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Abstract
Self-sustainable sensing systems composed ofmicro/nano sensors and nano-energy harvesters
contribute significantly to developing the internet of things (IoT) systems. As one of themost
promising IoT applications, smart home relies on implementingwireless sensor networks with
miniaturized andmulti-functional sensors, and distributed, reliable, and sustainable power sources,
namely energy harvesters with a variety of conversionmechanisms. To extend the capabilities of IoT
in the smart home, a technology fusion of IoT and artificial intelligence (AI), called the artificial
intelligence of things (AIoT), enables the detection, analysis, and decision-making functions with the
aids ofmachine learning assisted algorithms to form a smart home based intelligent system. In this
review, we introduce the conventional rigidmicroelectromechanical system (MEMS) basedmicro/
nano sensors and energy harvesters, followed by presenting the advances in thewearable counterparts
for better human interactions.We then discuss the viable integration approaches formicro/nano
sensors and energy harvesters to form self-sustainable IoT systems.Whereafter, we emphasize the
recent development of AIoT based systems and the corresponding applications enabled by the
machine learning algorithms. Smart home based healthcare technology enabled by the integrated
multi-functional sensing platform and bioelectronicmedicine is also presented as an important future
direction, as well as wearable photonics sensing system as a complement to thewearable electronics
sensing system.

1. Introduction

Recent advances in semiconductor technologies have enabled cost-effective approaches for wireless network
connectivity between various sensors and processors, which lead to visible progress in the Internet of Things
(IoT). IoT, which consists of a large number of devices connected to the internet, is considered a promising
technology for the consumer electronicsmarket. In particular, the smart home that provides an intelligent living
environment has been touted as amarket segmentwith a high potential to deploy IoT. The smart home’s
eventual realization requires integrating countless sensors with diversified functionalities distributed around the
house to form a homenetwork capable ofmonitoring the house environment and beingmanaged via the
internet.

In general, sensors that contribute to the smart home application can be divided into three categories. One is
employed for the smart control of household appliances (e.g., voice control), another is used for environmental
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monitoring in houses (e.g., temperature, humidity, and gas leakage detection), and the rest is adopted for human
activity tracking (e.g., healthcaremonitoring) as shown infigure 1.Micro/nano sensors areminiature devices
that can convert changes in non-electrical signals such as temperature, pressure, humidity,motion, acoustic to
changes in electrical signals. They have the advantages of small size andmass, high sensitivity, low power
consumption, and low cost [1]. Therefore,micro/nano sensors have received tremendous research attention
and have shown significant development in the past two decades [2, 3]. In particular, the small size ofmicro/
nano sensors enables them to contribute towireless sensor networks and IoT development by consuming only a
tiny space. And the use of batteries can fulfill the power demand of thesemicro/nano sensors in terms of their
lowpower consuption.However, when thewireless sensor network possesses amassive number of distributed
sensor, a considerable number of batteries will be needed to power these sensors [4].Moreover, the batteries
have a limited lifetime and need continuousmonitoring, replacing, and recycling, whichwould be an arduous
task and uneconomical.

Thanks tomicro/nano sensors’ low power consumption, which can be down tomicro-watts [5, 6], energy
harvesters can potentially chargemicro/nano sensors without the need for batteries. The energy harvesting
approach as a good solution to the power problemof the IoT [7, 8]has beenwidely investigated in recent years to
replace batteries to push forward the realization of self-sustainable IoTs and systems. The required power for
micro/nano sensors can be obtained by harvesting one ormore of the surrounding environmental energy
sources. Themechanismof the energy harvesters varies regarding the application scenarios and the available
energy sources, such asmechanical energy [9, 10], solar energy [11, 12], thermal energy[13, 14], etc. Since
mechanicalmotions such as noise, surfaces andfloor vibrations, humanmotions, etc, are themost available
energy sources in the house.Motion energy harvesting systems have been considered as themost suitable power
source for home applications, which can be ranged in size frommicro-scale (MEMS) [15–17] to centimeter-
scale [18] (figure 1).Motion energy harvesting systems rely on threemain transductionmechanisms, which are
electromagnetic [19], piezoelectric [20], and electrostatic [21]. One recent advanced technology of electrostatic
transduction is the triboelectric nanogenerator (TENG).When two dissimilarmaterials come into contact in
TENG, opposite triboelectric charges are generated on the surfaces. Those charges can generate an electrical
potential when amechanical force separates the surfaces. TENGs can be implementedwith different working
modes, such as contact-separationmode [22], slidingmode [23, 24], single-electrodemode [25] and free-
standingmode [26]. Since the physical contact between objects and the human body in the surrounding area is
abundant during daily life, TENG can be an effective energy harvesting technology for smart home sensors.
Nevertheless, the selection of the energy harvester shape and size, as well as the transductionmechanism
depends on the application, the natural of the inputmotion, and the harvesting location (figure 1).

Figure 1. Illustration of smart home systems utilizingmicro/nano sensors and energy harvesters.
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When it comes to human body energy harvesting or human bodymotion sensing, intrinsically flexible
energy harvesters and sensors are preferable for better wearable comfortability. Therefore, new energy
harvesting devices and self-powered sensors based on textiles have been invented [27–29] in the formof
piezoelectric nanogenerators (PENGs), TENGs, and hybrid of both. Textile-based devices are advantageous for
smart home applications because they are lightweight, very flexible, andwearable, providing a sufficient degree
of comfortability to the body during daily activities.

