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Abstract

To better serve human life with smart and harmonic communication between the real
and digital worlds, wearable human–machine interfaces (HMIs) with edge computing
capabilities indicate the path to the next revolution of information technology. In this review,
we focus on wearable HMIs and highlight several key aspects which are worth investigating.
Firstly, we review wearable HMIs powered by commercial-ready technologies, highlighting
some limitations. Next, to establish a dual-way interaction for exchanging comprehensive
information, sensing and feedback functions on the human body need to be customized
based on specific scenarios. Power consumption is another primary issue that is critical
to wearable applications due to limited space, one that is possible to be solved by energy
harvesting techniques and self-powered data transmission approaches. To further improve
the data interpretation with higher intelligence, machine learning (ML)-assisted analysis
is preferred for multi-dimensional data. Eventually, with the presence of edge computing
systems, those data can be pre-processed locally for downstream applications. Generally,
this review offers an overview of the development of intelligent wearable HMIs with
edge computing capabilities and self-sustainability, which can greatly enhance the user
experience in healthcare, industrial productivity, education, etc.

Keywords: sensing; feedback; energy harvester; machine learning; edge computing;
human–machine interfaces; wearables

1. Introduction
Currently, the burgeoning development of the micro-nano fabrication process and

of soft material facilitates the miniaturization of sensors, microprocessors, power supply
units, and wireless transmission units, which form the foundations of modern wearable
systems [1–4]. Compared with the past decades, the spread of wearable systems and
the internet of things (IoTs) has drastically increased the volume of data communication
via massively deployed devices [5,6]. Cloud computing is seamlessly integrated into the
aforementioned systems to help to process the data. However, due to the rapid growth
of the users and the diversification of multi-functional devices, the networks frequently
experience a heavy burden caused by redundant data transmissions [7–9]. On the other
hand, edge computing, which can process the raw data immediately within the device and
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only sends out the necessary data during external communication, can be a promising solu-
tion for wearable systems, featuring low latency, local data processing and better privacy
protection. Furthermore, the high mobility of humans urgently requires the assistance of
edge computing [10,11]. Meanwhile, the development of a desired edge computing system
relies on the cooperation of those individual components which are indicated above [12,13].

For edge computing wearable systems, power consumption control is crucial for
extending the working time [14], especially when the system integration level continues
to increase. One power-consuming component is the sensor, which is required to cap-
ture a multimodal signal (e.g., kinematic, tactile, physiological, etc.) to perform complex
tasks [15–17]. Common sensors employed in wearable systems include inertial, piezore-
sistive, capacitive, piezoelectric, and triboelectric, etc. [18–20]. Among these sensors,
self-powered sensors, such as triboelectric and piezoelectric sensors [21,22], are gaining
much interest because their self-sustaining feature can extend the working time of edge
computing wearable systems. In addition to self-powered sensors, the study of wearable
energy harvesters is also drawing increasing attention [23–26]. Diverse energies offered
by the human body ensure the feasibility of realizing self-sustainable wearable edge com-
puting systems [27–30]. Moreover, wireless transmission modules usually consume a
considerable amount of energy. The solutions of conducting self-powered or low-power
wireless transmission are also critical to further boost the operation time.

Powered by edge computing technology, real-time and local data processing de-
creases the system latency, which is essential for applications like medical monitoring,
virtual/augmented reality, etc. Feedback components also benefit from the low process-
ing latency because real-time haptic feedback can significantly enhance the engagement
of users, and hence, to achieve higher efficiency and immersive experience [31–34]. A
number of strategies are proposed to replicate real stimuli to human body [35], such as
vibration, wire actuators, pneumatic actuators, dielectric elastomer actuators, as well as
electroresistive- or thermoelectric-based temperature feedback units [36,37]. With the aid
of edge computing capability, the fidelity of the response can also be improved, powered
by locally deployed neural networks. The intelligence of the wearable system with edge
computing capability is showing tremendous growth [38,39]. Furthermore, since most
personal and physiological data are processed locally, the risk of the exposure of sensitive
information is minimized, leading to better privacy protection.

In this review, the typical components of the wearable system are discussed, as shown
in Figure 1. Section 2 serves as the baseline of further discussion, where conventional
and commercial-ready wearable technologies are introduced. Section 3 describes basic
sensing and energy harvesting mechanisms, laying the foundation for self-sustaining edge
computing systems. In Sections 4 and 5, wearable sensing and feedback technologies
are introduced. Considering the power consumption issue in wearable edge computing
systems, state-of-the-art energy harvesting and self-powered wireless transmission tech-
nologies are reviewed in Section 6. Furthermore, ML-assisted advanced data analysis for
the wearable system is addressed in Section 7. The development of the edge computing
paradigm is introduced in Section 8, highlighting neuromorphic computing technology.
Finally, conclusions and perspectives are given, focusing on several key hurdles of wearable
edge computing systems.
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Figure 1. Overview of the fundamental components of a wearable human–machine interface (HMI) with edge computing.

2. Commercial-Ready Wearable Sensing Systems
2.1. Vision-Based Wearable Sensing Systems

Thanks to the thriving development of computer vision technologies in recent decades,
vision-based wearable sensing systems for human–machine interaction are developing
rapidly. For instance, researchers have reported numerous wearable systems [40–43] to
perform motion capture (i.e., to estimate the full-body pose), emotion recognition [44–49],
facial movement sensing [50–54], etc. Furthermore, hand gesture recognition or even
sign language translation is achieved by systems powered by leap motion [55] or AR
glasses [56]. Tracking a 3D hand pose is also feasible with wearable devices [57,58]. In
addition to hands, the recognition of mouth movement can also facilitate many mobile
computing applications. For instance, a smart necklace [59] that can recognize bilingual
(English and Chinese) silent speech commands has been presented. Moreover, a complex
3D video conference system [60] can be implemented by Microsoft Azure Kinect cameras,
shedding light on the potential of vision-based wearable sensing.

However, there are still two major concerns relating to vision-based sensing. On one
hand, in order to capture the complete information of the users, cameras must tradition-
ally be fixed at certain locations and occlusions should be avoided whenever possible.
The aforementioned conditions constrain the scenarios where vision-based sensing can
apply—typically an indoor, uncrowded environment is preferred. On the other hand,
vision-based sensing must take photos of users and store data for analysis, causing poten-
tial privacy problems.

One major application of vision-based wearable sensing is full-body pose estimation.
A mature commercial motion capture system for full-body pose estimation usually takes
an “outside-in” method [61], which means cameras are placed externally and capture
the subject (i.e., the user), such as Vicon [62], OptiTrack [63], etc. This type of setting
limits the application scenarios: an indoor environment with minimal occlusion and



AI Sens. 2025, 1, 9 4 of 40

controlled lighting is preferred. To enable outdoor full-body pose estimation, Shiratori
et al. [61] implemented a portable motion capture system via the “inside-out” method. In
the “inside-out” approach, cameras are mounted on the user and capture the environment.
This system, however, requires a static background to estimate the pose and suffers from
privacy problems.

EgoCap [40] addressed most of the aforementioned problem with an “inside-in”
approach. In this system, a stereo pair of fisheye cameras are attached to a cycling helmet
or a head-mounted display (HMD). Thanks to the large field of view (FOV) of the cameras,
they can capture the full body of the user. The local skeleton pose is estimated by solving
an optimization problem, where the alignment of a projected 3D human model with the
human in left and right fisheye views is maximized at each time step. The estimation error
is reported to be 7 cm in challenging scenarios. Incorporating machine learning algorithms,
EgoCap can estimate the user’s pose even with some severe self-occlusions in the image.
However, the two cameras and the wooden rig attached to the helmet/HMD still constrain
the movement of the head and makes it difficult to put on the device as well. Additionally,
due to the large FOV of the pair of cameras, the problem of privacy is mitigated but
not solved.

To further improve comfort while wearing, Mo2Cap2 [41], a more lightweight system
than EgoCap, has been proposed (Figure 2). This system achieved full-body pose estimation
with only one fisheye camera mounted on the brim of a baseball cap. The 3D joint position
is estimated by a 2D joint location heatmap and the distance between the camera and each
joint. Specifically, their method makes a more accurate estimation on lower body joints
with a zoomed-in image only focusing on the lower body. The estimation error is 6.14 cm
for indoor scenarios and 8.06 cm for outdoor environment.

Later, Tome et al. [42] presented SelfPose (Figure 2), which produces even higher
joint position estimation accuracy than Mo2Cap2 [41]. The downward-looking camera is
installed on the rim of a virtual reality (VR) HMD, adding a small amount of extra weight
to the user. To compute the 3D full-body pose, a 2D pose detector is used to predict the
heatmap of 2D joint positions, followed by a multi-branch autoencoder to generate 3D joint
positions and other auxiliary outputs required in the training phase. The average joint
position error is 4.66 cm in an indoor environment and 5.46 cm in an outdoor environment.

Cameras mounted around the head of the user translate into extra moment when the
head moves so the user may feel uncomfortable wearing the device for a long time. Thus,
some researchers seek to install the camera to other body parts, or even externally, while
still obtaining an egocentric view. For instance, Hwang et al. [64] reported a full-body pose
estimation system with a single ultra-wide fisheye camera mounted on the chest of the user.
The average joint position error is 8.49 cm, slightly larger than that of [40–42], with no extra
weight added to the head. Moreover, Lim et al. implemented BodyTrak [65] to capture
a full-body pose by installing four miniature RGB cameras on a wristband. Employing
a four-branch CNN with late fusion, the system estimates the 3D joint position with an
average error of 6.34 cm (6.9 cm if using only one camera). Cameras installed on the body
of the user inevitably add some extra difficulty to the movement of the user. To address this
problem, Ahuja et al. presented ControllerPose [66] with two fisheye cameras mounted on
each of two VR controllers (Figure 2). The system fuses the results from 2D joint position
estimations and the IMU data from HMD and two controllers to compute the 3D joint
positions. As the cameras are not mounted onto the user, the average position error is
reported to be 8.59 cm, slightly larger than previous methods.

