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Supplementary Note 1: Background of THz Metamaterial Development

Terahertz (THz) metamaterials are artificially engineered structures designed to control and
manipulate electromagnetic waves in the frequency range of 0.1-10 THz. THz metamaterials
bridge the “THz gap” and enable precise control over THz waves for a wide range of

[1-3]

groundbreaking applications, including non-invasive medical imaging, chemical and

[4-6

biological sensing,[*¢! high-speed wireless communication,®! security screening,! and

advanced spectroscopy.!! 12!

Over the years, a diverse set of THz metamaterials with carefully designed subwavelength
patterns have been developed to achieve THz resonances that facilitate strong light-matter
interactions for enabling high sensitivity. The most popular structures were split ring resonators
(SRRs) proposed by Pendry et al and then expanded to THz devices, in which the SRRs
exhibited a strong magnetic response with negative permeability for achieving a negative index

[13-15] To further improve the

of refraction at the inductive-capacitive (LC) resonance mode.
resonance performance, SRRs with various modified forms were investigated for satisfying
unique properties, such as Fano resonance, electromagnetically induced transparency (EIT),
bound states in the continuum (BIC), and toroidal dipole.!'5*> For instance, two individual
asymmetric D-split resonators (ADSRs) were used as unit cells to suppress radiation losses and
achieve THz resonance with high quality factor (Q).1'%!” The coupling coefficient between two
opposite nested metallic SRRs was optimized to satisfy the Friedrich-Wintgen (resonance-
trapped) BIC with normal THz incidence.'®?l The SSR with dual capacitive gaps at
asymmetric positions, enabling two unequal metallic wires to form an asymmetric resonator,
was developed to excite Fano resonance with a figure of merit (FoM) that considers both Q and

21-231 Side coupled configuration with the resonating arms flipped was

resonance intensity.!
further designed to raise a symmetry-protected BIC for the coupling of Fano resonance to the
first-order lattice mode of the metamaterial array, leading to the improvements of both the Q
and FoM.?¥ The coupling of two concentric SRRs with different gap positions was studied to
build an asymmetric metamaterial structure to realize THz Fano resonances.®*! Adjacent four
square SSRs with asymmetric gaps formed one superlattice to achieve quasi-BICs for high-Q
THz metasurface.®?”) Four SRRs with asymmetric dimensions were distributed around the
cut-wire to enhance the linewidth of quasi-BIC resonance.?®! T-shaped resonators and metallic
loops between the adjacent unit cells were carefully designed to compose the resonator unit,

supporting Friedrich-Wintgen BIC without breaking the mirror symmetry via tuning the

coupling of the LC mode and dipole mode resonances./*”) Two symmetry-broken rectangular

2
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SRRs by shifting one gap off the center were mirror-arranged to enable the occurrence of one
trapped mode in addition to an octupolar mode leading to two distinct high-Q resonances.[*”’
Multi-band EIT effect of THz metamaterial was formed by two sub-resonators, a fork-shaped
resonator and a U-shaped SRR, which corresponded to two different “big-bright” resonance
modes.*!! The EIT analog in THz metamaterial was also excited via the strong conductive
coupling between two orthogonally twisted SRRs.*>3] Sharp toroidal dipolar response by
symmetrically moving the pair of capacitive gaps toward central branch of SRRs was
demonstrated.**! Two E-shaped SRRs were mirror-located in the unit cell to form toroidal

dipole metasurface driven by BIC for optimizing THz resonance quality.l*’]

To expand functionalities of passive devices, active THz metadevices have gained increasing
attention to realize dynamic modulation of THz electromagnetic waves.!**) One popular
solution for tuning THz metadevices was integrating materials with active properties. The

[39,40

active materials were typically semiconductors,>373% liquid crystals,*>*"! phase change

43441 They can be integrated into the substrate, surrounding

materials,*'*#?] and 2D materials.|
medium, or resonator of THz metamaterials, with their properties electrically, optically,
thermally or magnetically tunable. Another important tuning mechanism was reconfiguring
geometric structures via microelectromechanical systems (MEMS). Due to the broadband
response, high reconfigurability, reduced material dependence, and lower energy consumption,

(4] The predominant designs

a wide range of MEMS-actuated THz devices have been reported.
involved regulating the deformation of biomaterial microcantilevers in THz metadevices
through electrostatic actuation or thermal/electrothermal configuration to enable various
functionalities, such as frequency agile, bandwidth control, polarization control, phase
transition, wavefront deflection, cloaking, and holograms.!*6->8] For example, the bimorph
cantilevers of electric split-ring resonator (¢SRR) were dynamically adjusted via applying direct
current voltage between the released cantilevers and the silicon substrate to achieve a tunable
electromagnetic response including multiband resonance frequency operation and polarization
dependent tunability.[*”) Active phase diagram was determined by the suspension angle of the
individual bimorph cantilever in THz metamaterials controlled through electrostatic actuation,
enabling the applications in polarization control, wavefront deflection, and holograms.[>*->
Resonant frequency tuning and amplitude modification of THz waves were achieved through
the integration of a cut-wire microcantilever electromechanically reconfigured via current

stimulus on a photoresponsive ion-irradiated silicon substrate with optical stimulus.®!
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Among the above THz metamaterials based on rational design, symmetric or low-asymmetry
geometry patterns were adopted as unit-cell structures. On the one hand, in the rational design
process, repetitive trial-and-error optimizations are usually required to satisfy the desired
specifications, remaining it time- and labor-consuming to find the optimal structures and
geometric parameters. On the other hand, due to the limitations of human imagination, the
design of irregular high-asymmetry structures with complicated geometry patterns is

challenging via traditional rational design.

To solve the limitations of rational design, deep learning-based techniques have been recently
developed to design metamaterial structures.®®-?l The advantages of deep learning applied to
metamaterial design lie in the strong learning capability and generalizability. Once a set of
training samples are fitted into a deep neural network, the network can be trained to learn the
features of the data samples and then provides similar outputs or even results beyond the
performance of the training data. Automatic and rapid design for various metamaterial
structures can be realized using the well-trained network. Existing metamaterial design based
on deep learning includes forward design and inverse design. The forward design builds the
mapping relationship from metamaterial structures to the corresponding electromagnetic
response, such as transmissive/reflective phase and amplitude, while the inverse design maps
the input desired response to the corresponding metamaterial structure using neural networks. !l
The geometry parameters of a specific metamaterial structure can be optimized using 1D neural
networks, which often combines an inverse network and a forward network to enhance the
design accuracy.!-%1 Although 1D networks had relatively low computational costs, their
limited degrees of freedom (DoFs) restricted the design scope to one specific structure. For
example, the lengths and spacer thickness of top and bottom U-shaped SRRs as well as the
twisted angle were optimized using a bidirectional neural network to enhance the chiral
response;!®] eight geometry parameters of H-formed plasmonic nanostructures were designed
via a bidirectional neural network.[®*! Therefore, it is highly challenging to design high-

asymmetry structures via 1D deep learning models.