Moving forward, the IoT and smart home are evolving towards amore intelligent and integrated systemwith
the on-goingmultidisciplinary research on sensors, energy harvesters, wireless transmission technologies,
artificial intelligence (AI), etc.With the rapid development of AI technology, the fusion of AI and IoT, i.e.,
Artificial intellegance of things (AIoT), becomes feasible to improve human-machine interactions, enhance data
analytics, refine decision-making processes, and perform intelligent tasks. Comparedwith IoT systems, AIoT
systems can analyze the collected data andmake decisions without human intervention once the system
(including the signal acquisitionmodule, data transmissionmodule, and data analysismodule) is built up. The
AIoTwould also shape the future personal healthcare technologies by providing comprehensive physical and
chemicalmonitoring through the body sensor network, advanced data analysis via AI, and eventually prompt
treatment through the surging neural interfaces, skin patches,microneedles, etc.

In this paper, we review the progress inmicro/nano sensors and energy harvesting aiming at future AIoT-
based smart home applications. Firstly, the conventional building blocks (MEMS sensors andMEMS energy
harvesting) are presented, followed by discussing the new building blocks (flexible andwearable energy
harvesting systems, self-powered sensors, andAI). Specifically, the newbuilding blocks consist of self-powered
sensors and energy harvesting based on PENGs andTENGs in the formof textiles are then described in detail.
After that, the integration of sensors with energy systems for self-sustainable IoT systems aiming at smart home
applications is demonstrated by reviewing recent self-sustainable IoT systems. Finally, future research directions
inAIoT based smart home such as smart home control, healthcare technology, andwearable photonics as a
complementary technology forwearable electronics are discussed.

2. Conventional building blocks ofmicro/nano sensors and energy harvesting systems

Micro-electromechanical systems (MEMS) usually refers to a collection ofmicron-level feature sized
mechanical structures, sensors, actuators, and electronics [30]. The early version ofMEMSdevices appeared in
the 1950s and developed from integrated circuit technology [31]. In the following decades, the research on
MEMSdevices has grown rapidly as the bulk siliconmicromachining technology and surfacemicromachining
technology graduallymature [32–34]. Researchers in succession reportedmanymilestones inMEMS
application research during this period. For instance, Nathanson et al developed a resonant gate transistor based
on silicon technology in 1967 [35]; TheHewlett-Packard company invented aMEMS thermal inkjet printer
head in 1979 [36]; Spotts et al fabricated a disposable blood pressure sensor based on a piezoresistive-type silicon
strain gauge in 1982 [37]; Later in 1993, Younse reported a newprojection display utilized a chip-based
micromirror array [38]; And in the 1990s,MEMS accelerometers were commercially used in the automotive
industry [39–41]. Until now, various kinds ofMEMSdevices have developed, like ultrasonic transducers
[42–47], RF devices [48–52], biochemical sensors [53], and so on. All theseMEMSdevices can bemainly divided
into electrostaticMEMS [54–56], piezoelectricMEMS [57–63], piezoresistiveMEMS [64–66], electromagnetic
MEMS [67–70], opticalMEMS [71–75], and thermalMEMS [76–78] according to the driving and sensing
mechanism.

2.1.MEMSbased sensors
Taking the advantages of small size, high sensitivity, lowpower consumption, and easy to integrate [79–81],
MEMS sensors are nowwidely used in people’s daily lives, as well as in smart homes. Firstly, the use ofMEMS
sensors can cost-effectively detect indoor environmental conditions, such as temperature [82, 83], humidity
[84–87], air pressure [88], light [89–91], PM2.5 [92], and various gases [93–95] thatmay affect the human health.
As shown infigure 2(a), Le et al reported surface acoustic wave (SAW) humidity sensors based on uniform
graphene oxide (GO)film [96]. The humidity sensor possesses high sensitivity, high stability and repeatability,
fast response and recovery speed, enough tomeet the application needs in smart homes. Besides,MEMSdevices
also play important roles in the convenience and safety aspects of smart homes.MEMSmicrophones can be used
to recognize human voices, realize communication between human and smart electronic devices [97, 98], and
also can act as a hearing aid for hearing impaired people [99]. For the safety aspect of smart homes, Lu et al
developed an ultrasonicfingerprint sensor based on complementarymetal-oxide-semiconductor (CMOS)
compatible piezoelectricmicromachined ultrasonic transducer as shown infigure 2(b) [100]. Thisfingerprint
sensor can be integrated into smart electronic devices and doors as an unlock switch.
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With constant attention to healthcare technology and the rise of the aging population inmany countries,
MEMSdevices have become the indispensable technology in healthcare applications including themonitoring
of daily activities of the elderly, e.g., fall detection at home.MEMS inertial sensorsmainly include accelerometers
[107–112] and gyroscopes [113] and are the typicalMEMSdevices used in healthcare. TheMEMS inertial
sensors are usually integratedwith the detection circuit as an inertialmeasurement unit (IMU), as presented in
figure 2(c) [101], which can be further integrated into electronic devices such asmobile phones andwatches, or
directly beworn on the human body for physical activitymeasurements [114], fall detection [115], heart rate and
breathmonitoring [116] and sleep apnea detection [117]. As in the case ofMEMS inertial sensors in human
motionmonitoring,MEMSpressure sensors also provide an effective way for human blood pressure
monitoring [118–120], and the performance ofMEMSpressure sensors continues to improvewith the
deepening of their applications. Zhang et al embedded silicon nanowires (SiNWs) into the annular grooves of a
circular diaphragm to achieve a piezoresistive pressure sensor with remarkable improvement in pressure
sensitivity [102], as elucidated infigure 2(d). The high-profile point-of-care-testing (POCT) technology offers a