The previously mentioned “inside-in” method usually requires cameras with an ultra-
wide FOV to capture the user. Ng et al. [43] (Figure 2) proposed a full-body pose estimation
system with normal forward-looking cameras when the user is interacting with another
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person (i.e., the interactee). Their system exploits the pose of the interactee, believing it is
inherently related to the pose of the user. The system combines the information from the
homography, the static scene features and the 2D pose of the interactee and feeds them into
a long short-term memory (LSTM) network to compute the 3D pose of the user. The average
errors in joint positions are 14.3 cm and 8.6 cm when compared with the ground truths
produced by Microsoft Kinect V2 and Panoptic Studio [67], respectively. A comparison
between these full-body pose estimation wearable systems is demonstrated in Table 1.

 

Figure 2. Vision-based wearable systems for full-body pose estimation. Reproduced with permission [41–43,66]. Copyright 2019, IEEE.
Copyright 2020, IEEE. Copyright 2020, CVF. Copyright 2022, Association for Computing Machinery.

Facial movement sensing is another popular research field for vision-based wearables.
There are generally two different research categories here: the first is emotion recognition,
which falls into a classification problem based on the facial movement of the user; the
second is facial movement reconstruction, which seeks to track the face of the user and is
also more challenging.

When wearing a VR headset, the user’s eyes are blocked, making it difficult for others
to recognize the user’s emotion. This can interfere with the normal social engagement of the
user and undermine the experience of using a VR device. To tackle this problem, Hickson
et al. proposed Eyemotion [44] (Figure 3a), a system that can recognize the emotion of the
user employing IR gaze-tracking cameras integrated in the VR HMD. The system classifies
the emotion of the user with a CNN combined with a personalization method, where the
raw image of each user is subtracted by the mean image of the user in neutral emotion
before it is fed into the network. The system achieves a mean accuracy of 0.74 over five
different categories of emotion. Note that the emotion recognition is not performed in real
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time. Later, Wu et al. [45] presented a wearable system which can classify the emotion of
the user in real time. Moreover, all of the computation is undertaken in their embedded
system. In their system, an image of the right eye of the user is fed into a CNN-based
feature extractor, followed by a personalized classifier for emotion recognition.

Table 1. Comparison of vision-based wearable systems for body pose estimation.

Year Ref. Sensors Sensor
Location Methods Error Mean

± Std. (cm)
Power

Consumption
Keypoint

No. FPS

2016 [40] Two fisheye
cameras

Helmet or
HMD

Three-dimensional
generative pose

estimation
7.00 ± 1.00 ~5 w 17 10–15

2019 [41] One fisheye
camera Baseball cap

Two-dimensional pose
estimation + joint
depth estimation

6.14 (indoor)
8.06

(outdoor)
~2 w 16 N.A.

2020 [43] One camera
(GoPro) Chest

Homography +
two-dimensional pose
estimation with LSTM

14.3 ~3.5 w 25 N.A.

2020 [42] One fisheye
camera VR HMD

Two-dimensional pose
detection +

two-dimensional-to-
three-dimensional

mapping

4.66 (indoor)
5.46

(outdoor)
~3 w 16 N.A.

2020 [64] One fisheye
camera Chest

Two-dimensional joint
heat map +

three-dimensional joint
position

8.49 ~2 w 15 N.A.

2022 [66] Four fisheye
cameras

VR
controllers

Two-dimensional pose
estimation +

three-dimensional joint
angle regression

8.59 ± 5.20 ~6.5 w 17 7.2

2022 [65] Four
cameras Wrist Four-branch CNN with

late fusion 6.34 ~1.5 w 14 <5

Glass-type wearable devices can also be a suitable solution for emotion recognition.
For instance, Kwon et al. proposed a glass-type HMI that can perform continuous emotion
recognition by multimodal sensors [46] (Figure 3b). Furthermore, Yan et al. [47,49] reported
a glass-type HMI with edge computing ability. A lithium battery and a Raspberry Pi are
seamlessly fused into the glasses. The system adopts a CNN with regional attention blocks
to classify the emotion of the user based on an image focusing on one side of the face. Nie
et al. [48] (Figure 3c) also proposed an emotion recognition system built on eyewear. The
system employs a CNN to capture the landmarks of the eye and the eyebrow of the user
based on the image from an infrared (IR) camera. Then, these landmarks and the movement
of the eyebrow detected by an optical-flow-based algorithm are combined to serve as the
input to a decision tree, which classifies the emotion of the user. The average accuracy
over five different categories of emotion is 0.84. Combined with a proximity sensor and an
IMU, the system is capable of detecting the affective state and performing mental health
monitoring. However, the computation is not performed in the embedded system only and
their emotion classification is undertaken in semi-real time.

With respect to the problem of facial movement tracking, Cha et al. [50] proposed
a facial expression tracking system based on infrared sensors (Figure 3d). The system is
integrated into a head-mounted display. In addition, Suzuki et al. [51] reported another
HMD-based HMI which can not only track facial expressions but also map them onto
avatars (Figure 3e). The application of these two works, however, is constrained by the
relatively low spatial resolution of the facial tracking. To this end, Thies et al. [52] presented
FaceVR, a wearable system that can construct the face with high resolution in real time.
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The system uses an infrared camera installed in the VR HMD to capture the eye movement
of the user and the eye tracking is performed by a classification approach based on random
ferns. Note that to track the whole facial expressions, an externally located RGB-D camera
is used so the system is not fully portable.

Figure 3. Vision-based wearable devices for facial movement sensing. (a) A VR goggle-based HMI for classifying facial expressions.
Reproduced with permission [44]. Copyright 2019, IEEE. (b) A glass-type wearable device achieving emotion recognition via
multimodal sensors. Reproduced with permission [46]. Copyright 2021, IEEE. (c) A lightweight, wireless, and low-cost glasses-based
wearable platform for emotion sensing and bio-signal acquisition. Reproduced with permission [47]. Copyright 2020, IEEE. (d) A facial
expression tracking device based on infrared sensors. Reproduced with permission [50]. Copyright 2016, IEEE. (e) A facial expression
tracking head mounted display via photo-reflective sensors. Reproduced with permission [51]. Copyright 2017, IEEE.

To track the facial movement, wearing a VR headset is not an ideal solution, as
the user’s face is blocked. To achieve facial movement reconstruction without an HMD,
Chen et al. proposed C-Face [53] and NeckFace [54], which are able to estimate the
feature points on the whole face with cameras installed in earphones/headphones and
a necklace/neckband, respectively. The key insight in C-Face and NeckFace is that they
exploit the correlation between the contours of the face (also the chin in NeckFace) and the
movement of the whole face. In other words, they use deep neural networks to infer the
facial movement from the subtle changes in the contours of the face. Moreover, as only the
contours of the face are captured, the privacy concerns are mitigated in these systems.
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2.2. Non-Vision-Based Commercial-Ready Wearable Sensing Systems

Despite the facile fabrication and satisfying performance of visual sensory wearable
systems, the concerns of privacy leakage triggered by these devices are a constant concern
for users. Other commercial-ready sensors, such as inertial measurement units (IMUs), are
employed as alternatives to visual sensors. The motion information captured by IMUs is
less sensitive yet still sufficient to extract key features for downstream tasks. Nowadays,
sensing based on IMUs is ubiquitous in daily life: inertial sensors (e.g., accelerometer,
gyroscope, magnetometers, etc.) can be found in smartphones, smart watches, wristbands,
earphones, etc. The prevalence of IMUs facilitates various fundamental applications,
including human–machine interfaces [68,69], sign language translation [70–72], sports
training [73] and rehabilitation [74]. From the perspective of cost, however, the IMU is
relatively expensive and not an ideal choice to form a body area network (BAN). Some
low-cost wearable sensing systems based on other commercial-ready sensory technologies
are also reported [75].

One of the popular research topics in IMU-based wearable sensing is hand gesture
recognition. Fang et al. [68] proposed a glove equipped with 18 inertial and magnetic
measurement units (IMMUs) to perform motion capture and hand gesture recognition. The
data are collected by a microcontroller unit (MCU) and transmitted via a Bluetooth module.
An extreme learning machine (ELM) [76] is trained to do the gesture classification, reporting
the classification accuracies to be 89.6% and 82.5% for static gestures and dynamic gestures,
respectively. Nevertheless, the system exhibits some limitations because of the large number
of sensors and wires, making it difficult for the users to move their upper limbs freely.
A hand gesture recognition system (Figure 4a) based on smart watches or armbands is
introduced by Vásconez et al. [77]. Based on reinforcement learning algorithms, the system
achieves good performance with online learning ability. Moreover, a gesture recognizing
system based on the Myo armband for training sports referees (Figure 4b) is reported
by Pan et al. [73]. The data are collected by an eight-channel surface electromyography
sensor and an IMU. To classify the gestures, a cascaded framework is employed. In the
first step, large motion gestures and subtle motion gestures are distinguished by a support
vector machine (SVM) based on hand-crafted features; in the next step, another SVM based
on hand-crafted features and features learned by a deep belief network (DBN) is used to
finalize the classification results. The average classification accuracies over 11 participants
is 92.2% and 90.2% for large and subtle motion gestures, respectively.