To expand DoF of metamaterial design, 2D neural networks, including 2D convolutional neural
networks (CNNs), generative adversarial networks (GANs), and variational auto-encoders
(VAEs), have been increasingly explored for designing 2D geometric patterns of metamaterial
structures.[®78] 2D CNNs were usually used for forward design, in which they were trained
using a set of structural images as inputs and the corresponding electromagnetic properties as

outputs. Using the well-trained CNNs, the responses of new structures were predicted in real
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time and the optimal structure could be quickly selected.[®-"!1 However, one challenge in the
implementation process was the requirement of a large dataset for training the 2D CNNs5s, such
as the collection of seventy thousand geometry patterns of meta-atoms.[*”) To reduce this
workload, transfer learning was introduced to pre-train the network using an available large
dataset and then fine-tune the pre-trained network using the collected metamaterial structure
set, while twenty thousand samples were still employed for the fine-tuning.[’%! As for 2D inverse
design that intuitively obtained the geometric patterns from the desired response, 2D generative
models, such as GANs and VAEs, were developed using the desired properties as the input
conditions and the corresponding geometric patterns as the output images.’’8! Similarly, they
require a large amount of training data samples. To reduce the design complexity, the geometry
pattern of a unit cell was designed with twofold symmetry, while over twenty thousand sets of

[74] Another method for reducing the workload of data

samples were still used for the training.
collection was limiting the structures to several types of geometric shapes, such as cross, split
ring, and H-shape, however, the newly generated structures were limited in these provided
shapes as well.l’®! To enlarge the dataset size, cyclic iteration was used to add the generated
structures into the original dataset to increase the amount of training data samples in the iterative
training process. Nevertheless, due to the purely data-driven characteristics of both the forward
selection and inverse design process, the finally used dataset size yet reached over fifty
thousand.!”] As the DoF and complexity of high-asymmetry metamaterials largely increase, the

design for their geometry patterns using existing 2D deep learning-based methods particularly

suffer from severe computational costs.

This work aims at addressing the challenges of traditional rational and existing deep learning-
based design methods and exploring effective and efficient schemes for designing THz high-
asymmetry metamaterials. A novel scheme based on an active learning-augmented diffusion
model is proposed to design the structures of high-asymmetry metamaterials with high-FoM
THz resonance. Only a small set of classical low-asymmetry structures obtained from literature
review are required for training the generative model. To augment the dataset, we design a
physics-constrained active learning framework with a two-step labeling mechanism to
iteratively select the generated high-asymmetry structures as new training data. Instead of
classical VAEs or GANs for inverse design, the advanced diffusion model is used as the
generative model to generate high-asymmetry structures in high quality and diversity. The
numerical and experimental results demonstrate the superior THz resonance of the generated
high-asymmetry structures over classical low-asymmetry ones and reveal new triple-resonance

phenomena. This proves the high-asymmetry metamaterial structures to be a promising
5
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alternative solution to high-FoM THz resonance and establishes the proposed scheme as a
powerful method for designing complex metamaterial structures, with great potential for

discovering new metamaterials that break existing limitations.
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Supplementary Note 2: Implementation of Physics-Constrained Active Learning Loops

Figure S1 shows the flowchart of implementing the proposed physics-constrained active
learning framework for generating high-asymmetry structures with high-FoM THz resonance.
The loop with black arrows represents the implementation process of the 1% iteration of training,
in which the training dataset only involves classical low-asymmetry structures with THz
resonance collected from existing studies. The trained diffusion model generates new structures
from the input random noise images in the sampling process. After that, the FDTD simulator is
used to calculate the real part of the effective refractive index Re(ne f f) for the generated new
structure in order to select the valuable structures with potential THz resonance, following
which the FoMs of the selected structures are computed to finally screen out the structures with
high-FoM resonance. Then the loops with blue arrows represent the 2™ to n' iterations of
training, in which the training dataset uses the hybrid set of the initial low-asymmetry structures
and the selected high-asymmetry structures. It should be noted that only the high-asymmetry
structures after the two steps of selections are combined into the training dataset, guiding the

diffusion model to generate new structures with high-FoM THz resonance.

The curves of training loss and Fréchet inception distance (FID) with training epochs in each
single iteration are plotted in Figure S2. The FID measures the distance between feature
distributions of the training dataset and the generated structures in one single iteration, including
20,000 training epochs. It should be noted that the training dataset in each iteration is different
as we update the training dataset via adding selected high-asymmetry, high-FoM structures into
it. To further clarify the FID calculation, we define the training epoch in each iteration as m €
[1,M] (M = 20,000) and the iteration index as n € [1, N] (N = 10). The FID score in each

training epoch can be expressed as Equation S1. p,. . and fg Tepresent means ofreal image

features and the generated image features, respectively, in the m' training epoch of the n™

iteration. o, . and ag, . represent covariances of real image features and generated image

features, respectively, in the m™ training epoch of the n'" iteration. As shown in Figure S2, the
decreasing trend in each iteration demonstrates that the diffusion model is well trained and fitted
with the updated training dataset, as the feature distribution of the generated structures becomes
closer to that of the provided training dataset and gradually converges as the training epoch
increases. To visually demonstrate this trend, Figure S3a shows the imaging results of 25
generated samples with an increasing training epoch in the first iteration, in which the training

dataset includes only classical low-asymmetry structures. The decreased distance between the
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distributions of generated samples and the training dataset demonstrates good convergence of

the diffusion model in a single iteration.

After each iteration of training, we use the well-trained model with the lowest FID to generate
100 new structures and then calculate the FID between the generated structures in each iteration
and the fixed initial training dataset that only includes the classical low-asymmetry structures.

The expression of FID score in each iteration can be expressed as Equation S2. y,.; and g

represent the mean and covariance of the real image features, respectively, using the fixed initial
training dataset. As shown in Figure 4b of the manuscript, as the iteration n increases and the
asymmetry of the training dataset increases, the model is capable of generating higher-
asymmetry structures that are further away from the distribution of the initial classical structures,
resulting in the increased FID score. Figure S3b shows 25 generated samples in each iteration.
We can visually observe that the complexity of the structures is rapidly increasing in the first
three iterations and then slowly increasing in the last seven iterations, which is consistent with

the FID trend shown in Figure 4b of the manuscript.

2 1/2
FIDym = | Prnm = Hapm ” +Tr (Gr"'m + %9nm ~ 2 (Urn’mo-gn,m) ) (S1)
2 1/2
FID,, = | Pro — ,ugn” + Tr (aro taog — 2 (O‘rOO'gn) ) (52)
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Figure S1. Flowchart of implementing the proposed active learning-augmented diffusion model for

generating high-asymmetry structures with high-performance THz resonance.
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Supplementary Note 3: Algorithms of Diffusion Model.