Figure 2. (a)Graphene oxide-based surface acoustic wave (SAW) humidity sensor. Reproduced from [96], CCBY 4.0; (b)Piezoelectric
micromachined ultrasonic transducer (PMUT) based ultrasonic fingerprint sensor. Reprinted from [100]with the permission of AIP
Publishing; (c)Wearable human bodymotion capture systembased onMEMS inertialmeasurement unit (IMU). © [2011] IEEE.
Reprinted, with permission, from [101]; (d) Silicon nanowires (SiNWs) embedded annular diaphragmpiezoresistive pressure sensor.
© [2014] IEEE. Reprinted, with permission, from [102]; (e) Flexible acoustic device integratedwithmicrofluidic and biosensing
functions. Reproduced from [103]CCBY3.0; (f)Microneedle array for drug delivery. © [2014] IEEE. Reprinted, with permission,
from [104]; (g)Accelerometer contactmicrophones for longitudinalmonitoring ofmechano-acoustic cardiopulmonary signals.
Reproduced from [105]CCBY4.0; (h)Humanprostate ultrasound and photoacoustic imaging using capacitivemicromachined
ultrasonic transducer (CMUT) array and optical components. Reprintedwith permission fromAAAS [106].
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quick approach to diagnose diseases andmonitor the health status of the patients at home [121–123], and
microfluidic devices are an indispensable part of the POCT technology [124–126]. Recently, a singleflexible
acoustic device integratedwithmicrofluidic and biosensing functionswas reported byTao et al [103]. Hybrid
wavemodes can be generated by the device, as indicated infigure 2(e), where lambwavemode is used forfluidic
actuation, and biosensingmainly depends on thickness-shear wavemode. Based on the results of POCT, the
corresponding drug delivery can be carried out throughmicroneedles to achieve personalized therapies to
patients [127–131]. Figure 2(f) shows amicroneedle array integratedwith carbon nanotube nano filters used for
transdermal drug delivery developed byWang et al [104]. Under the action of air pressure or electric field, the
drugmolecules can be selectively delivered into the subcutaneous tissues through themicroneedle array. A non-
invasivemedical diagnosis can also be performed at homewithMEMSdevices, such as usingMEMS acoustic
devices to detectmuscle disorders [132], bloodflow rate [133], and other physical signs [134]. Gupta et al
integrated an accelerometer and a contactmicrophone into onewearable device, as illustrated infigure 2(g). This
device can precisely detectmechano-acoustic physiological signals from the humanheart and lungs, thereby
realizing real-timemonitoring of the human’s cardiopulmonary health [105].Meanwhile, combiningMEMS
devices with other transducers can endowMEMSdevices withmore powerful functions in healthcare. As shown
infigure 2(h), Kothapalli et al combinedwide bandwidth, high signal-to-noise ratio capacitivemicromachined
ultrasonic transducer (CMUT) arrayswith optical components to realize an integrated ultrasound and
photoacoustic device, which can be used for transrectal imaging of human prostate [106].