In addition to recognizing basic hand gestures, researchers also seek to recognize
and even translate sign languages to help the hearing/speech-impaired people. Hou et al.
reported SignSpeaker [70], a sign language translation system utilizing a commercialized
smartwatch and a smartphone which runs a text-to-speech (TTS) program to read the
translated sentence. The data generated from an accelerometer and a gyroscope are fed
into a multi-layer LSTM to learn the semantic representations of sign languages, followed
by a classification layer with a connectionist temporal classification (CTC) loss function.
The CTC loss function helps to segment the sentence. The reported average word error rate
(WER) is 1.04%.

SignSpeaker is based purely on inertial sensors, which are capable of capturing the
motion of the hand but unable to recognize the subtle finger movement [78]. To deal
with this limitation, Zhang et al. proposed WearSign [71], a multimodal wearable system
fusing the signals from inertial sensors and electromyography (EMG) sensors to better track
the motion of fingers. A CNN is deployed to exploit both intra-/inter-modality features.
Then an encoder–decoder network performs end-to-end learning, outputting translated
sentences directly. Thanks to the multimodal sensing ability and a data synthesis approach,
the translation accuracy is greatly improved.
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In addition to applications in gesture recognition, inertial sensors are also used in
human activity recognition (HAR) [79–81]. HAR plays an important role in health care,
rehabilitation and senior care [82–84]. For instance, Bianchi et al. [85] implemented a
wearable system for long-term personalized HAR (Figure 4c). The system consists of
an inertial sensor (MPU9250) and a controller unit (Cortex-M4), which can transmit the
data through Wi-Fi. Combined with a convolutional neural network, the system can
recognize nine different human activities with single IMU. In a relatively large dataset
containing 15 subjects and 15,616 instances, an overall accuracy of 97% is achieved over
9 different activities.

 

Figure 4. Commercial-ready non-vision based wearable HMIs. (a) A hand gesture recognition system based on inertial signals and
reinforcement learning. Reproduced with permission [77]. Copyright 2022, MDPI. (b) A Myo armband-based gesture recognition
system. Reproduced with permission [73]. Copyright 2022, IEEE. (c) A wearable system for long-term personalized human activity
recognition (HAR). Reproduced with permission [85]. Copyright 2019, IEEE. (d) A wearable HAR system based on recurrent neural
networks. Reproduced with permission [86]. Copyright 2022, IEEE. (e) A low-cost wearable HAR system based on magnetic induction
signals. Reproduced with permission [75]. Copyright 2020, Springer Nature.

Apart from convolutional neural networks, recurrent neural networks are widely used
in HAR applications because of their good performance for handling time-series data. Tong
et al. [86] reported a wearable system integrated with six IMUs and a bidirectional-gated
recurrent unit-inception (Bi-GRU-I) network (Figure 4d), which exhibits good performance
on self-collected datasets and other public datasets. The system features a novel deep learn-
ing network, the Bi-GRU-I network, which is a combination of a recurrent neural network
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(RNN) and a convolutional network (CNN). The RNN part, a two-layer bidirectional GRU
(Bi-GRU), is responsible for extracting temporal features from the data while the CNN
part, three inception modules, is responsible for extracting spatial features. Because of
this network structure, the classification performance is enhanced, resulting in an average
accuracy of 97.76% in both self-collected and public datasets.

IMU-based wearable systems demonstrate good performance in HAR. Attaching
IMUs around the whole human body, however, is often unfeasible due to the cost of IMUs.
Therefore, to achieve a wireless body area network (WBAN) [87,88], a low-cost HAR so-
lution is required. To this end, Golestani et al. [75] introduced a wearable HAR system
based on magnetic induction signals (Figure 4e). The system encompasses a receiving coil
as a belt around the waist of the user and eight transmitting coils fixed at both the upper
and lower limbs of the user. When the user moves, the relative position and alignment of
the coils change, and the coupling non-propagating magnetic fields created by the coils
also change. By measuring the variations in induction signals, the relative movement of
the limbs can be measured. Compared with conventional radiating magnetic fields, the
non-propagating magnetic fields decay more quickly, and this feature reduces the inter-
ference and improves the privacy safety. The most notable advantage of the system lies
in the low cost, because cheap coils replace the expensive IMUs. To classify the human
activity, a recurrent neural network based on long short-term memory (LSTM) is imple-
mented and an accuracy of 98.9% is reported for the Berkeley Multimodal Human Action
Database (MHAD).

In summary, the commercial-ready solutions (vision-based or non-vision-based) for
wearable HMI systems illustrate good performance, but power consumption remains a chal-
lenging issue, limiting the long-time usage of these devices. Furthermore, these large and
rigid commercial-ready sensors make building a miniature-sized and conformal wearable
HMI system impossible. Therefore, the development of highly integrated, self-sustaining
and flexible HMI systems based on self-powered sensors or energy harvesting technologies
is highly desired and investigated, and these will be introduced in the following section.

3. Wearable Sensing and Energy Harvesting Mechanisms
Owing to the features of conformable or intimate contact with human body, wearable

systems have the advantages of the continuous and accurate detection of multi-modal
information regarding motion status and health conditions [89,90] (Figure 5). Although the
research into wearable systems has obtained great achievements in recent decades, devices
with an increasing number of sensors and high-performance microprocessors also suffer
from concerns around reduced battery power, as the size and the capacity of the battery
need to be balanced for comfort. For edge computing devices in particular, to further ex-
tend the operation time of the wearable system, researchers have begun to develop energy
harvesters against different energy sources from the human body, so that these harvesters
can be integrated into the wearable systems to continuously supply power [91,92]. A per-
formance comparison of different wearable energy harvesting mechanisms is demonstrated
in Table 2. Interestingly, as the variations of the outputs from the harvesters are observed in
response to the fluctuations of the energy sources, e.g., body motions, temperature changes,
and sweating, etc., the energy harvesters can be further modified to detect those parameters
with self-generated signals, and these are typically known as self-powered sensors [93].
Hence, the power consumption of the sensors can be reduced. Eventually, wearable sensory
systems will migrate from the use of conventional sensors with a power supply to sensor
fusion technology, in which some sensors are replaced by self-powered sensors.
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Figure 5. Working mechanisms of common wearable sensors and energy harvesters. (a) Piezoresistive. (b) Capacitive. (c) Piezoelectric.
(d) Triboelectric. (e) Electromagnetic. (f) Thermoelectric.

3.1. Sensors with Power Supply

For wearable HMIs, the mature sensing technologies available on the market are
piezoresistive and capacitive sensors [94]. The piezoresistive effect converts the mechan-
ical force or deformation into the variation of resistance via the changing of the carrier
mobility or the conduction path. Piezoresistive sensors generally possess good sensitivity
and working ranges, as well as simple readout circuits, but still show the weaknesses of
hysteresis and temperature creep. While, for capacitive sensors, they determine the mechan-
ical stimulus through the response of the capacitance, as the parameters of the dielectric
layer between two electrodes can be altered. Capacitive sensors offer good sensitivity and
frequency response, with no temperature influence. However, a signal-to-noise ratio issue
is frequently encountered.

By leveraging the MEMS fabrication process, silicon-based piezoresistive or capac-
itive designs are studied for developing inertial sensors or micro tactile sensors with
extreme high sensitivities and multi-directional sensing capabilities. Meanwhile, thin film
and soft material techniques enable e-skin-like sensors for monitoring body motion and
interactive events.

3.2. Sensors and Energy Harvesters with Self-Generated Signals

The daily activity of the human body is a natural mechanical energy source that con-
tains energy ranging from a few watts to a few tens of watts corresponding to the different
body parts. To retrieve these energies, a few mechanical energy harvesting mechanisms are
utilized, including the piezoelectric effect [95–97], the triboelectric effect [98,99], and the
electromagnetic effect [100,101]. The piezoelectric effect relies on the polarization of the
dipole moment of the piezoelectric materials under applied force or deformation to collect
electric charges [27]. However, materials with high piezoelectric coefficients are usually
ceramic, which is less preferable for a wearable system. On the other hand, the triboelectric
effect is defined as the charge transfer during the mechanical interaction of two surfaces
with different electronegativities [102]. Unlike the limited piezoelectric materials, the wide
choices of triboelectric material reveal its own superiority in developing wearable energy
harvesters [103,104]. But the vulnerability of the output signal to environmental influ-
ences, such as humidity, electromagnetic interference, etc., is a major problem that needs to
be concerned.
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As mentioned earlier, the outputs from the piezoelectric and triboelectric effects all
show a good correlation to the intensity of the mechanical stimulus. By the proper design
of the sensory structure, both of the two effects can be applied to detect various motions,
such as pressing, bending, walking, rotating, vibration, etc., without consuming power on
the sensor itself [105,106].

In addition, the general performance of the piezoelectric (PENG)- and triboelectric
(TENG)-based energy harvesters/nanogenerators at the current stage still lack enough out-
put power within the limited space of the wearable system. Alternatively, electromagnetic
energy harvesters with a much higher power density act as another popular option for
powering a wearable edge computing system. Electromagnetic generators rely on Fara-
day’s law of electromagnetic induction. In wearable systems, electromagnetic generators
typically consist of a movable magnet–coil pair, where relative motion (usually caused
by body movements) between them produces an alternating current output. Compared
with piezoelectric and triboelectric harvesters, electromagnetic generators generally deliver
higher power density and efficiency. However, their integration in flexible and miniaturized
platforms is restricted by the bulky magnetic and coil components and by a limited output
under small-scale deformation.