In the training algorithm of a diffusion model, the variational lower bound (VLB) is used to
optimize the negative log-likelihood. We use g(Xx;|x;_;) to represent a forward step with a
normal distribution with mean MXt_l and covariance ;I generating the structural image
x; and pg(X;_1|X;) to represent a reverse step with a normal distribution with mean pg (t, X;)
and covariance Xy (t, X;) reconstructing the structural image X;_. The loss function 5 for

estimating the reverse step can be expressed as!’’?!

a(X1.71X0)

7o (xon) | = Eqx) [~ 10g £ (X0)], ($3)

Tvie = Egxor) [log

where [E represents the expected value. Using the Kullback-Leibler (KL) divergence to rewrite

Equation S3, the objective function can be derived as

T
tyis = Dy (g (Xr1%0) | po(x7)) + Z IEq,(Xt|XO)[]D)KL(@(Xt—1|Xt' Xo) Il po(X¢—11x,))]

t=2
T-1

+ Ey(x,xo) [~ 108 20 (X0|x1)] = 71 + Z Tt + To,
t=1

(54)
where Dy; denotes the KL divergence. 77 is a constant and hence can be ignored during the

training process. When the covariance and the mean of each reverse step are set as

Zg(t, Xt) = O-tZI = ﬁtl’ (SS)
1
u@ (tl xt) = \/a_t (xt - 1 ft&t EH (xt' t)) )] (86)

where €4 (X;, t) is the predicted noise by the network with the trainable parameters 6 from an
input image X;, the loss term 7, that aims to minimize the distance between the real mean

K (Xo, X;) and the predicted mean py (¢, X;) can be parameterized as

1

=E 0 ) - t, 21, S7
T¢ X0,€t lzllzg(t’ Xt)”% ”I’lt(xo xt) ug( Xt)” l ( )

where €, is the real noise at time step t. Then after ignoring the weighting term, the objective

can be simplified tol”*-%?]

2
Tt = Ete[1,1x0 6 [”Et — €9 (\/?txo +1-a€, t)” ], (S8)

where a; = 1 — B, @& = [I}_, a;, € is the real noise at the time step t, and €g is the predicted

noise at time step t. Based on Equation S8, the detailed algorithms of training the diffusion
11
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model and sampling high-asymmetry structures using the trained diffusion model are shown in
Figure S4. Algorithm 1 illustrates the process of training the diffusion model with the classical
THz metamaterial structures collected from existing studies for n iterations. Algorithm 2
presents the sampling process of high-asymmetry structures generated by the trained model

from input random noise images in the n iterations.

Algorithm 1 Training Diffusion Model with Classical Structures

1: Input: Training dataset ¢(xg)
2: Output: Model parameters ¢
3: for Iteration=1,...,n do

4 repeat
5: X0 ~ q(Xo)
6: t ~ Uniform({1,...,T})
T € ~~ N(O I)
8: Take gradient descent step on
V(} |I€g — E@('\/d‘g){{] + 4/ 1-— (i‘gf;., t)”2
9: until converged
10: end for

Algorithm 2 Sampling High- Asymmetry Structures Using the Trained Diffu-
sion Model

1: Input: Random noise image x3 ~ N(0,I)

2: Output: High-asymmetry structural image xg

3: for Iteration=1,...,n do

4: fort=T,...,1do

5: z~N(0,I)ift >1,elsez=0

6: Xi_1 = \/%T (X; - ﬁég(}{g,ﬂ) +vVI—az
7 end for

8: return xg

9: end for

Figure S4. Algorithms of training the diffusion model with the classical structures (Algorithm 1) and then

sampling the high-asymmetry structures using the trained diffusion model (Algorithm 2).

12
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Supplementary Note 4: Network Architecture.

The architecture of the residual U-shaped network (U-Net) adopted for generating the structural
image in each diffusion step is listed in Table S1. The dimension of the structural image that
represents one unit cell of the metamaterial is 100x100 and each pixel represent 1x1 pm?. A
general U-Net consists of four encoding modules to extract the features of the input structural
images and four decoding modules to reconstruct the output structural image. Each encoding
module has two 3x3 convolutional layers followed by one 2x2 down-sampling layer, and each
decoding module has one 2x2 up-sampling layer followed by two 33 convolutional layers.
The residual U-Net involved in the diffusion model uses the Wide Residual Network (ResNet)
with residual convolutions shown in Figure 3 of the manuscript to replace the general
convolutional layers in each encoding or decoding module, which effectively increases the
network depth while avoiding the gradient vanishing problem. The skip connections between
the encoder and the decoder are designed to avoid information loss in the down-sampling
process of the encoder, which is implemented by concatenating the feature maps at the same
scale in the encoding and decoding module. In the reverse diffusion process, the residual U-Net
is used to predict and remove the noise image step by step, and the structural image can be

finally reconstructed.

13
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Table S1. Network architecture of the residual U-Net adopted in the diffusion model.

Network Modules Layers Input Output Kernel
Encoding 1 Wide ResNet 12 1x100x100 64x100x100 64x3%3
Wide ResNet 2 64x100%100 64x100x100 64x3%3
Down-sampling 1 64x100x100 64x50%50 -
Encoding 2 Wide ResNet 3 64x50%50 128x50x50 128x3%3
Wide ResNet 4 128x50%50 128x50x50 128x3%3
Down-sampling 2 128x50%50 128x25%25 -
Encoder Encoding 3 Wide ResNet 5 128%25x%25 256x25%25 256x3x%3
Wide ResNet 6 256x25x25 256x25x%25 256x3%3
Down-sampling 3 256%25%25 256x12x12 -
Encoding 4 Wide ResNet 7 256x12x12 512x12x12 512x3x3
Wide ResNet 8 512x12x12 512x12x12 512x3x3
Down-sampling 4 512x12x12 512x6x6 -
Conv 1V 512x6x6 1024%6%6 1024x3x%3
Bridge Conv 2 1024%6%6 1024%6%6 1024x3x%3
Decoding 1 Up-sampling 1 1024x6x6 512x12x12 -
Concat 1 9 512x12x12 1024x12x12 -
Wide ResNet 9 1024x12x12 512x12x12 512x3x3
Wide ResNet 10 512x12x12 512x12x12 512x3x3
Decoding 2 Up-sampling 2 512x12x12 256x25%25 -
Concat 2 256%25%25 512x25%25 -
Wide ResNet 11 512x25%25 256x25x25 256x3%3
Wide ResNet 12 256x25x25 256x25x%25 256x3%3
Decoder Decoding 3 Up-sampling 3 256x25%25 128x50%50 -
Concat 3 128%50%50 256x50%50 -
Wide ResNet 13 256x50%50 128x50%50 128x3x3
Wide ResNet 14 128x50x50 128x50%50 128x3x3
Decoding 4 Up-sampling 4 128x50%50 64x100x100 -
Concat 4 64x100%100 128x100x100 -
Wide ResNet 15 128x100x100 64x100x100 64x3%3
Wide ResNet 16 64x100%100 64x100x100 64x3%3
Output Conv 3 64x100x100 1x100x100 Ix1x1

9 The structure of Wide ResNet has been demonstrated in Figure 3. ® “Conv” represents
convolutional layer. © “Concat” means the concatenation of the feature maps at the same scale

in the encoding and decoding modules.