2.2.MEMSbased energy harvesters
The rapid development of smart homes has dramatically increased the need for the types and quantity of sensors
[135–137], and a large number of applications of sensors have brought about energy consumption issues.
AlthoughMEMS sensor nodes with lowpower consumption can be powered by small button batteries [138],
regular replacement of the batteries of these sensor nodes will also bring considerable economic costs. The use of
MEMS-based energy harvesters is considered to be a feasible way to solve the above problem, because they can
collect the energy from ambient vibrations (human bodymotion or hand sharking) to charge the batteries
[139, 140], thereby extending the lifetime of the sensor nodes. TypicalMEMS energy harvesters include
electrostatic energy harvesters [141], electromagnetic energy harvesters [142–145], and piezoelectric energy
harvesters [146–148]. Electrostatic energy harvesters convert the external vibrations into the devices’ varying
capacitance through different configurations (e.g., in-plane overlap structure, in-plane gap-closing structure,
and out-of-plane gap-closing structure) of the capacitor electrode plates [149]. Figure 3(a) presents a 2D in-
planeMEMS electrostatic energy harvester [150], which utilizes capacitor electrode plates with a rotational in-
plane overlap structure to harvest kinetic energy from ambient planar vibrations. For electromagnetic energy
harvesters, the ambient vibrations are generally converted into the relativemotion between conductive coils and
permanentmagnets in the devices and then translated into electrical power through the electromagnetic
induction effect [151–154]. As shown infigure 3(b), Liu et al assembled a stationarymagnet withmoveablemetal
coils patterned onmicromachined spring-mass structures to achieve awafer-scale in-plane electromagnetic
energy harvester [155]. They broadened the operation range of the device by incorporating four small
suspensionmass-spring structures. Comparedwith the other two types of energy harvesters, piezoelectric
energy harvesters have the advantages of simple configuration and high electromechanical coupling effect
[156, 157]. Piezoelectric energy harvesters use the direct piezoelectric effect of piezoelectricmaterials to convert
energy from ambient vibrations into electrical energy. Their typical structure is illustrated infigure 3(c)
[158–161], mainly composed of a piezoelectricmicrocantilever with a proofmass fixed at its free end. Since the
above three energy harvesters (i.e. electrostatic, electromagnetic, and piezoelectric) have different advantages
[162], integrating differentmechanisms into one energy harvester will bring potential benefits, e.g., higher
output energy. Yang et al reported a hybrid piezoelectric and electromagnetic energy harvester, which consists of
a piezoelectric cantilever with a permanentmagnet fixed at its free end, and a substrate integratedwithmetal
coils, as displayed infigure 3(d) [163]. In addition to vibration energy, ambient thermal energy (e.g., the heat
from the human body) can also be collected and converted into electrical energy by usingMEMS thermoelectric
power generators [164–166]. Figure 3(e) shows a thermoelectric power generator designed byXie et al [167], in
which the thermopiles (core components) are embedded between the top and bottom cavities of the device. The
thermopiles’ hot and cold junctions are used to sense the temperature difference between the human body skin
and ambient air, and realize energy conversion through the Seeback effect. Besides, acoustic energy harvesters
are alsowildly used for non-contact energy delivery [168–170]. They can collect energy from the vibrations of
external acoustic/ultrasonic waves, and are suitable for occasionswheremotion energy and thermal energy are
unstable or difficult to collect, such as forming a self-powered systemwith implanted biomedical devices.
Figure 3(f) illustrates the principle of non-contact acoustic energy transfers. The ultrasonic energy harvester
based on a PZTPMUT array is integratedwith a pacemaker and placed around the heart [171].When an external
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Figure 3. (a) In-planeMEMS electrostatic energy harvester using capacitor electrode plates with a rotational in-plane overlap
structure. Reproduced from [150]© IOPPublishing Ltd. All rights reserved; (b)Wafer-scaleMEMS electromagnetic energy harvester
with broadband operation range [155]; (c)Various kind ofMEMSpiezoelectric energy harvester. Reprinted from [158–161]
Copyright (2011), with permission fromElsevier; (d)MEMShybrid piezoelectric and electromagnetic energy harvester. Reprinted
with permission from [163]Copyright SPIE,Micro/Nanolithography,MEMS,MOEMS9 023002; (e)MEMS thermoelectric power
generators with top and bottom cavity configuration. Reprinted from [167]with the permission of AIP Publishing; (f)MEMS
piezoelectric ultrasonic energy harvester for non-contact energy delivery to implantable biomedical devices. Reproduced from [171]
CCBY4.0; (g)Zinc oxide nanowire arrays based piezoelectric nanogenerators. Reprintedwith permission fromAAAS [172]; (h)
Typical structure of a triboelectric generator. Reprinted from [173]Copyright (2012), with permission fromElsevier; (i)Pressure
distribution imaging using the piezo-phototronic effect. Reprinted by permission fromSpringerNature Customer Service Centre
GmbH: Springer, Nat. Photonics 7 752-8 (2013) [174]. (j)Dynamic triboelectrification-induced electroluminescence. JohnWiley&
Sons. © 2016WILEY‐VCHVerlagGmbH&Co.KGaA,Weinheim [175].
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ultrasound head approaches the human body and emits ultrasoundwaves, the ultrasonic energy harvester will
convert the vibration energy of ultrasonic energy into electrical power to charge the pacemaker’s battery and
extend its lifetime.

Apart from variousMEMS energy harvesters, themicrosensor nodes in a smart home can also be powered by
many other forms of energy harvesters. Nanogenerators based on zinc oxide nanowire arrays that can collect
ambient low-frequency vibration energy is one of them [176]. Thefirst zinc oxide nanowire arrays based
piezoelectric nanogenerator was reported byWang et al [172], and its structure andworking principle are shown
infigure 3(g). The zinc oxide nanowires with coupling properties (piezoelectric and semiconducting) and the
Schottky barrier formedwhen they contactmetal tip are the key to the nanogenerator’s energy conversion. In
recent years, triboelectric generators as a new type of energy harvester have received extensive research attention.
As schematically shown infigure 3(h), the triboelectric generator is formed by assembling two polymer sheets
with different triboelectric characteristics [173].When the two triboelectric layers contact, equal charges with
opposite signswill be generated at two sides due to triboelectrification, and the charges can be collected by the
metal electrodes deposited on the top and bottom surfaces of the structure upon the separation of the two
triboelectric layers due to electrostatic induction.