In addition to mechanical energy, the human body can also be a good source of thermal
and moisture-related energy that can be harvested through pyroelectric and moisture–
electric mechanisms. The pyroelectric effect originates from materials possessing a sponta-
neous polarization that varies with temperature fluctuation (∆T), thereby generating an
electric current or voltage during thermal cycling [107]. When the temperature changes,
the alteration of dipole alignment in the pyroelectric material leads to a net flow of charges
across the electrodes. This mechanism has been further optimized through thermody-
namic cycles such as the Olsen cycle to enhance conversion efficiency [108]. On the other
hand, moisture electricity generators exploit gradients of humidity, potentially converting
the Gibbs free energy change to electricity [109]. With asymmetric hydrophilicity, the
asymmetrical distribution of mobile ions or protons establishes an internal electric field,
generating a continuous current [110]. These two mechanisms serve a complementary role
to the mechanical energy harvesters: temperature variations or breathing moisture can
also contribute to energy generation. However, the two mechanisms also suffer from some
challenges, such as low power density for pyroelectric generators and humidity gradient
maintenance for moisture electricity generators.

3.3. Other Energy Harvesters

Except for mechanical energy, there are other types of energy sources which may be
possible to be harvested [100,111]. The thermoelectric effect, which involves using the
temperature difference between a heat source and a heat sink to generate electricity [112],
is applied, as the human body has a relatively stable temperature of about 37 ◦C. Although
the output power may not be sufficient, the operation time is more continuous than that of
a mechanical energy harvester, meaning that the accumulated energy stored in the battery
can still be acceptable [113].
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Table 2. Comparison of wearable energy harvesting mechanisms.

Power Density Working Range Operation Condition

Triboelectric

58.82 W/m2 A few Hz Power backpack for energy
harvesting [114]

107 mW/m2 0.5–3 Hz Cardiac monitoring via implantable
triboelectric nanogenerator [115]

0.52 mW/cm2 4 Hz
Skin-touch-actuated textile-based
triboelectric nanogenerator with

black phosphorus [116]

Piezoelectric
159.4 W/cm3 25 Hz Piezoelectric energy harvester with

frequency up-conversion [117]

11 mW/cm3 0.33–3 Hz Nanogenerator based on ZnO
nanowire array [118]

Electromagnetic

730 µW/cm3 6 Hz Human motion energy harvester
[119]

79.9 W/m2 2 Hz

Rotational pendulum-based
electromagnetic/triboelectric hybrid

generator for human motion
applications [120]

Thermoelectric 1.2 mW cm−2 50 K temperature
difference

Inorganic flexible thermoelectric
power generator [121]

4. Wearable Sensing Applications
Based on the sensing mechanisms mentioned in the previous section, a number of

innovations in structure design and material developments have been brought into the
research field of wearable sensing applications [122–124]. As a result, various sensors
with their own superiorities (Table 3), such as high sensitivity, wide sensing range, fast
response, low hysteresis, multi-modal sensing, low power consumption, etc., are presented
frequently to help to explore every information from the human body in a more convenient
manner [125,126]. For edge computing wearable systems, sensors with low power con-
sumption (or even self-powered sensors) are especially beneficial, as the operation time of
the devices can be greatly extended with such sensors.

4.1. Sensors for Human–Machine Interaction

Inertial sensor-based HMIs are widely adopted in different commercial products.
Those accelerometers and gyroscopes can accurately capture the orientation and the mo-
tional information. With the aid of additional algorithms, more information related to
physical interactions can be detected. Meanwhile, these inertial sensors are usually inte-
grated with other sensors for comprehensive sensing. In Figure 6a, the presented glove
uses a combination of 20 bending sensors, 16 tri-axial accelerometers, and 11 force sensors
on a flexible PCB to capture the hand motions without the requirement of calibration [127].

Recently, the development of a new material has introduced a new kind of flexible
iontronic tactile sensor by utilizing a highly conductive polymer thin film decorated with
microspheres (Figure 6b) [128]. This ultrasensitive tactile sensor can detect dynamic micro-
motions, such as touching sandpapers with different surface textures. By designing a smart
glove with a sensor array, it successfully demonstrates fast and accurate Braille recognition.

For most tactile sensors, cross interference among different mechanical deformations
is one of the main concerns. Several solutions are addressed to isolate the interferences,
including reference sensors, strain relief structures, compensation units, etc. Based on wafer-
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scale stretchable graphene film and patterning techniques, a semitransparent stretchable
TENG is prepared as self-powered tactile sensor array with a strain-insensitive character-
istic, as depicted in Figure 6c [129]. An 8 × 8 stretchable tactile sensor array is fabricated
to map the distribution and intensity of the applied pressure without the influence of
strain. Moreover, the temperature fluctuation also affects the piezoresistive-based sensors,
especially for liquid metal-based sensors [130]. To solve this problem, a microfluidic tactile
sensor based on a diaphragm pressure sensor with an embedded Galinstan microchannel
design is then reported (Figure 6d) [131]. With a design of four primary sets of sensing
grids, including two tangential sensing grids and two radial sensing grids, the proposed
sensor not only shows high sensitivity, linearity, low limit of detection, high resolution,
etc., but also possesses temperature self-compensation at 20–50 ◦C by using an embedded
equivalent Wheatstone bridge circuit. Similarly, an interference-free bimodal tactile sensor
for pressure and temperature sensing is presented in Figure 6e. The variations of resis-
tance and luminescence caused by the thermoresistive effect and the piezo/tribophotonic
effect enable the sensing of pressure and temperature independently and without any
crosstalk. It also allows the wireless transmission of pressure and temperature data via
mobile phone [132]. These sensors, handling cross interference of different signals, pave the
way for multimodal sensing on wearable edge computing devices. The powerful onboard
processers can analyze the latent features of multimodal signals and perform complex
downstream tasks (e.g., human activity recognition, emotion recognition, etc.) powered by
neural networks.

By considering wearability, the abovementioned sensors are often designed on a
flexible or stretchable substrate, and detect the information at a specific part [133]. To
establish a whole-body sensory network, more platforms, such as exoskeleton, can be
considered. In the meantime, the different body parts usually have their own motion
patterns, which require different sensing mechanisms or designs. In Figure 6f, a triboelectric
bi-directional (TBD) sensor, which can be universally applied on different parts of the
customized exoskeleton for capturing the motions of the entire upper limbs is reported [134].
With a facile switch and a basic grating structure, it realizes bidirectional sensing for both
rotational and linear motions, the single type of pulse-like signal greatly simplifies the back-
end signal processing. The good consistency between the exoskeleton and the structure
of the human body allows further kinetic analysis for other physical parameters, such
as displacement, velocity, and force, etc. All the TBD sensors in the exoskeleton are self-
powered, which greatly increases the possible operation time of the device.

4.2. Sensors for Healthcare and Sports Monitoring

Healthcare and sports-related monitoring are key reasons behind the popularity of
wearable systems [135–137]. With the help of diversified wearable devices, such as wrist
bands, watches, glasses, sleeves, and insoles, etc., the continuous monitoring of the body
conditions is now becoming increasingly convenient [19,138,139]. Edge computing tech-
nology fits in the task of healthcare and sports monitoring, as the local processing of the
data can decrease the system latency and achieve real-time monitoring and notification.
To further boost the functionality and sustainability, more studies are required [140]. As
shown in Figure 6g, an integrated stretchable device for continuous health monitoring is
composed of a kirigami-based stretchable and self-powered sensing component, and a
near-field communication (NFC) data transmission module. The as-fabricated devices can
be mounted on different surfaces without mechanical irritation, and can hence measure
the surface strain of a deforming balloon and pig heart. In terms of other types of energy
harvester, a perspiration-powered electronic skin (PPES) that harvests energy from human
sweat through lactate biofuel cells (BFCs) is developed [141], which can achieve the con-
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tinuous self-powered health monitoring with both multiplexed sensing and wireless data
transmission [142]. It shows a great capability for noninvasive metabolic monitoring and a
human–machine interface of assistive robotic control.

Conventional heart rate and blood pressure monitoring of the wearable devices utilizes
a photoplethysmogram (PPG) sensor that consists of an LED and a photo detector. Alter-
natively, this function can be performed by applying piezoresistive sensors [143,144]. A
proposed device has a fast response when capturing the precise pulse waveform. Compared
with PPG-based devices which consume 10–100 mW of power, this piezoresistive-based
patch requires much lower power consumption of 3 nW (Figure 6h). Such ultralow power
consumption directly benefits on board edge analytics, making continuous health monitor-
ing possible.

Clothes are the important platforms for a wearable system. Various fabrication pro-
cesses are utilized [145], including weaving, knitting, etc. The manner of functionalizing
the fabric or textile can further improve the level of integration [146–148]. In Figure 6i,
by using the conductive polymer coated cotton sock, a smart sock with walking pattern
recognition and motion tracking functions based on the output of fabric-based TENG can
be fabricated [149]. The multi-segmental pattern of the coating can even realize the gait
analysis. The fusion of PZT chip-based PENGs with the TENG sock enables the qualitative
detection of the variation of sweat levels due to the output response of TENG against the
sweat absorbed by the sock. In terms of sweat analysis, a wearable microfluidic patch
technology is introduced in Figure 6j [150]. The roll-to-roll processed microfluidic channels
with hydrophobic materials can guide sweat via natural pressure associated with eccrine
sweat excretion. The colorimetric sensors with a smartphone image processing platform
can measure regional sweating rate and sweat.

Optical sensors have emerged as an alternative solution to health monitoring to avoid
some drawbacks of electrical sensors [151]. Among these, optical fiber-based wearable
sensing systems have gained strong interest [152]. A highly flexible and intelligent wearable
device based on a wavy shaped polymer optical microfiber is reported in [153]. The device
can perform cardiorespiratory and behavioral monitoring of the user. Powered by neural
networks, voice-based word recognition is also achieved. Furthermore, optical sensors can
also be used to perform sweat sensing, with analytical methods transducing chemical infor-
mation into optical signals [154]. A skin-interfaced, wearable sensing system that can detect
the concentrations of vitamin C, calcium, zinc and iron in sweat is introduced [155]. The
sweat is collected and stored with passive microvalves, microchannels and microreservoirs.
The concentration of the nutrients is determined by colorimetry.