14
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Supplementary Note 5: Classical Structures in Initial Training Dataset.

Figure S5 presents the classical structures used in the initial training dataset and their
corresponding transmissions, in which the metal resonators use 200 nm thick aluminum (Al)
with the substrate silicon dioxide (SiO2). We collect 14 types of metamaterial structures with

e.[1635] To enlarge the dataset, the geometric parameters of each structure are

THz resonanc
adjusted as shown in Figure S5. According to the simulation verification that ensures the
resonance working in the frequency range of [0.3, 0.8] THz, we adopt 6, 4, 16, 3, 3,2,4, 11, 4,
6, 5,2, 1, and 1 structural image with various geometric parameters of the 1% to 14" types of
structures, respectively. Therefore, there are in total 68 structural images used for the 1%

iteration of training.

15
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Figure SS. 14 types of classical metamaterial structures and their simulated transmissions. A total of 68

structural images with different geometrical parameters are used in the initial training dataset.

To present the typical characteristics of these classical resonances, we conducted the
simulations using PEC and Al for classical structures involved in the training dataset and three
examples are demonstrated in Figure S6. First, the BIC and Fano resonance realized by the
SRR structures with double splits proposed in [21-23] are indicated in Figure S6a. The non-
zero d1 breaks the symmetry of the structure and introduces asymmetric profile typical of Fano
resonances, especially obvious in the simulations with PEC without material loss. Besides, the
extremely narrow and high-Q resonance of QBIC can be observed when d1 = 5, and the Q
factor decreases as d1 increases. Second, the sharp resonances associated with toroidal dipoles
realized by the structure proposed in [34] are demonstrated in Figure S6b. We can observe the
resonance tends to disappear when increasing d from 0 to 2 and then re-appear when increasing
d from 2 to 12, which is consistent with the analysis in [34]. Third, the transparent window
featuring characteristic of EIT is presented in Figure Sé6c, caused by the coupling of two sub-
resonators as proposed in [31]. In this work, we have adjusted the parameters of each classical
structure in the simulation with Al to ensure the resonance in the frequency range of 0.3-0.8
THz and selected 68 structures with high-FoM resonance as shown in Figure S5 as the initial

training dataset.

18



WILEY-VCH

19

(@) 1 1 1
- 0.8 08 0.8
£ £ 2
< 706 Zoe '5 0.6
] g
= go4 g 04 go4
= 0 = =
“I d=0 L P 0.2
o 0 o
0.3 0.4 0.5 0.6 0.7 0.8 0.3 04 0.5 0.6 0.7 0.8 03 0.4 05 0.6 0.7 0.8
’? Frequency (THz) Frequency (THz) Frequency (THz)
1 1 1 1
08 0.8 08 0.8 T T
5 E 5 E
2 0.6 506 Z0.6 506 t
g g E E
£04 E 0.4 =04 g 04
£ g £ .
02 0.2 0.2 .
d=15 d=20 d=25 d =30
0 0 0
0.3 0.4 0.5 0.6 0.7 0.8 Il’13 0.4 0.5 0.6 0.7 08 0.3 04 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8
Frequency (THz) Frequency (THz) Frequency (THz) Frequency (THz)
1 1 1
0.8 X 08 z T
g E £
706 70, 206
=3 £ - E
s £04 E ’ E 0.4
= 0.2 £ -
. 0.2
d=0 d=10
0 0 0
03 04 05 0.6 07 08 03 04 05 06 07 0 0.3 04 05 0.6 0.7 0.8
T — Frequency (THz) Frequency (THz) Frequency (THz)
1 1 1 1
0.8 0.8 0.8 0.8 . .
= e = e
2 2 2 =}
Zos Fos Fo6 706
E H £ E
204 204 £04 E 0.4
= = = £
0.2 0.2 0.2 . .
d=15 d=20 d=25 02F d =30
0 1] 0 0
03 04 05 06 07 08 03 04 05 06 07 08 03 04 05 06 07 08 03 04 05 06 07 08
Frequency (THz) Frequency (THz) Frequency (THz) Frequency (THz)
b
®) 1 1 1
08 0.8 0.8
g g g
Fo6 0.6 206
g H z g
- £04 =04 £04
£ & £
02 0.2 0.2
d=0
0 0 (1]
03 04 05 06 07 08 0.3 03 04 05 06 0T 08
Frequency (THz) Frequency (THz)
1 1 1 1
0.8 08 0.8
g £ £
706 Zos 206
£ Z :
204 E 04 § 0.4
& = =
0.2 02 0.2
d=6 d=8 d=12
0 0 0
03 04 05 06 07 08 03 04 05 06 07 08 03 04 05 06 07 08 03 04 05 06 07 08
Frequency (THz) Frequency (THz) Frequency (THz) Frequency (THz)
1 1 1
0.8 0.8 0.8
= = £
2 2 2
Zos Zoso Zuso
= g E E
= g04 g04 g04
= = =
0.2 0.2 0.2
d=0 ) d=2 d=4
713 0.4 0.5 0.6 0.7 0.8 03 0.4 0.5 0.6 0.7 08 0.3 0.4 0.5 0.6 0.7 0.8
Frequency (THz) Frequency (THz) Frequency (THz)
1 1 1 1
08 0.8 0.8 0.8
=] o 2 o
= 8 = 8
oo 206 706 206
g z z E
04 204 £04 204
& £ £ £
0.2 0.2 0.2 0.2
d=6 d=8 d=10
] (1] 0 (1]
0.3 0.4 0.5 0.6 0.7 0.8 03 0.4 0.5 0.6 0.7 0.8 0.3 04 0.5 0.6 0.7 08 03 0.4 0.5 0.6 0.7 0.8
Frequency (THz) Frequency (THz) Frequency (THz) Frequency (THz)



(©)

Figure S6. Simulation results for classical structures with typical resonance characteristics using PEC and Al as the resonator
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Supplementary Note 6: More Trip-Resonance Structures.