Interestingly, both the piezoelectric effect and triboelectric effect can be utilized for self-powered lighting
and visualization. As shown infigure 3(i), a pressure sensor array (with a pixel density of 6350 dpi) integrated
with a light-emitting diode (LED) arraywas demonstrated by Z.L.Wang’s group in 2013 [174]. The
electroluminescence of each pixel composed of a single n-ZnOnanowire/p-GaNLED is determined by the local
strain due to the piezo-phototronic effect. Specifically, the voltage generated in the n-ZnOnanowires by the
piezoelectric effect in response to external pressure drives theGaNLED.When themold patternedwith the
word ‘piezo’ touches the sensor array, the blue light luminescence verywell reflects the strain profile. A
triboelectric self-powered electroluminescence device counterpart was reported in 2016 (figure 3(j)) [175]. The
high voltage generated by the triboelectric effect induces the luminescence of the underlying phosphor. Due to
the broadmaterial selection of triboelectric devices, the presented self-powered electroluminescence device
possesses goodflexibility. The luminescence intensity shows negligible degradationwhen the curvature
increases from0m-1 to 100m-1. The application forwriting visualization is demonstrated by the real-time
recording of writing the character ‘Light光’ through a computer interface.

2.3. Centimeter-scale based energy harvesters
In addition toMEMS-based energy harvesters, plenty of centimeter-scale energy harvesters (Cm-EHs) are
presented [177–180]. Cm-EHs can bemore suitable thanMEMSbased ones for some cases. Generally, cm-EHs
have a simple fabricationmethod. They can be assembled and fabricated using conventionalmethods [177]
compare toMEMS-scale oneswhich needmore sophisticated expensive equipment, andmore complicated
fabrication steps.Higher output power could be expected from cm-EHs [181]. Thus, they aremore appropriate
for the applications of higher power demandwith relatively large allowable size [182].More complicated
mechanical systems/mechanisms for better performance [183, 184], ormatching lower frequencies [185–187]
can be easily fabricated in cm-scale.

Many sources of harvestablemotion or energy are available in the house. Among them are the surface
vibrations, which can be due to themotion of nearby people or nearby vehiclesmoving outside the house,
humanmotion inside the house, Light and noise energies, wind energy, etc. All those types of energy can be
simply harvested using cm-EHs. Figure 4 shows samples of cm-EH that can deal with those types of energy.
Figure 4(a) and (b) present two prototypes for harvesting surface vibrations. Basically, surface vibrations can be
harvested using simple resonators. The resonator should be tuned to the input frequency to reach the optimum
performance. However, the input vibrations are usually random andunsteady. A single-frequency resonator can
cover a very narrow band of vibration frequencies. If the input frequency lies slightly away from this band, the
power drop drastically. Gupta et al [188] (figure 4(a)) introduce a broadband energy harvester based on a non-
linear polymer spring and Electromagnetic/Triboelectric hybridmechanism. The broadband frequency is
achieved by utilizing a polymer spring that exhibitsmultimodal energy harvesting andmechanical stoppers that
introduce a non-linear stiffening effect [139]. Unlikemany previously presented broadband EHs, this prototype
can reach broadband energy harvesting at awide range of input accelerations (in the range of 0.1 g to 2 g).
Besides, Dhakar et al [189] describe a broadband energy harvester based on the triboelectricmechanismusing a
cantilever to generate triboelectric charges between contact surfaces (figure 4(b)). Thismechanism introduces
nonlinearity in the cantilever, which promotes the broadband behavior of the triboelectric energy harvester. A
peak output power of 0.91 μWis achieved at an acceleration of 1 g. The amplitude limiter design allows the
bandwidth to increase, so that it can reach 22.05 Hz at 1.4 g.

For humanmotion energy harvesting, there are alsomany reported prototype designs based on
piezoelectric, electromagnetic, and triboelectric transductions, or a hybrid of both.One of the recent prototypes
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is that presented byHou et al [190]. They proposed a rotational pendulum triboelectric-electromagnetic hybrid
generator that can harvestmechanical vibrations of frequency less than 5 Hz (figure 4(c)). The prototype consists
of four stacked disk-shaped rotormagnets that can oscillate under the gravity or inertia forcewith awideband
frequency range. Electromagnetic generator (EMG) is achieved by placing 4 stator coils in theway of the
pendulumoscillation, while the triboelectric generator (TENG) is realized through the contact-separation
between a copper ring attached to the rotor and fluorinated ethylene propylene (FEP)flexible strips attached to
the frame. In fact, TENGs are considered as promising energy harvesting technologies. They are very suitable for
low frequency irregularmechanicalmotionswith a broad range of frequencies. Besides, they are flexible, low
cost, lightweight, easy to fabricate, and reliable with high output voltage. However, themain drawback of
TENGs is the low output current. On the other hand, EMGs generally can give a high output current due to low
internal impedance. Thus, coupling both generators can be a good approach for high harvesting performance
fromunsteady—low frequencymotion.Many hybrid TENG—EMG systems are presented in the literature
[194–197]. However, the prototype presented byHou et al [190] based on rotationmotion shows a good
performancewith humanmotion and oceanwaves. It shows amaximumpower density of 3.25Wm−2 and
79.9Wm−2 at a frequency of 2 Hz and 14 cm amplitude by the TENGandEMG, respectively. Anotherway of
harvesting humanmotion in the house is by themovement of thewhole or part of the body towards and away
from thewalls. TENG can be utilized to harvest the bodymovement by considering the body as one of the
triboelectric layers and attaching the other layer to thewall. A recent study of thismechanism is presented byXi
et al [191] (figure 4(d)), which can be used as an energy harvester or self-powered humanmotionmonitoring.
They demonstrated a single electrode TENGworking in a non-contactmode. The human body acts as one of the
TENG layers, and the other layer is composed of a printing paper togetherwith ametallic electrode film. The
proposedTENGprototype can charge a capacitor of 4.7μF to 2 Vwhen a human subject is stepping at the same
placewith a distance of around 30 cm against four A4 sized of the proposed TENGs in series connection for
20 min.