In addition to physical sensors, electrochemical sensors also play an important role
in wearable healthcare and sports monitoring. As a promising approach for non-invasive
health monitoring, electrochemical sensor-based wearable sweat sensing systems have been
intensively investigated [156–160]. For instance, a fully in-ear flexible wearable system,
which can be attached to an earphone, is proposed [157]. With multimodal electrochemical
and electrophysiological sensors, the device can monitor the lactate concentration via the
ear’s exocrine sweat glands and the brain states via multiple electrophysiological signals.
Apart from lactate, other important biomarkers can also be tracked by wearable systems. A
fingertip biosensing system is introduced in [160]. The energy is generated by enzymatic
biofuel cells, which are fueled by lactate, and is stored in AgCl-Zn batteries. With flexible
and compact design, the device can monitor glucose, vitamin C, lactate and levodopa.
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Figure 6. Wearable sensing applications for human–machine interaction, sports and healthcare. (a) Data glove with inertial sensor inte-
grated on flexible print circuit board. Reproduced with permission [127]. Copyright 2013, IEEE. (b) Flexible capacitive iontronic tactile
sensor for ultrasensitive pressure detection. Reproduced with permission [128]. Copyright 2022, Wiley-VCH. (c) Strain-insensitive
self-powered tactile sensor arrays based on a graphene elastomer. Reproduced with permission [129]. Copyright 2022, Wiley-VCH.
(d) Wearable microfluidic pressure sensor. Reproduced with permission [131]. Copyright 2017, Wiley-VCH. (e) Bimodal tactile sensor
with tactile and temperature sensing information. Reproduced with permission [132]. Copyright 2022, American Chemical Society.
(f) Exoskeleton manipulator using bidirectional triboelectric sensors. Reproduced with permission [134]. Copyright 2021, Springer
Nature. (g) Stretchable piezoelectric sensing systems for health monitoring. Reproduced with permission [142]. Copyright 2019,
Wiley-VCH. (h) Piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Reproduced with per-
mission [144]. Copyright 2016, Wiley-VCH. (i) Smart sock using piezoelectric and triboelectric hybrid mechanism for healthcare.
Reproduced with permission [149]. Copyright 2019, American Chemical Society. (j) Skin-interfaced microfluidic system with
personalized sweat analytics. Reproduced with permission [150]. Copyright 2020, American Association for the Advancement
of Science.
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Table 3. Comparison of performances among different sensing mechanisms.

Materials Sensitivity Sensing Range Response
Time Application Ref.

Piezoresistive

Liquid metal 0.0835 kPa−1 100 Pa–50 kPa 90 ms Tactile, bending, and
pulse sensor [131]

Carbon −1.10 kPa−1 <21 kPa 29 ms Tactile sensor array [161]

Silicon 10.3 kPa−1 0.37–5.9 kPa 200 ms Pressure sensors [162]

Capacitive

Elastomer 0.55 kPa−1 <15 kPa Pressure sensor array [163]

Air gap 0.068 fF/mN <1.7 N 200 ms Tactile sensor [164]

Ionic solution 29.8 nF/N <4.2 N 12 ms Three-dimensional force
sensor [165]

Triboelectric

Polymer 2.82 V MPa−1 0.3–612.5 kPa 40 ms Tactile sensor array [166]

Elastomer 0.013 kPa−1 1.3–70 kPa Tactile sensor [167]

Fabric 10–160% Smart clothes [168]

Piezoelectric

PVDF 0.21 V kPa−1 <1 kPa 20–40 ms Mimic somatic
cutaneous sensor [169]

PZT 0.018 kPa−1 1–30 kPa 60 ms Pulse monitoring [170]

BaTiO3 37.1–257.9 mV
N−1 5–60 N Detecting air pressure

and human vital signs [171]

5. Wearable Feedback Systems
In the real world, the interactive events of humans rely heavily on the perception of

the receptors in the skin and the muscle spindles [172]. As a result, the applied forces, the
textures, the temperature, etc., can be perceived for better recognition and manipulation
(Table 4). Although many current HMIs are equipped only with different sensing units,
the existence of feedback components may greatly enrich the awareness of the interactive
scene, especially for wearable systems [173,174]. In terms of controlling the robot or
virtual character, the comprehensive feedback functions replicate a more realistic sensation
compared with pure vision-based monitoring, in order to make a better adjustment [175].
For rehabilitation purposes, the feedback system can act not only as an assistive tool to
increase the physical power of the patients, but can also be applied as a stimulator or
massager to facilitate the recovery process.

Table 4. Advantages and disadvantages of different feedback techniques.

Pros Cons

Tactile Feedback

Pneumatic actuator • Soft and stretchable
• Tunable feedback modes

• Bulky pump system
• Less reliable
• Slow response time

Hydraulic actuator • Soft and stretchable
• Tunable feedback modes

• Bulky pump system
• Less reliable
• Slow response time

Vibrator
• Compact size
• Low power consumption
• Robust

• Limited feedback mode

Wire actuator • Compact for kinesthetic feedback • Bulky actuation system
• Slow response time

Motor • High output force
• Robust • Bulky size
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Table 4. Cont.

Pros Cons

Tactile Feedback

Dielectric elastomer actuator • Soft and stretchable
• Tunable feedback modes • Require high voltage

Electric discharge • Compact size
• Flexible • Pain from electric shock

Temperature feedback

Electroresistive heater • Soft and stretchable
• Compact size

• Slow response time
• Heating mode only

Thermoelectric • Heating and cooling modes • Usually rigid

Fluidic • Heating and cooling modes • Slow response time

5.1. Cutaneous Feedback

Human skin can sense the shape, texture, and softness of the touched object via
mechanoreceptors and can also differentiate vibration and static pressing through fast
adapting (FA) and slow adapting (SA) receptors, respectively. Additionally, temperature
sensors in our skin can provide even more complex sensations. However, the densities of
those receptors are varied throughout the human body.

Except for the frequently used vibrators, pneumatic actuation is one of the most popu-
lar feedback techniques. To minimize the number of air inlets and pathways, several switch
array techniques are studied to increase the controllable air chambers. A reconfigurable
pneumatic haptic array controlled by shape memory polymer (SMP) membrane is shown
in Figure 7a [176]. The Young’s modulus of the membrane can be changed by the heater, so
that the membrane deforms under varied air pressure to realize the reconfigurable tactile
system. As the applied voltages with different potentials created on two electrodes can
cause the attraction phenomenon, the electrostatic force-based feedback is also studied. To
improve the feedback force, the electrostatic actuator can be hydraulically amplified, as
illustrated in Figure 7b [177]. Here, the outer region of the chamber was compressed under
electrostatic force, and the central membrane was then expanded under hydraulic pressure.
Noticeably, electrical discharge can also be considered a kind of feedback, and TENGs
with an output voltage from triboelectrification are thus utilized for discharge feedback, as
shown in Figure 7c [178]. The direct contact of the ball electrodes to human skin can lead
the TENG discharge to be delivered as electrical discharge feedback.

Another issue regarding the use of cutaneous feedback is the question of how to
accurately reconstruct spatial or textural stimuli to the mechanoreceptors in order to
perceive the recreated 3D shapes in a single system. Dielectric elastomers can provide
mechanical deformation under the applied voltage. To fabricate the actuator with tunable
feedback perception, a multi-layer PDMS-based dielectric elastomer actuator (DEA) sand-
wiched by carbon nanotube electrodes for fingertip cutaneous feedback is demonstrated
in Figure 7d [179]. The surface area of the as-fabricated DEA can be modified to cause a
feeling of stretching or compression on the skin. Moving forward, a soft pneumatic actuator
skin (SPA–skin) is presented as a low-profile soft interface containing a PZT sensor layer,
an SPA layer, and a controller with pneumatic system (Figure 7e) [180]. Owing to the
integration of the sensing and feedback layer, the local environmental loading conditions
can be acquired for tuning the output in coherent feedback, so that the natural texture
of an orange peel can be recreated. The high-bandwidth capabilities of feedback enable
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two-stage actuations, including low-frequency stimulation when approaching the contour
shape, and high-frequency vibration when reaching the actual contour of the object.

To further explore the piezoelectric actuator with the flexible and lightweight substrate,
while maintaining the amplitude of actuation, the low-cost mass printing approach was
reported for large area multilayer piezoelectric actuators with strong haptic sensations. In
Figure 7f, the proposed device shows an extremely high deflection, and generates a blocking
force of 0.6 N, which is sufficient to generate an indentation on the human skin [181]. This
can also be incorporated with audible sound information based on its high sound pressure
level, so that a fusion of touch and sound sensation is realized.

5.2. Kinesthetic Feedback

The perception of the kinesthetic feedback is undertaken through the neurosensory
pathways of the muscle spindles, to feel the movement or position of body parts. Because
of its 3D features, the reconstruction of the motion that is mimicking the pathway becomes
a grant challenge.

Tendon-driven actuation is commonly utilized in kinesthetic feedback, as well as in
delivering physical assistance to impaired people. With well-designed wire routines and a
miniaturized motor, the tendon-driven actuator can offer strong kinesthetic feedback force
by a compact package. In Figure 7g, a wearable tendon-driven haptic device is demon-
strated to provide multiple kinesthetic feedback in a small form factor for the stiffness
rendering of virtual objects [182]. The tendon-locking unit modifies the stiffness of the
tendon using a selective locking mechanism based on either a rigid mode or an elastic
mode. Additionally, the tension transmission component can transfer the resistive force
from the locking unit to finger through the tendon. Interestingly, the previously mentioned
electrostatic force can also be applied for offering the blocking force as well. In Figure 7h, a
high force density electrostatic clutch is proposed for developing the kinesthetic feedback
glove to reflect the virtual events [183]. A conductive textile with a high friction insulation
layer forms a clutch that can generate a frictional shear stress of up to 21 N/cm2 at 300 V
to initiate the blocking action. To further quantify the feedback performance, a wearable
hand system can measure the motional information of each finger during the interac-
tion for recording and evaluating the effectiveness of the kinesthetic feedback, as shown
in Figure 7i [184].

