols are passed between
the detector and a soft-in-soft-out (SISO) decoder [27].

• OFDMA PHN Cancellation: In a multiuser OFDM system,
each user suffers from a different PHN pattern. The chal-
lenge is then to first separate the signals from different
users and then cancel the PHN from each user’s signal. The
signal separation stage is suggested by the E-step in [28].

APPENDIX I
CLOSED-FORM EXPRESSION OF

Since and are Gaussian distributed, it can be
shown that the distribution of is also Gaussian. Denoting
the mean of given to be and the variance as ,
then applying the Iterated Expectation Theorem [29, ch. 14] and
its analog in covariance, yields

(28)

Because , it is
straightforward to infer that

(29)

Given that , with some further manipulation,
we obtain

(30)

which implies that

(31)

Therefore

(32)
APPENDIX II

CLOSED-FORM EXPRESSION OF

A simple expansion of the variational free energy in (12)
shows that

(33)
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Substituting (10) and (13) into the expression above and
applying Gaussian expectation properties [30], we may obtain
each term of the variational free energy as a function of the

-distribution parameters (with the constant terms omitted)

(34)

(35)

(36)

(37)

(38)

where . Finally, the complete free energy ex-
pression is assembled

(39)

APPENDIX III
DERIVATION OF VARIATIONAL INFERENCE ALGORITHM

In each iteration, we minimize in (39)
w.r.t. the variables , , and in turn.

1) For

(40)

where . Thus, leads
to (15).

2) For

(41)

Thus, leads to (16).
3) For
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(42)

where Thus,
leads to (17).

4) For

(43)

Thus, leads to (18).
APPENDIX IV

DERIVATION OF ICM ALGORITHM

Given the complete negative log-likelihood function in (19),
we again take the gradient descent approach and in each step
minimize w.r.t. and in turn.

1) For

(44)

where . Equating and we
obtain (20).

2) For

(45)
where . Equating and we
obtain (21).
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