TENGand othermotion energy harvesting techniques usually produce anACoutput voltage/current [198].
However, a DCoutput current is very necessary for IoT applications and other electronic devices. To obtain a
stableDCoutput fromTENG, a rectifier bridge in conjunctionwith a powermanagement circuit is employed.
This usually affects the systemportability by increasing the total size of the system, aswell as increases the power
losses and consequently decrease the overall system efficiency. Some uniqueways are proposed to produce aDC
output directly fromTENG. For instance, Zhu et al [192] (figure 4(e)) developed a novel triboelectric

Figure 4.Centimeter-scalemotion energy harvesters (a) broadband energy harvester based on a non-linear polymer spring and
Electromagnetic/Triboelectric hybridmechanism. Reproduced from [188]CCBY4.0; (b) broadband energy harvester based on
triboelectricmechanism and implemented by oscillating cantilever. © [2015] IEEE. Reprinted, with permission, from [189]; (c)
Rotational pendulum triboelectric—electromagnetic hybrid generator. Reprinted from [190]Copyright (2019), with permission
fromElsevier; (d)Noncontactmode TENG for humanmotion energy harvesting andmonitoring. Reprinted from [191]Copyright
(2020), with permission fromElsevier; (e)DC triboelectric nanogenerator by charge transportation for next-generation IoT and real-
time virtual reality applications. Reprinted from [192]Copyright (2020), with permission fromElsevier; (f) Sound noise energy
harvester based on electrospun polyacrylonitrile (PAN)nanofibrousmembranes. Reprinted from [193]Copyright (2020), with
permission fromElsevier.
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mechanismusing dual intersection TENGs and charge transportation forDCoutput to directly power the next-
generation self-sustained IoT and its real-time control inVR. Thismechanism is Inspired by ancient waterwheel
transport water and P-N junction theory. They employed tribo-polarity reversal porousmaterial as charges
transportation carrier sliding among the ultra-negative and ultra-positive dielectricmaterials, and the charges
were continuous unidirectional transported and repelled discharge onto electrodes forDCoutputwithout a
rectifier bridge. An outputDC voltage is obtained of up to 5 times higher than the air breakdown in conventional
TENG, and a charging rate of up to 2 times higher than that of a TENGof the samematerials.

Noise is considered as unwanted loud sound that causing discomfort or unpleasant feelings whether inside
and outside the house. It can be due to the nearby railways, highways, airports,machineworkshops, etc. Since
this kind of sound is quite high and carries somuch energy, it can be harvested and converted into a useful
energy source. Several technologies have been demonstrated to harvest sound energy. Among them are the
piezoelectricity [199, 200] and triboelectricity [201, 202], which receivedmore attention because of their
relatively high conversion efficiency and larger output power density. Triboelectric devicesmainly showhigh
output voltage. However, to ensure a responsive contact and separation, the inter-distance between the
triboelectrification layers has to be controlled precisely. Piezoelectric devices are easy to prepare and do not need
to control the inter-distance between electrodes precisely. Shao et al [193] (figure 4(f))utilized electrospun
polyacrylonitrile (PAN)nanofibrousmembranes for thefirst time to convert low-mid frequency noise into
electricity with high output power. A thing PAN fibrousmembrane is sandwiched between twometal-coated
plastic film electrodes. Under 117 dB sound (frequency 100–500 Hz), a 3×4 cm2 PANmembrane can generate a
peak electrical of 58 V and 12 μA,with amaximumpower of 210.3 μW (surface power density of
17.53 μWcm−2). This output ismuch higher than that generated by PVDFnanofiber counterpart, and is
sufficient to power some electronic or portable devices after rectification.