In addition, several researchers are also studying the delivery of feedback to other
body parts to further improve the experience. A jacket with contraction and extension
actuators can be pneumatically actuated to enable kinesthetic motions of the arms [185].
In addition, a wearable haptic guidance system has been developed to help those visually
impaired people to navigate a running track (Figure 7j) [186]. With an RGB-D camera
and a microprocessor to detect the lanes and calculate the steering angles, the skin can
be stretched by a belt via the steering angles for generating the navigation-related haptic
feedback sensation around the waist.

5.3. Temperature Feedback

Temperature sensation is an extremely important function of skin, which can help
to protect ourselves from the potential hazards. Meanwhile, for human–machine inter-
actions, temperature feedback allows a better perception of the working environment
via a replicated immersive feeling. Moreover, it also assists medical rehabilitation via
specific stimulations.

Most of the time, temperature and mechanical stimuli are exerted on skin simultane-
ously during the interaction in real space. Multi-modal feedback is drawing much attention.
As depicted in Figure 7k, a sleeve-type soft haptic device is presented with the capabilities
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of reproducing the feeling of a moving thermal sensation along with pressure stimulation
using a single method [187]. The pneumatic and hydraulic systems generate pressure and
temperature stimuli, respectively. A microblower in a small sphygmomanometer elimi-
nates the requirement of a large air compressor or complicated tubes. The electroresistive
heater is another main technical direction. A multi-modal sensing and feedback glove is
developed as illustrated in Figure 7l [188]. The liquid metal is printed into a meandered
shape to offer both strain sensing and thermal feedback functions via the power supply.

On the other hand, the electroresistive based units can only act as heaters to give
thermal feedback. A wearable ear hook with a Peltier module can provide both hot and
cold stimuli on the auricular skin area [189]. By adding multiple Peltier modules, the multi-
point auricular thermal patterns can be perceived by the users with an average accuracy of
85.3%. Although the thermoelectric module with the Peltier effect possesses both heating
and cooling capabilities, the solution of developing flexibility or even stretchability is still
an issue that needs consideration. In Figure 7m, a skin-like thermo-haptic device with
thermoelectric units shows a certain flexibility, with a design incorporating Cu serpentine
electrodes as interconnectors and thermoelectric-based pellets. This device can create a
temperature difference of 15 ◦C via the heating and cooling process [190].

Figure 7. Wearable feedback systems for cutaneous feedback, kinesthetic feedback, and temperature feedback. (a) Large reconfigurable arrays
with shape memory feedback units. Reproduced with permission [176]. Copyright 2017, Wiley-VCH. (b) Hydraulically amplified electrostatic
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actuators for multi-modal feedback. Reproduced with permission [177]. Copyright 2020, Wiley-VCH.
(c) Self-powered electro-tactile system for virtual reality. Reproduced with permission [178]. Copyright 2021, American As-
sociation for the Advancement of Science. (d) Feel-through feedback unit using a dielectric elastomer actuator. Reproduced
with permission [179]. Copyright 2021, Wiley-VCH. (e) Finger touch sensation with soft pneumatic actuator. Reproduced with
permission [180]. Copyright 2021, Wiley-VCH. (f) Printed multilayer piezoelectric actuators on paper for touch and sound sensation.
Reproduced with permission [181]. Copyright 2022, MDPI. (g) Wearable haptic device for the stiffness rendering of virtual objects.
Reproduced with permission [182]. Copyright 2021, MDPI. (h) Textile electrostatic clutch for virtual reality. Reproduced with
permission [183]. Copyright 2020, Wiley-VCH. (i) Kinesthetic feedback evaluation system for virtual reality. Reproduced with
permission [184]. Copyright 2019, IEEE. (j) Haptic guidance system based on skin stretch around the waist. Reproduced with
permission [186]. Copyright 2022, IEEE. (k) Wearable temperature feedback device with fluidic thermal stimulation. Reproduced
with permission [187]. Copyright 2021, Association for Computing Machinery. (l) Liquid metal-based multimodal sensor and haptic
feedback glove for thermal and tactile sensation. Reproduced with permission [188]. Copyright 2021, Wiley-VCH. (m) Stretchable
cooling/heating feedback device for artificial thermal sensation. Reproduced with permission [190]. Copyright 2020, Wiley-VCH.

6. Wireless Power and Signal Transmission and Energy Harvesting
Due to the concern of portability, the size and weight of the energy storage unit are

strictly restrained to maintain comfortability. An increasing number of integrated modules
further reduces the operation time of the wearable system, though the power density of the
battery also increases (Table 5). This situation will become worse when the edge computing
capability is introduced, as the computation in the wearable microprocessor will consume
much more power. The manner of scavenging the energy from the human body or ambient
environment can extend the operation time, or even enable self-sustainability.

Table 5. Comparison of the typical power consumptions of common components in wearable systems.

Configuration Power Consumption Power Consumption (Sleep
Mode)

MCU

Arduino Nano
Processor: ATMega 328
Clock speed: 16 MHz

RAM: 2 KB
20 mA 6.2 µA

Raspberry Pi pico
Processor: Arm Cortex-M0+

Clock speed: 133 MHz
RAM: 264 KB

93 mA 1.3 mA

ESP32
Processor: 32 bit LX6

Clock speed: 240 MHz
RAM: 520 KB

30 mA 10 µA

Wireless transmission

Bluetooth HC-05 39 mA 9 µA

Wi-Fi Arduino Yun 251 mA 30 µA

ZigBee XBee Series 1 52 mA 12 µA

Sensors

MEMS IMU STMicroelectronics
LSM6DSOX 0.55 mA ~7.5 µA

RGB camera Raspberry Pi
Camera Module 3 ~200 mA ~5 mA

Capacitive
proximity sensor

Semtech
SX9210 22 µA 1.75 µA
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Table 5. Cont.

Configuration Power Consumption Power Consumption (Sleep
Mode)

Actuators

Eccentric rotating
mass Sanyo NRS2574I ~120 mA N.A.

Linear resonant
actuator AAC 1036C ~50 mA N.A.

Piezoelectric
actuator Sanyo NRS2574I ~60 mA N.A.

Piezoelectric materials have a relatively high power density and small size based on
MEMS fabrication process. Hence, PENG devices are frequently reported for wearable and
implantable applications. A broadband ultrasonic PENG (Figure 8a) is demonstrated to
power implantable biomedical devices via an input ultrasound probe, while maintaining
the broadband frequency response from 250 to 240 kHz [191]. However, those ceramic
PENGs are not suitable to make large-size flexible energy harvesters, and the general output
power is thus still limited. TENG, with many more material options and design feasibilities,
is another potential technique. In Figure 8b, a body-integrated self-powered system (BISS)
is then developed to scavenge energy from human motions, through triboelectrification
between soles and floor and electrification of the human body [192]. With a piece of an
electrode attached to the skin, the human body, as a good conductor, can deliver the power
into the other wearable system, such as smart glasses. However, many TENGs still suffer
the power density issue. As a complementary solution, a fusion approach with both TENG
and EMG mechanisms is utilized to make a self-powered electronic watch (Figure 8c) [193].
The EMG part consists of the magnetic ball with embedded coils which can generate
2.8–4.0 mW power. The arch-shaped TENG made by nylon and PDMS can provide 0.1 mW
power. On the other hand, the power transmission throughout the whole body is also
preferred, so that the energy harvesters can be separately placed onto the position with rich
mechanical energy.

Interestingly, humans are now living in an environment that is full of electromagnetic
(EM) waves. To convert those EM waves into electricity, human body-coupled power deliv-
ery and ambient energy harvesting chips are proposed with the capability of harvesting
ambient EM waves and delivering their power via body medium for full-body power
sustainability [194] (Figure 8d). Moreover, the applications of new materials in fabricating
smart textiles or e-skin are further increasing the solutions of wireless wearable energy
harvesters or transmitters (Figure 8e,f) [195,196].

Wireless signal transmission is one of the most important foundations for a wearable
edge computing system. According to the required transmitting range, speed, and data
volume, various wireless communication protocols, such as WiFi, Bluetooth, ZigBee, XBee,
etc., are adopted in the commercial market. As a major power-consuming unit, many of the
wireless units developed strategies to save energy, such as sleep mode, event-based trigger,
etc. Together with the wearable energy harvester, the sustainability of the whole system
can be improved. In addition, attempts to use a self-powered output as a data transmission
signal are also presented.

In order to monitor vital signals in real time, a wearable system includes MXene-
enhanced TENGs, pressure sensors, and multifunctional circuitry. The outstanding con-
ductivity and mechanical flexibility of MXene enable conformable energy harvesting
the pressure sensing with a low detection limit of ~9 Pa, and a fast response time of
~80 ms [197]. The whole wearable monitoring system is powered by the TENG in or-
der to continuously measure the peaks of the radial artery pulse from the wrist in real
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time. The capacitance-to-digital converter chip communicates with pressure sensors and
LEDs to visualize the valleys and peaks of the output waveforms with the “on” and “off”
states, respectively.

By rectifying and converting electric power from the magneto-mechano-triboelectric
generator (MMTEG), a self-powered wireless indoor positioning system is proposed with
continuous monitoring [198]. The device consists of a magnetic field harvester, power
control circuit, storage element, and IoT Bluetooth beacon. The MMTEG device generates
an output of a nearly 60 Hz power cable connected to home appliances, with a weak
magnetic field.