More newly generated high-asymmetry structures with triple resonance and the corresponding
transmissions are shown in Figure S7, and we have calculated the resonance metrics for each
resonance. As previously shown in Figure S5, the structures in the initial training dataset only
involve single or double resonances. Due to the powerful learning capability of the generative
model, new triple-resonance structures can be produced using the trained diffusion model.
However, as the generative network has never seen tripe-resonance structures in the training
process, its generative capability for tripe-resonance structures is limited. In our case, nearly
only one structure in one hundred samples can have tripe resonances. Besides, as shown in
Figure S7, the overall Q, FoM, and improved figure of merit (IFoM) of triple-resonance
structures are relatively lower than those of single- or double-resonance structures. These
limitations are expected, given that the generative model has not been exposed to such
resonance characteristics during training. However, the emergence of new triple-resonance
structures is still highly significant, which shows the potential that we can use the proposed
method to automatically achieve complex multiple resonance only requiring simple one- and
two-resonance structures to form a small training set for the generative model. Adding classical
structures with triple resonances to the initial training dataset can have the potential to solve
these issues, enabling the generative network to learn features of triple-resonance structures and

then generate new structures with triple resonances in higher performance.
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Figure S7. More generated high-asymmetry structures with trip resonances that never appear in the initial

training dataset.
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Furthermore, we would like to clarify that the occasional appearance of triple-resonance
structures is not by coincidence but a meaningful outcome. Since no such structures were
included in the training dataset, their emergence shows that our framework can go beyond what
it has seen before. This indicates that even when trained only on simple cases (e.g., single- and
double-resonance structures), the model can still generate more complex and hard-to-obtain
designs. In practice, this means that if we start from easily available structures, our method can
help uncover advanced candidates that would otherwise be very difficult to design manually.
Besides, although the frequency of triple-resonance occurrence is low, it is also stable. To verify
this, we trained the model for ten more iterations, in which 100 structures are generated in each
iteration, and recorded the results, as shown in Table S2. The table shows that the occurrence
rate fluctuates with an average of about 1.3%. This consistency demonstrates that the

phenomenon is reproducible, even though it happens rarely.

Table S2. Low but stable rate of triple-resonance occurrence in the active learning process.
Iteration 11 12 13 14 15 16 17 18 19 20 Ave.

Rate 1/100 | 2/100 | 1/100 | 0/100 | 1/100 | 0/100 | 1/100 | 3/100 | 3/100 | 1/100 | 1.3%
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Supplementary Note 7: Microfabrication Process and Results.

Figure S8 illustrates the microfabrication process of each sample and Figure S9 presents the
microscopic images of all the fabricated samples. In total, we fabricated sixteen samples to
demonstrate the THz resonance performance, including eight symmetric or low-asymmetry
structures selected from the initial training dataset as shown in Figure S9a and eight high-
asymmetry structures produced by the generative model as shown in Figure S9b. It should be
noted that the fabrication costs of the classical structures and the generated complex structures

are the same.

AZ1512
Step 1 Step 2 Step 3
Substrate cleaning Photoresist coating Patterning and developing

Step 4 Step 5 Quartz Al
Metal deposition Lift-off

Figure S8. Flowchart of the sample fabrication process.
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Figure S9. Microscopic images of the sixteen fabricated samples including a) the traditional symmetric or

low-asymmetry structures and b) the generated high-asymmetry structures.
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Supplementary Note 8: THz Measurement Setup and Original Measurement Data

The commercial photoconductive antenna-based THz spectroscopy setup for the experimental
demonstration in this study is illustrated in Figure S10. We measured the co-polarized
transmissions of the sixteen classical and high-asymmetry metamaterial samples as well as the
bare quartz substrate. Each chip was mounted on the carrier with a circular aperture. The
incoming x-polarized THz wave was incident normally on the sample and the transmitted x-
polarized signal was detected. The original, unnormalized transmission spectra are provided in
Figure S11, including those of the eight classical structures in Figure S11a and the eight new
generated structures in Figure S11b. To fairly compare their resonance metrics, the transmission
spectrum of each sample was normalized against that of the bare quartz substrate in the

manuscript.

. ¥e
—

Xiiiohesny,

gy S

Figure S10. Experimental setup for the THz measurement of co-polarized transmission.
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Figure S11. The original experimental transmission spectra without normalizations of (a) the eight classical
structures and (b) the eight generated structures as well as the bare quartz substrate without any metamaterial

structures. “Sub” and “MM?” represents the quartz substrate and the metamaterial structures, respectively.
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Supplementary Note 9: Investigations on Potential Sensing Applications.

To demonstrate the potential of the proposed scheme on practical sensing applications, we
further examine the sensitivity of the generated high-asymmetry structure. We simulate its
transmissive response to varying thicknesses of a-lactose coated on its surface and the results
are shown in Figure S12. The complex permittivity (real and imaginary components) of a-
lactose in the 0.3—0.8 THz range is shown in Figures S12a and S12b.1%3! Notably, o-lactose
exhibits a characteristic resonance near 0.53 THz. Using this material model, we performed
FDTD simulations by coating the metamaterial surface with a-lactose layers of thicknesses
ranging from 2 pm to 20 um with a step of 2 um. The resulting transmission spectra are shown
in Figure S12c¢, while the corresponding resonance frequency shifts are plotted in Figure S12e.
The resonance frequency shift increases rapidly at first and then gradually saturates. To further
analyze the resonance peak variation of a-lactose itself, we repeated the simulations with the
imaginary part of the permittivity set to zero over the same frequency range, effectively
suppressing absorption. The resulting spectra are normalized against the original ones from
Figure S12c, then we can observe the resonance peaks of various thicknesses of a-lactose in
Figure S12d. The resonance peaks at 0.53 THz with the a-lactose thickness are plotted in Figure
S12f, showing a sharp decrease in amplitude with increasing thickness, followed by a steady-
state behavior. These results demonstrate the potential of the generated high-asymmetry
structure to detect common analytes like a-lactose that exhibit resonant absorption features

within the 0.3—0.8 THz spectral range.
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Figure S12. The simulation results of coating a-lactose with various thicknesses on the surface of the
generated high-asymmetry metamaterial structure. (a) The real part and (b) the imaginary part of the
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permittivity (€) of a-lactose in the frequency range of 0.3-0.8 THz. (c¢) The transmission spectra when various
thicknesses of a-lactose are coated on the surface. (d) The transmission spectra normalized against those of
a-lactose under the setting of Im(€) = 0. (e) The resonance frequency shift of the metamaterial structure with
the thickness of a-lactose according to (c) and their slopes. (f) The resonance peaks of a-lactose with the

coated thickness according to (d) and their slopes.
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Supplementary Note 10: Comparative Study of Generative Models.