3.Newbuilding blocks of self-powered sensors and energy harvesting systems

3.1. Textile based self-powered chemical sensing
Aswe know, the toxic gasmonitoring plays an important role in industry security. Existing approaches (e.g.,
resistors) suffer from the requirement of external power supply, whichmay limit the humanmobility. Hence,
the self-powered piezoelectric gas sensormaymitigate the limitation. A group fromNortheasternUniversity
developed a self-powered smelling electronic skin (e-skin) by employing a piezoelectric gas sensor array
(figure 5(a)) [203]. Themultifunctional e-skinwas composed of bare ZnOnanowires for humidity sensing, Pd/
ZnOnanowires for ethanol sensing, CuO/ZnOnanowires for hydrogen sulfide sensing, TiO2/ZnOnanowires
formethane sensing, which promoted the practical application in the smart home occasion. Simply driven by
daily humanmotions, the e-skin can operate independently without an external power supply, inwhich the
piezoelectric signal was significantly influenced by the surrounding atmosphere. Apart from environmental
monitoring, there is a requirement for the deep understanding of chemical events of the human body to capture
comprehensive information of health status. As provided infigure 5(b), Han et al reported a self-powered
multifunctional sweat sensing e-skin based on the piezoelectric-enzymatic coupling effect [204]. The four piezo-
biosensing units enabled glucose, uric acid, lactate, and urea detection from sweat, respectively. The
corresponding oxidase functionalized ZnOnanowire would generate signals when biomarkers combinedwith
immobilized oxidases by applyingmechanical deformation. The electronic skin achieved noninvasive and self-
sustainable perspiration analysis, facilitating its use in personalized healthcaremonitoring.Meanwhile, the
PENGalso shows great potential in smart home-related applications through the capability of environmental
monitoring. Correspondingly, Zhu et al developed a TENG formelamine (Mel) detection (figure 5(c)), inwhich
the Aluminum (Al) surface was coatedwith a layer ofMel to enhance the output. Via etching the film ofMel, the
nanostructure was created and contactedwith another layer of Al. Owing toMel’s strong electron negativity, the
exposure of the sensor toMel would greatly enhance the output of the triboelectric sensor. A linear range (1 ppb-
500 ppb)was obtainedwith a low detection of limit (0.5 ppb) [205].

In addition to the PENG that offers self-sustainable response to external chemical stimulus, benefitting from
the low cost, light weight, broadmaterial choices, simplemechanism, the TENGhas also attracted increasing
attention from the academic community since 2012 [173]. Generally, the TENGeither serves as the power
source or the self-powered sensor. As shown infigure 5(d), a self-powered electrochemical systemwas developed
byChen et al. The electrochemical lactate sensor was consisted of the PdAunanoparticlemodified carbon fibers
(anode), and Pt decorated carbon fibers (cathode) inwhich the L-lactate oxidase was immobilized on the surface
of anode [206]. The TENGenabled by themicrostructured PDMS andGelatin pairs was used to supply power to
the as-fabricated electrochemical sweat sensor. Besides, the self-powered TENG sensor is anothermajor branch
in the TENG-related domain. As depicted infigure 5(e), Khandelwal et al introduced an attractivematerial-
metal organic framework (MOF) to enhance the triboelectric sensor performance [207]. Observing from the 3D
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architecture ofMOF-TENG, theMOF family ZIF-8 vertically contactedwithKapton. Interestingly, the ZIF-8
was highly selective to tetracycline, inwhich the benzene ring of tetracycline interactedwith the imidazole ring of
ZIF-8 viaπ–π interactions. Upon contact-separation, increased tetracycline concentrationwould alter the
charge transferred. On the other hand, there are someworks that use triboelectric self-powered sensors to sense
the hazard substance, which should facilitate its use in the surroundingmonitoring and create great potential in
the smart home scene. For example,Wang and his co-workers demonstrated a self-powered triboelectric
nanosensor formercury ion detection (figure 5(f)) [208]. They assembledAunanoparticles onto themetal
surface to improve the performance of TENGand then furthermodified thesemetallic particles via
3-mercaptopropionic acid (3-MPA)molecules decoration that was highly sensitive and selective toHg2+ ions.
The as-fabricated self-powered ion sensor showed a linear range from100 nM to 5 μmwith a detection limit of
30 nM. Finally, surrounding atmospheremonitoring is of vital importance for smart home-related applications.
CO2, as a critical indicator of air quality, is always an interesting target in the gas sensing field. As shown in
figure 5(g), Lee’s group initiated a textile triboelectric sensor for CO2monitoring [209]. The poly(3,4-
ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) coated textile showed good performance not only
on the daily human activity tracking but also on PEI-basedCO2 sensing by contactingwith PTFE. The unique
soft characteristic of textiles provided a great possibility to integrate sensors on the cloth, achieving improved
wearability and portability.

3.2. Textile based self-powered physical sensing
For healthcare applications, PENG andTENG sensors are helpful in bodymotion detecting, voice repeating, and
even pulse or heartbeatmonitoring, etc [210–215]. For instance, Fan et al developed a high-pressure sensitive