A hybrid vibration energy harvester made by TENG and EMG is presented in [199],
to power an active RFID tag of a wearable system embedded in shoes, so that the auto-
matic long-distance identification for door access can be realized. In the meantime, the
fabric-based TENG is also fabricated with a superhydrophobic coating (Figure 8g) [200].
The integration of the diode can significantly enhance the output used in the wireless
transmission. The tunable oscillation frequency response offered by the tunable external
capacitor achieves a wireless control system via the coils. In addition, an optical media is
proposed for wireless communication. By integrating a TENG with a microswitch, an LC
resonant circuit, and a coupling inductor, a red laser and a photodetector can act as the
transmitter and receiver, respectively, for wireless data communication with identification
undertaken by the external capacitors [201].

Figure 8. Self-powered power and data transmission. (a) Broadband piezoelectric ultrasonic energy harvester for powering implantable
biomedical devices. Reproduced with permission [191]. Copyright 2016, Springer Nature. (b) Self-powered body sensory network for
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wearable and implantable applications. Reproduced with permission [192]. Copyright 2019, American Chemical Society.
(c) An electronic watch powered by an electromagnetic–triboelectric nanogenerator. Reproduced with permission [193]. Copy-
right 2015, American Chemical Society. (d) Human body-coupled power delivery and ambient energy harvesting. Reproduced
with permission [194]. Copyright 2020, IEEE. (e) Resonant inductive wireless power transfer glove using embroidered textile coils.
Reproduced with permission [195]. Copyright 2020, IEEE. (f) Printed textile-based carbon antenna for wearable energy harvesting.
Reproduced with permission [196]. Copyright 2022, IEEE. (g) Short-range self-powered wireless sensor network using triboelectric
mechanism. Reproduced with permission [200]. Copyright 2020, Elsevier.

7. Machine Learning-Enabled Intelligent Wearable HMIs
The introduction of ML technology in the current sensory system is reshaping the

concept of smart sensors in various fields, ranging from healthcare to industrial and
environmental monitoring [202–205]. The extraction of specific features from the respective
dimensions through the massive datasets can realize a more comprehensive interpretation
of the raw sensing signals [206]. Diversified ML algorithms are reported for better analyzing
the different types of information, such as vision, sound, chemical, and tactile [207]. By
understanding whether the ML algorithms are learning the features with the labeled data
or unlabeled data, the ML technique can also be categorized into supervised learning and
unsupervised learning. For instance, supervised learning is frequently adopted in those
wearable HMIs with classification functions. Owing to the edge computing capability,
some of the primary ML processing can be undertaken locally to reduce the data volume in
wireless communications.

Speech recognition and translation are the most popular applications of ML. A sign
language recognition and communication system with a comfort textile-based glove can
assist the communication between non-signer and signer (Figure 9a) [208]. This glove
not only offers the recognition of words, e.g., single gestures, but also enables the trans-
lation of sentences, e.g., continuous multiple gestures, with accuracies above 90% via the
non-segmentation frame. To reduce the computing power, dimension reduction, such as
principal component analysis (PCA) and linear discriminant analysis (LDA), etc., is often
used to preprocess the sensory data. To further expand the capability of recognizing new
sentences without dataset training, the segmentation method is applied to divide all of
the sentence signals into word fragments so that ML can learn them individually. Thus,
the ML algorithm can inversely reconstruct and recognize the whole sentence through
the established correlation of basic words and sentences. Furthermore, the segmentation
approach renders new sentence recognition by recombining the trained word units in new
orders. In Figure 9b, a TENG-based sensory floor mat fabricated by screen printing is
shown, composed of reference electrode and coding electrodes for position tracking and
gait recognition [209]. The ratio of voltage output is used as sensing data, which eliminates
the humidity disturbance to the absolute amplitude of triboelectric output voltage. As a
scalable smart home application, the recognition of 20 users is undertaken by training the
datasets with a 1D convolutional neural network (CNN) mode. The preliminary recognition
accuracy can reach above 90%. During the human–machine interactions, the collaboration
of the recognition and manipulation functions can greatly improve the efficiency with
better intelligence. A smart glove-based HMI is illustrated in Figure 9c [210]. With the
triboelectric finger-bending sensors and palm shear sensors, this glove is able to capture
the finger and hand motions with multiple degrees of freedom. More importantly, the
CNN and SVM algorithms are applied to further analyze multichannel signals during
the different interactions to achieve object and gesture recognition. A smart walking stick
for assisting the elderly has been developed using a hybridized unit and a rotational unit
made by TENGs and EMG, respectively (Figure 9d) [211]. The aluminum is divided into
five electrodes in order for the bottom TENG to detect the entire contact process of the
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stick as the user walks. With the aid of a 1D CNN to analyze the multi-channel outputs
from TENGs, the different statuses, such as sit, walk, and fall down, etc., of the different
users can be identified through the featured patterns of outputs, and, hence, the obtained
real-time status of the user can be projected in the spaces of visional monitoring and imme-
diate assistance. The linear-to-rotary energy harvesting function of TENG and EMG can
efficiently harvest the ultralow, under 1 Hz-driven frequency to serve as the power supply
for a self-sustainable system with GPS tracking and multifunctional monitoring.

 

Figure 9. AI-enabled wearable devices. (a) Sign language recognition using triboelectric smart glove. Reproduced with permission [208].
Copyright 2021, Springer Nature. (b) Floor monitoring system with AI for smart home applications. Reproduced with permission [209].
Copyright 2021, American Chemical Society. (c) Machine learning-enhanced smart glove for virtual/augmented reality applications.
Reproduced with permission [210]. Copyright 2020, American Association for the Advancement of Science. (d) Caregiving walking
stick for walking status monitoring. Reproduced with permission [211]. Copyright 2021, American Chemical Society. (e) Soft modular
glove with AI-enabled augmented haptic feedback. Reproduced with permission [212]. Copyright 2022, American Chemical Society.
(f) Augmented tactile-perception and haptic-feedback rings. Reproduced with permission [213]. Copyright 2022, Springer Nature.

On the other hand, most of the current ML-based applications focus simply on the
analysis of sensing information. There is almost no research on the fusion of ML-enabled
sensing and feedback, due to the spatial inconsistency between two components. A modular
soft functionalized by Tactile+ (tactile plus) units is proposed with the ability to provide
both sensing and feedback functions from the same unit (Figure 9e) [212]. Specifically, the
Tactile+ units on finger modules and the palm module possess triboelectric tactile and
strain sensing, pneumatic actuation, triboelectric-based monitoring of pneumatic actuation,
temperature sensing, and thermal feedback. In addition to the basic manipulation functions
and the ML-assisted object recognition, the recognition data can be applied to initiate the
multimodal-augmented haptic feedback via tunable feedback patterns, which indicates
a potential direction for the intelligent fusion of sensing and feedback capabilities. For
an ML-assisted wearable system, miniaturization is a constant topic in the research field.
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The augmented tactile-perception and haptic-feedback rings with multimodal sensing
and feedback capabilities shown in Figure 9f indicates a possible direction [213]. All of
the thermal and tactile sensing and feedback functions are integrated into a minimalist
designed ring and driven by a custom IoT module with the potential of edge computing.
The voltage integration process of the raw signals realizes both dynamic and static detection
by TENG sensors. This type of signal also provides ML-based gesture recognition with
a higher accuracy of 99.821%. The self-powered TENG and PENG sensing units further
reduce the power consumption for long sustainability. An interactive metaverse platform
with cross-space perception capability is demonstrated by projecting objects in the real
space into the virtual space, and is simultaneously felt by another virtual reality user in
remote real space for a more immersive experience.

8. Wearable HMIs with Edge Computing
The increasing number of sensing terminals in sensor networks induces a severe

problem of redundant data exchange between the sensing terminals and the computing
units [214]. To mitigate the problem, a straightforward solution is to incorporate edge
computing technology, placing the computing units close to or even inside the sensor itself.
With this computing architecture, the excessive data exchange between the wearable system
and external computing hardware or cloud computing infrastructure is eliminated. As a
result, the energy consumption and latency of the system is reduced [215] and the privacy
safety of the user is reinforced [216]. The implementation of edge computing wearable
HMI systems encompasses two approaches: on one hand, highly integrated systems based
on the conventional von Neumann computing paradigm are built to ensure the computing
unit’s proximity to sensing terminals [217–220]; on the other hand, novel neuromorphic
computing paradigms are achieved via artificial sensing neurons like memristors [221–225],
memtransistors [226,227] and other innovative devices [228–232].

Many researchers have proposed wearable intelligent sensing HMIs with near-sensor
data processing functionality based on the conventional computing paradigm. For instance,
Moin et al. [217] have reported a highly integrated, flexible bio-sensing system which can
perform real-time gesture recognition locally (i.e., near sensor) via surface electromyo-
graphy (sEMG) (Figure 10a). A machine learning model is deployed in a miniaturized
printed circuit board, reducing the latency and power consumption of the system. The
model can adapt to changes in biological conditions (e.g., sweat, fatigue, etc.), as well as
changes in forearm position. The high-density sensing unit encompass 4 × 16 electrodes to
capture sEMG signal. The sensing unit is interfaced with a custom PCB, which consists
mainly of a system-on-a-chip (SoC) field-programmable gate array (FPGA) and a 2.4 GHz
radio SoC for data transmission. The system is powered by a lithium-ion battery. The
classification of gestures is performed by a simple clustering algorithm, with each cluster
centroid representing each gesture. This simple yet efficient algorithm facilitates the local
deployment of the model and makes online adaptation possible. The throughput of the
system is reported to be 20 predictions per second, illustrating the advantage of edge
computing. An accuracy of 97.12% is reported for 13 gestures in 2 participants and an
accuracy of 92.87% is preserved for 21 gestures.
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Figure 10. Wearable HMIs with edge computing functionality. (a) A highly integrated, edge computing system for real-time gesture
recognition. Reproduced with permission [217]. Copyright 2021, Springer Nature. (b) A textile-based smart glove for local gesture
recognition. Reproduced with permission [219]. Copyright 2024, Wiley-VCH. (c) A wearable, near-sensor computing system for
full-pose reconstruction. Reproduced with permission [220]. Copyright 2022, Springer Nature. (d) A wearable, neuromorphic
computing system based on the memristor array. Reproduced with permission [221]. Copyright 2022, Wiley-VCH. (e) A tactile sensing
system with large memristor array for hand-written digits recognition. Reproduced with permission [222]. Copyright 2022, American
Chemical Society. (f) A wearable system based on an array of organic electrochemical transistors for electromyography (EMG) signal
analysis. Reproduced with permission [229]. Copyright 2024, Springer Nature.