To clarify why we use the diffusion model rather than VAEs or GANs, we have conducted a
comparative study on the generative performance and computation costs of the classical
VAE,B4-851 GAN, 6871 and the diffusion model involved in this work. We use the initial 68
classical structures to train the three models until they reach convergence, respectively. The
training loss curves with good convergence and the generated structural images using the well-
trained VAE, GAN, and diffusion model are visualized in Figures S13a-c, respectively. It can
be observed that the visual quality of the structural images generated by the diffusion model is
better than VAE and GAN, which is very important for metamaterial design as the binary
images with high clarity and little noise will be easily imported in the subsequent simulation
and fabrication. Furthermore, we compare the computational costs and evaluation metrics of
these three models and show the results in Table S3. The FID measures distributional distance
between the training dataset and the generated images by comparing their deep features
extracted using a pretrained Inception-V3 network, while Learned Perceptual Image Patch
Similarity (LPIPS) measures the perceptual similarity between random pairs of the generated
images by comparing their deep features from a pretrained AlexNet network, weighted to match
human visual perception.®¥ Therefore, a lower FID represents better realism and quality of the
generated images, and a higher LPIPS score represents better fidelity and intra-set diversity of
the generated images. We can observe that the diffusion model achieves the lowest FID and
highest LPIPS among the three models. As for the computational costs, the computational time
of sampling each image using the diffusion model (0.4274 s) is indeed much higher than those
using the VAE (0.0221 s) and GAN (0.0216 s). However, the generation for each structure with
diffusion is still fast (below one second), which is acceptable for realizing rapid design of

metamaterial design.
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Figure S13. Comparative study for VAE, GAN and the diffusion model. (a) The training loss curves of VAE

and the generated samples using the well-trained VAE model. (b) The training loss curves of GAN and the
generated samples using the well-trained GAN model. (¢) The training loss and FID score curves of the

diffusion model and the generated samples using the well-trained diffusion model.

Table S3. Metrics and computational cost comparison for the generative performance of VAE, GAN, and the

diffusion model.

o | Tramable | Toaving | Sompine |y )| s
VAE 182,737,889 | 3666.54 0.0221 177.61 0.5760
GAN 7,962,240 5909.40 0.0216 225.37 0.5388
Diffusion | 9,902,081 3588.42 0.4274 55.21 0.5876
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Supplementary Note 11: Applicability of the Proposed Scheme to Different Target

To demonstrate its applicability to other structural design scenarios, we conduct an additional
experiment for achieving resonance with high Q factors at a specific 0.5 THz and the
comparative results are shown in Figure S14. We select 6 classical structures with resonance
at 0.5 THz from the original 68 classical structures as the initial training dataset in this case.
The proposed diffusion model is trained for 20,000 epochs in each iteration and 10 iterations in
total. In each iteration of active learning, the well-trained diffusion model generates 10 samples,
and we set the selection criterion for the second-step annotation to structures exhibiting a Q
factor above 2.0. Other parameters remain unchanged. The curves of training loss and FID score
with training epochs in each iteration are shown in Figure S14a, demonstrating good
convergence. The curves of asymmetry and mean Q across iterations are shown in Figure S14b,
in which Iteration 0 represents the initial classical structures. It can be observed the asymmetry
of the generated structures increases and gradually reaches converged as the iteration rises. As
for the mean Q, it reaches the maximum value in the fourth iteration, and the sharp jitter of the
curve after the fourth iteration is due to too little data involved for the training. Figure S14c
presents the comparison of mean and maximum Q values between the initial classical structures
and the generated structures. Both the mean and maximum Q of the generated structures are
higher than those of the initial dataset, reaching 6.50 and 10.59, respectively. Figures S14d-e
demonstrate the transmission spectra of the 6 classical structures and 6 examples of the
generated structures, respectively, with their Q factors indicated. These results demonstrate that
the applicability of proposed model to different structural design scenarios, such as the high Q
factor at a specific 0.5 THz. Once we constrain the training dataset within the desired target,
the active learning-augmented diffusion model can learn the features of the provided training
dataset and generate new structures with higher targeted metrics, caused by the generalization

capability of the advanced generative model.
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Figure S14. Comparative results when applying the proposed scheme to design new structure for achieving
resonance at a specific 0.5 THz with high Q factors. (a) The training loss curves and FID score curves with
the training epochs in the 10 iterations. (b) The asymmetry and mean Q curves across the active learning
iterations. (¢) Comparison of the mean and maximum Q factor between the initial structures and the generated
structures. (d) The classical structures adopted in the initial training dataset and their transmissive spectrums
with Q factors. (e) Selected high-asymmetry structures generated via the proposed model and their

transmissive spectrums with Q factors.
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Supplementary Note 12: Physical Analysis on Classical Structures

To confirm the claimed coupling phenomena of classical structures adopted in our initial
training dataset, we have conducted physical analysis on representative structures

corresponding to the classical resonance types (Fano, BIC, EIT, and toroidal dipole) as follows.

1) Fano resonance

To validate the physical origin of Fano resonance excited by Structure 3 [21-23], we perform
spectral fitting and near-field simulations and present the results in Figure S15. To characterize
the resonance observed in the transmission spectrum, both Fano and Lorentz models are fitted
to the frequency-dependent transmittance within the range of 0.57-0.69 THz, as shown in
Figure S15(a). The Fano model follows the canonical form with a linear background:

@+ZG;B»2

>+
1+ (AL A)

where A is the amplitude, f;, is the resonance frequency, y is the linewidth, q is the Fano

T(f) =4A- Co+ Cif (59)

asymmetry parameter, and Cy + C; f models the background. In contrast, the Lorentzian model
is symmetric and lacks the interference term. The results show that the Fano model provides a
significantly better fit (RMSE = 1.163 x 1073, R? = 1.000) compared to the Lorentzian
model (RMSE = 5.325 X 1073, R? = 0.994), with a distinct asymmetric line shape around
fo = 0.659 THz. The extracted quality factor is Q = f,/y = 9.0. The substantial differences
in AIC and BIC values further validate that the resonance follows a Fano-type behavior, rather
than a simple Lorentzian profile. Therefore, the spectral signature strongly supports the

presence of a Fano resonance.

We further examined the near-field distributions of the transverse electric field E,, and surface
current density K at frequencies near the resonance, as shown in Figure S15(b). The magnitude
and phase maps of reveal distinct symmetry-breaking near 0.659 THz, including localized field
enhancements and abrupt phase discontinuities. The anti-symmetric fraction 77, computed from
both E,, and K, shows a sharp drop in ng from 0.55 to 0.18 at the resonance, while ng remains
nearly zero:

Santi
N=c—c— (510)
Ssym + Santi

Here, Sgym and S;n denote the symmetric and anti-symmetric energy components,

respectively. This indicates that the excitation source (current) remains symmetric, while the
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electric field undergoes a radiation suppression due to destructive interference. Furthermore,

the left-right phase difference A¢/m for E,, undergoes a sharp phase jump across the resonance,

which is another hallmark of Fano interference. Meanwhile, the phase of K remains constant,
reinforcing that the observed asymmetry is not due to source excitation, but from modal
interference. These near-field features, including the abrupt changes in field symmetry, phase
flipping, and the decoupling between excitation and radiation, are all consistent with the
interference mechanism that defines a Fano resonance. Therefore, Figures S15(a) and R1(b)
together demonstrate that the resonance is Fano-type, arising from interference between a

narrow discrete mode and a broad continuum.
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Figure S15. Physical analyses of Fano resonance. (a) The comparison of Fano and Lorentz

resonance model fitting. (b) The near-field response analysis, including the transverse electric

field E,, and surface current density K at frequencies near the resonance.