Apart from sensors based on sEMG, resistive tactile sensors can also be used to perform
the gesture recognition task. Duan et al. [219] presented a textile-based smart glove that is
capable of classifying gestures locally (Figure 10b). The 10 high-sensitive tactile sensors
(2 for each finger) can capture the bending of a finger joint. When the finger bends, the
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resistance between the interdigitated electrodes changes because of the double contact effect:
the contact between the TPU/Ag electrodes and MXene/textile and the contact among
MXene/textile fibers. Through silver wires sewn in the glove’s textile, the sensing signal is
transmitted to the MCU on a flexible PCB, and the gesture recognition process based on a
nearest neighbor (measured in minimum Euclidean distance) algorithm is performed. The
algorithm is simple but can be easily updated to recognize new gestures. The scalability
of the system can be a problem though. For the classification performance, the accuracies
for the 14-gesture and 20-gesture datasets are 99.5% and 98.1%, respectively. Due to the
near-sensor computing ability of the system, only the results of gesture classification are
transmitted wirelessly, minimizing the power consumption.

In addition to gesture recognition, full-body pose reconstruction can also be achieved
with edge computing technology for enhanced latency and personal information security.
Yang et al. [220] implemented a wearable, near-sensor computing system based on piezore-
sistive strain sensors to reconstruct the full-body pose of the user (Figure 10c). The sensing
module of the system contains seven piezoresistive nanosheets made of Ti3C2Tx MXene,
single-walled carbon nanotubes (SWCTs) and polyvinyl alcohol (PVA), illustrating high
electrical conductivity and superior mechanical properties. With four different topographic
structures (i.e., fully planar, fully wrinkled and two hybrid structures), these sensors exhibit
different linear sensing ranges (i.e., local strain at the joint) and high sensitivity in their own
working range. With respect to the edge computing module, an Arduino board is used to
process data and perform the pose reconstruction task with a convolutional neural network
near the sensors. In the experiment, a reconstruction error of 3.5 cm is reported when
compared with the results generated from a state-of-the-art pose tracking method (i.e.,
OpenPose [233]) based on vision data. Because the edge computing paradigm eliminates
the huge data transmission between the wearable system and the external computing
device, the power consumption is reported to reduce by 71% when compared with the
non-edge computing paradigm.

For wearable devices, the energy efficiency of edge computing is of vital importance.
Despite the low power consumption of the aforementioned devices, their conventional
von Neumann computing paradigm prevents the achievement of higher computing ef-
ficiency [234]. To this end, researchers have combined the neuromorphic computing
paradigm, which mimics the function of the human brain [235], with edge computing
technology to further decrease the power consumption. For example, Wang et al. [221]
proposed a wearable device equipped with a piezoresistive sensor array and memristor
array for neuromorphic computing (Figure 10d). The device can generate post-processed
(noise reduction and edge detection) pressure maps with ultralow computation time and
power consumption. The sensing module is an m × n piezoresistive pressure sensor ar-
ray. The pressure sensors are based on Ag nanowires (AgNWs) and are fabricated with
pyramid structures to enhance sensitivity. Each sensor is connected to a memristor element
fabricated using an HfO2-based bipolar resistive switching unit. The conductance of each
memristor element is pre-programmed to a fixed value by a pulse height modulation
method. These conductance values act like the values in a convolutional filter. The neu-
romorphic computation is performed by an analog process mimicking the vector-matrix
multiplication (VMM). By setting a fixed value for every memristor, the device can perform
pressure sensing with a smoothing effect (i.e., denoising); by setting the column of memris-
tors like a Laplacian convolutional filter, the device can detect edges in the pressure map.
Due to this purely analog, neuromorphic computing paradigm, only 400 ns is required
to perform one sensing-computing operation. In addition, the power consumption for
denoising and edge detection is reported to be 2 µW and 7.84 µW, respectively.
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Unlike the small-scale memristor array fabricated in [221], a large-scale memristor
array fabricated by CMOS process is also deployed in wearable devices. For instance,
Zhao et al. [222] reported a large-scale tactile device with a 64 × 64 piezoresistive film-
based sensor array and a neuromorphic computing chip with roughly 160,000 memristors
(Figure 10e). To enable high spatial resolution, a 64 × 64 single-walled carbon nanotube thin-
film transistor array is integrated with the piezoresistive film. To be specific, the transistor
array is coated by the piezoresistive film by MWCNTs/TPU precursor agent. The tactile
sensor array achieves a spatial resolution of 0.9 mm (i.e., 28.2 pixels per inch). The tactile
sensing data are processed by a TiN/HfOx/TaOy/TiN memristor array, which constitutes
a multi-layer perceptron network using roughly 160,000 memristors. The performance
of the device is validated by experiments on hand-written digits and Chinese character
recognition, with an accuracy of 98.8% and 97.3%, respectively. Due to the neuromorphic
computing technology, the device exhibits a fast inference speed of 77 µs per image.

Apart from the memristor, organic electrochemical transistors (OECTs) can also be
employed to perform neuromorphic computing. Liu et al. [229] introduced an intrinsically
stretchable organic electrochemical transistors (ISOECTs) array, which can be integrated into
a wearable system to perform gesture recognition based on an electromyography (EMG)
signal (Figure 10f). The ISOECT array is fabricated by a facile process via a multichannel
inkjet-printing approach and is suitable for scalable production. The ISOECT array is
printed on the styrene–ethylene/butylene–styrene (SEBS) substrate. The channel between
the source and drain electrodes is made of poly(3,4-ethylenedioxythiophene) polystyrene
sulfonate (PEDOT:PSS) for better water stability and mixed ionic–electronic conductivity.
The nonlinear output of the ISOECT under a four-digit pulse wave is exploited to build the
neuromorphic computing module—the digitized EMG signal is fed into the ISOECT array,
which serves as a block for reservoir computing, and the output of the ISOECT array is fed
into another conventional fully connected layer executed in a traditional CPU to output the
classification results. Therefore, the computing paradigm is actually a half-neuromorphic
half-conventional structure. Nonetheless, a significant reduction in data processing costs is
reported, indicating the advantage of edge computing.

9. Conclusions and Perspectives
Wearable HMIs with edge computing capability are reshaping the lifestyle of humans

in the coming era. Based on the concept of “human in the loop”, diverse sensors and
feedback units are the most important interfaces, which are responsible for enabling the
digitized dual manner of communication between the human and digital worlds. This has
thus brought the necessity to introduce the edge computing technique, so that wearable
devices can operate individually with a certain intelligence. Thus, the advancement of those
conformable and stretchable integrated circuits is considered a foundation of those e-skin
like wearable edge computing systems, and the device is thus able to be functionalized
for the whole body. To extend their working time, various energy harvesting technolo-
gies, self-powered sensors, as well as self-powered data or power transmission methods
are devoted to demonstrating a self-sustainable system, which is ultimate the goal of
wearable HMIs.

On the other hand, the deployment of edge computing in wearable devices is still
confronted with some key hurdles, including power consumption control, privacy and data
security issues and material reliability. Currently, the application of many edge computing
wearable devices is curbed by their short battery life. The power consumption of wearable
devices mainly consists of sensing, computation and communication power. For sens-
ing power control, self-powered sensors (i.e., piezoelectric, triboelectric, etc.) and energy
harvesting technologies discussed in previous chapters can serve as a promising solution.
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Reducing computational power, nonetheless, can be difficult due to the limitation of the
conventional von Neumann computing paradigm, which is commonly seen in wearable
devices [234]. To resolve the dilemma, neuromorphic computing technology, which mimics
the function of human brain, has gained much interest [235]. Some wearable devices
powered by neuromorphic computing hardware (i.e., memristor, organic electrochemical
transistors, etc.) have reported an ultralow computational power consumption. Further-
more, to constrain the power for inter-device communication, many mature protocols
are optimized to save energy. For instance, a Bluetooth low energy device powered by a
coin battery is reported to have a theoretical battery life of 14.1 years [236]. In addition
to power consumption control, data security, data encryption and corresponding privacy
issues still concern users. Common attacks threatening data confidentiality include eaves-
dropping attacks and property inference attacks targeting machine learning models. With
respect to eavesdropping attacks, the malicious attackers attempt to steal and break the
encrypted data during data transmission. Meanwhile, property inference attacks attempt
to infer the characteristics of the dataset, based on which the behavior of the user can be
exposed. To strengthen the data security during transmission, signal-based cryptographic
key generation can be a suitable solution for wearable devices [237]. For attacks targeting
machine learning models, limiting the exposure of models can be effective [238]. Moreover,
for flexible neuromorphic edge computing devices, uniformity and reliability of thin film
materials can be a challenge. Small-molecule organic films fabricated through thermal
evaporation can be a promising approach [239].

Generally speaking, by incorporating the abovementioned techniques, the wearable
edge computing system will eventually initiate a new revolution of human–machine
interactions in the environments of the smart home, smart industrial, and smart city.
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