2) BIC

To further analyse the BIC phenomenon of Structure 3, we perform near-field simulation,

energy flow analysis, and Q factor calculation with varying geometric parameter d of the

structure. The results are shown in Figure S16. Figure S16(a) shows the electric field, magnetic
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field, and Poynting vector when the structure is symmetric (d = 0 um) with PEC material.
Figure S16(b) shows the same analysis when the structure becomes slightly asymmetric (d = 2
um). By comparing Figures S16(a) and R2(b), we can clearly observe the transition from a
perfect BIC to a quasi-BIC. In the symmetric case (d = 0 um), the fields are highly confined,
and no energy escapes from the structure, indicating a non-radiative bound state. However,
when a small asymmetry is introduced (d = 2 um), the field distribution becomes imbalanced,
and a noticeable energy flow appears at the edges. This energy leakage marks the emergence
of a quasi-BIC, where the previously bound mode now weakly couples to the radiation
continuum and starts to lose energy. This observation is also supported by the power leakage
results: when d = 0 um, the estimated leakage is about 5.33 x 10# (almost zero), while for d =
2 pm, it rises to 4.46 x 1072, indicating clear radiation loss. The total power leakage is calculated
using the Poynting vector flux across the boundaries:
Drorar = ;%3 Sy (Xo Ymin) + A% + i Sy (X0 Ymax) - Ax
+ 3.2, 82 (omins 1) - BY + 221 S (Xmaxs ¥7) - By

(511)
where S, and S, are the components of the time-averaged Poynting vector, Ax and Ay are the
grid spacing, N, and N,, are the number of grid points in x and y, and the four terms correspond

to fluxes through the top, bottom, left, and right boundaries respectively.

Furthermore, Figures S16(c) and S16(d) present the Q factors with varying geometric parameter
d that indicates the asymmetry of the structure with PEC and Aluminium (Al), respectively. In
Figure S16(c), where the metal is set as a PEC, the Q factors are very high (over 100), especially
when the structure is nearly symmetric. This agrees well with the expected behaviour of a BIC,
which has very low energy loss and a very high Q. In contrast, Figure S16(d) shows the results
when the metal is with electrical loss. In this case, the Q factors are much lower. Although a
quasi-BIC still exists at small asymmetry, the Q is limited by material absorption. This
comparison also explains why the Q factors of the classical structures used in our initial dataset

are not very high, while they indeed exhibited the claimed classical coupling effects.

36



WILEY-VCH

(a) |E|2 Distribution |H|2 Distribution %107 Poynting Vector and |S| Magnitude
100 400 100 7 100
0.02
350 6
80
300 5 0.015
250 . 60
3 4 E
200 % s \Z 0.01
150 40
2
100 20 0.005
50 1
0
0 50 100 0 100
(b) X (pm) X (um) X (um)

|E[2 Distribution |H| Distribution 00 Poynting Vector and |S| Magnitude
0.02

0015

y (um)

0.01 40 i : 0015

0005 29

0 50 100 0 20 40 60 80 100
X (um) X (um) X (um)
(c) ] d=0pm (BIC) ; d=5pum,Q=108.77 ; d=10 pm, Q =41.96 ] d=15pm,Q=13.37
c c C C
o} S S k)
[73 73 [7] [
@ 7] ] @
EOS\ EO.S\(\ 80-5\{\ Eos\\[\
1%} [} 0 12
= C C C
o o o o
= = = =
0 0 0
04 0.6 0.8 04 0.6 0.8 04 0.6 0.8 0.8
Frequency (THz) Frequency (THz) Frequency (THz) Frequency THz
; d=20pum, Q=10.05 ; d=25um,Q=7.51 ] d=30um,Q=7.21 . Qvsd
c c [ =
o k) & o o
7] 7] I3 [e]
@ I 7] \ 7] 2 S
E05 ‘ Eo.s\//\ go_s\/\ $ 50
= C [ = o
© o o
[ \ = W = o D
04 0.6 0.8 04 0.6 0.8 04 0.6 0.8 10 30
Frequency (THz) Frequency (THz) Frequency (THz) d (pm)
(d) ] d=0pm (BIC) ] d=5pm, Q=21.78 ] d=10 ym, Q =12.97 ] d=15pum, Q=10.64
C C C C
(] o o °
3 3 3 3
£ 05 £ 05 £05¢ £05¢
7] 7] [ 17
C [ = C C
o o o o
= = = =
0 0 0
04 0.6 0.8 04 0.6 0.8 04 0.6 0.8 04 0.6 0.8
Frequency (THz) Frequency (THz) Frequency (THz) Frequency (THz)
d=20pm,Q=7.79 d=25pum, Q=6.08 d=30pum, Q=5.88 _ Quvsd
[~ 1 - 1 C 1 ‘
o 9o o - ‘
3 3 3 3
£05 £05 €05/ @ 15
2 2 2 Ll
g g g SR
= [ = [
0 0 - D
04 0.6 0.8 04 0.6 0.8 0.4 0.6 0.8 0 10 30
Frequency (THz) Frequency (THz) Frequency (THz) pm

y (um
) ©
S S
o o o o o o
o o o o o o
8 =2 S B 8 8
& & &

o

Figure S16. Physical analyses of BIC. (a) The near-field distributions and Poynting vector distribution when
the metamaterial structure is symmetric (d = 0 um). (b) The near-field distributions and Poynting vector
distribution when the symmetry of the metamaterial structure is broken (d = 2 pm). (c) The Q factors with
varying d when the metal material is set as PEC. (d) The Q factors with varying d when the metal material

is set as Al

3) Toroidal dipole
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To analyze the near-field response of the classical metamaterial resonator Structure 6 [34]
excited by a toroidal dipole, we perform simulations at different gap positions d and present
the results in Figure S17. This figure includes the transmission spectra, electric field amplitude
and phase distributions (component E,, ), and the magnetic field distributions with overlaid
vectors. When d = 0 um (Figure S17(a)), a weak resonance is observed, with only slight field
localization and no clear magnetic circulation. As d increases to 4 um (Figure S17(b)), the
resonance disappears, and the fields become more spread-out. This suggests that the internal
current paths are not well formed, and the toroidal dipole cannot be excited. However, when d
becomes larger, such as 8§ pym and 12 pm in Figures S17(c) and S17(d), respectively, a strong
resonance appears again. The electric field becomes tightly confined in certain regions, and the
phase map shows a spiral-like rotation. At the same time, the magnetic field forms circular
loops in the central area, indicating the generation of a toroidal magnetic moment. These
patterns with strong localized electric fields around a circular magnetic structure are typical
signs of toroidal dipole excitation. These results show that the resonance depends strongly on
the shape and connection of the current paths inside the structure, which can be effectively

tuned by changing the parameter d, consistent with the analysis in [34].
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Figure S17. Electromagnetic field analysis of the classical resonator excited by toroidal dipole, including the

transmission curves, amplitude and phase of the electric filed distribution E,,, and the magnetic field

distribution H of the structure with the varying geometric parameter when (a)d = 0, (b)d =4, (c)d = 8,
and (d)d = 12.

4) EIT

To demonstrate the emergence of a classical bright—bright mode induced EIT effect in Structure
9 [31], we conduct simulations for the two sub-resonators and the combined resonator and
analyse their near-field and transmission responses in Figure S18. As presented in Figure
S18(a), sub-resonator 1 and sub-resonator 2 each exhibit distinct electric dipole resonances at
different frequencies, as shown by their individual transmission dips and strong localized
electric field distributions in Figure S18(b). When these two resonators are combined, their
coupling leads to a hybrid mode response, as depicted in Figure S18(c). Specifically, the

transmission spectrum, as shown in Figure S18(a), reveals a sharp transparency window (“A”)
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situated between two pronounced dips (“B” and “C”), corresponding to the resonances of the

individual bright modes. At this transparency frequency, the near-field distribution shows

simultaneous excitation of both resonators, with their emitted fields interfering destructively in

the far field. This interference suppresses radiation loss, enabling high transmission, which is a

hallmark of the EIT phenomenon formed via the coherent coupling of two bright modes.
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Figure S18. Near-field analysis of the two constituent resonators and their combined structure to verify the

bright-bright mode induced EIT effect. (a) The transmission curves of the sub-resonators 1 and 2 as well as

the combined resonator, where a pronounced transparency peak (“A”) appears between the two dips (“B”

and “C”). (b) The electric field distributions of the two sub-resonators at their respective resonance

frequencies. (c) The electric field distribution of the combined structure at the peak (“A”) and the two dips

(“B” and “C”).
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Supplementary Note 13: Resonance Metric Comparison with Existing Works

To further compare with the FoMs of existing works, which is our goal of optimization in the
proposed design active learning framework, we extract their FoM values from the transmission
curves shown in [21, 22, 26, 29, 31, 33, 34] and listed them in Table S4. It should be noted that
the FoM of the structure in [21] is intuitively provided. We can observe that the FoM realized
by our proposed high-asymmetry structure is the highest. This demonstrates that our proposed
design framework indeed outperforms the existing works on the resonance metrics and achieved

high-FoM resonance.

Table S4. Comparative analysis of the resonance metrics FoM with existing works

Reference Mechanism Frequency (THz) Asymmetry Max. FoM
[21] Fano 0.2-1.0 Low 6.2
[22] Fano 0.45-0.55 Low ~3.0
[34] Toroidal dipole 0.3-0.7 Low ~5.6
[31] EIT 0.1-1.5 Low ~2.0
[33] EIT 0.3-1.0 Low ~5.5
[26] BIC 0.35-0.55 Low ~2.8
[29] BIC 0.75-1.75 Low ~2.8
Ours Data-driven 0.3-0.8 High 1.7
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Supplementary Note 14: Difference between FoM and IFoM

The choice of FoM as the screening criterion in both the initial training dataset and the active-
learning loop was based on practical and historical reasons. The effectiveness of FoM has been
demonstrated in existing studies such as [21] as a standard metric to balance the resonance
intensity and Q factor. On the other hand, the [IFoM was designed as an evaluation metric.
Unlike FoM, IFoM removes the effect of frequency dependence, allowing a fairer and more
general comparison of resonance quality across different frequency bands. While FoM tends to
reward sharper resonances but can favor low-frequency modes, IFoM corrects this bias by
including frequency scaling. In short, FoM is used during the learning process to decide which
candidates to keep, while IFoM is used afterward to judge and compare overall performance
more objectively. The active-learning loop itself mainly relies on relative ranking, choosing

samples from each batch that exceed a moving performance threshold.

We have conducted further experiments using IFoM as the selection criterion in the active
learning process instead of FoM. To build the initial training dataset with high [FoM, we select
36 classical structures with [FoMs that are larger than 2.0 from the previous training dataset.
For the active learning framework, we change the screening criterion in the second-step
annotation and remain other parameters unchanged. For the training process, as the amount of
initial training data samples becomes smaller than before, we generate 50 samples in each
iteration and conduct 10 iterations of learning. The preliminary results are presented in Figure
S19, showing that the active learning framework can also work when IFoM is used as the
screening criterion. In Figure S19(a), we can see that the generated patterns become more
diverse as the training continues. In each iteration, the training loss keeps going down, and the
FID scores also decrease, which means the generative model effectively converges the training
process. Figure S19(b) shows that the asymmetry of the generated structures is higher than that
of the original dataset, and it first increases dramatically and then gently as the iteration
increases. Figure S19(c) compares the FID scores using the fixed initial dataset as the reference.
The values increase with more iterations, which suggests that the generated patterns are moving
away from the initial set, and thus are exploring new design space. In Figure S19(d), the mean
IFoM values of the generated structures also improve iteration by iteration and reach the highest
at the fifth iteration. Figure S19(e) presents that both the average and maximum IFoM values
of the generated structures are higher than those of the classical ones in the initial dataset. This
means that our method can indeed produce designs with performance beyond the classical

structures. Finally, Figure S19(f) provided examples of the top eight generated structures with
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high IFoM values, along with their transmission spectra showing clear resonance dips. This
demonstrates that the proposed framework can discover new structures with high-IFoM

resonance even when the initial dataset is quite small.

In our study, we have tested three different screening criteria, the traditional FoM, the
frequency-independent IFoM, and the Q factor at 0.5 THz (Note S11 and Figure S14). In all
three cases, the framework consistently produced high-performance resonance structures and
outperformed classical structures. This shows that the proposed approach does not rely on a
single predefined metric but can be readily adapted to alternative criteria, opening the door for
future extensions where new task-specific metrics may be introduced to guide the design

process.
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Figure S19. Preliminary results using IFoM as the screening criteria in the proposed active-learning
screening. (a) The visualized patterns generated in each iteration and the training loss curve and the FID
scores in each iteration. It should be noted that the FID scores here use the updated training dataset as

reference. (b) The asymmetry of the initial dataset and the generated structures along with the iterations. (c)
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The FID scores with iterations between the generated structures and the initial training dataset. It should be
noted that the FID scores here use the fixed initial training dataset as reference. (d) The mean IFoM curves
of the generated structures with the iterations. (¢) Comparison of the mean IFoMs and maximum IFoMs of
the generated structures and the classical structures adopted in the initial training dataset. (f) The generated

structures with the maximum eight IFoMs and their transmission curves.
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