Figure 5.Representative works of PENGandTENG for healthcaremonitoring and chemical sensing. (a) the self-powered smelling
e-skin based on the piezo-gas-sensor array. Reprinted from [203]Copyright (2018), with permission fromElsevier; (b) the
multifunctional sweat sensing e-skin based on piezoelectric-enzymatic coupling effects. Reprintedwith permission from [204]Appl.
Mater. Interfaces 9 29526-37, Copyright (2017)AmericanChemical Society; (c)Mel enhancedTENG forMel detection [205] John
Wiley & Sons. © 2016WILEY‐VCHVerlagGmbH&Co.KGaA,Weinheim; (d) the electrochemical lactate systempowered by TENG.
Reprinted from [206]Copyright (2017), with permission fromElsevier; (e) theMOF-based TENG for tetracycline detection [207]
JohnWiley& Sons. © 2019WILEY‐VCHVerlagGmbH&Co. KGaA,Weinheim; (f) the self-powered triboelectric nanosensor for
Hg2+ ionDetection [208] JohnWiley& Sons. Copyright © 2013WILEY‐VCHVerlagGmbH&Co.KGaA,Weinheim; (g) the
triboelectric textile for CO2 sensing. Reprinted from [209]Copyright (2019), with permission fromElsevier.
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(7.84 mV·Pa−1) and comfortable textile TENG sensor array, which exhibits wideworking frequency bandwidth
(up to 20 Hz), fast response time (20 ms), and advantages of stable (over 100,000 cycles) andwashable ((>40
washes). Themachine-knitted textile is suitable formonitoring the epidermal and respiratory physiological
signals. In addition, a healthmonitoring system is developed for some chronic diseases, including cardiovascular
disease and sleep apnea syndrome, etc (figure 6(a)) [216]. Apart frommonitoring and detecting disease,many
works are focused on therapy as shown infigure 6(b) [217]. The device shows a self-powered photodynamic
therapy system (s-PDT)with a bimorph piezoelectric nanogenerator. By harvesting frombodymotion, the PDT
is powered to stimulate the pulse lightmode for inhibiting the growth of tumor cells. The s-PDTdevice is
implanted inmice for experiment andwhich realizes effective tumor tissue suppression and killing, i.e., an
87.46% tumor inhibition rate is achieved after 12 days of continuousminiature LED stimulation. In this way, the

Figure 6.Various advanced TENGandPENG for the wide range sensing applications of healthcare,HMI and smart home. (a)
Schematic diagramof amachine-knitted textile sensor (up), and photographs of arterial pulse waves (down). Reprintedwith
permission fromAAAS [216]; (b) Self-powered system for autonomous tumor inhibition and cancer therapy. Reprintedwith
permission from [217]Copyright (2020)AmericanChemical Society; (c)Device structure of a piezoelectric 3D textile with pre-
strainedmonofilament (up), and photographs of the device detecting signals of voice, pulse and respiration (down). Reprinted from
[218]Copyright (2020), with permission fromElsevier; (d) Synthesis process of PEDOT:PSS cotton sock using piezoelectric and
triboelectricmechanism for energy harvesting and healthcaremonitoring. Reprintedwith permission from [219]Copyright (2019)
AmericanChemical Society; (e)Demonstration of super-elastic liquidmetal fibers and textiles based on triboelectricmechanismwith
self-powered breathingmonitoring and gesture sensing capabilities. Reproduced from [220]CCBY4.0; (f) Schematic drawing of
gloved-based interface for applications in real/cyber space. Reprinted from [221]Copyright (2019), with permission fromElsevier. (g)
AZnOnanowires-based bedding for imperceptible sleepmonitoring for sleep healthcare and early disease diagnosis. Reprinted from
[222]Copyright (2020), with permission fromElsevier; (h)A3D schematic of a piezoelectric hollowmicrostructured pressure blanket
for noncontact heartbeat and respirationmonitoring applications. Reprintedwith permission from [223]Copyright (2018)American
Chemical Society; (i) Schematic diagram showing the bedsheet with triboelectric arched nanogenerator arrays for real-time and self-
powered sleep behaviormonitoring [224] JohnWiley & Sons. © 2017WILEY‐VCHVerlagGmbH&Co.KGaA,Weinheim ; (j)
Schematic of a highly shaped adaptable resilient 3Dbraided textile (left), and self-powered identity recognition carpet for safeguarding
entrance and early warning of intrusion. Reproduced from [225]CCBY4.0; (k) Schematic diagramof a transparent triboelectric
nanogenerator for energy harvesting and homewindows raindrop sensing for smart home applications. Reprinted from [226]
Copyright (2020), with permission fromElsevier.
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self-powered systemmay be used for cancer treatment in future clinical applications. Recently, Ahn et al
reported awearable piezoelectric sensor formulti-local strain detecting, as illustrated infigure 6(c), which
consists of 3D textilemonofilament with pre-strain and PVDFfilm in between [218]. The pre-strained textile
structure can amplify the piezoelectric output voltage of sensing strain results up to 5 times. The good pressure
sensitivity of the device performsmultiple applications on humanmotion and healthcare, whichmeans it not
only can detect joint (neck, elbow, and knee)movement, fingertip pressure, and gait based on the tensile and
compression signals, but also can fulfill voice repeating, respiration and blood pressure based on the vibration
signals. PENG andTENGdevices rely on hybridmechanisms of piezoelectric and triboelectric own diversified
advantages, including high output performance,multi-application for powering and sensing, etc figure 6(d)
demonstrates a cotton sock by combining PEDOT: PSS-coated triboelectric nanogenerator and PZT chips for
foot-based energy harvesting andmonitoring [219]. It can successfully detect physiological signals of humidity,
temperature, andweight variations. Besides, the sock can recognize walking patterns and trackmotion
conditions for smart home applications. Thesewearable generators are remarkable candidates for power sources
and sensors. Instead of partly attaching to the human body, the functional textiles and fiber fabrics have the
potential to be clothing for humandaily life. Dong et al demonstrated a fabrication process of stretchable
triboelectric fibers with high electrical output and sustain strain, as shown infigure 6(e) [220]. By using the
thermal drawing process and integration ofmicro-textured surface and liquidmetal electrodes, the triboelectric
fibers are not only capable of energy harvesting, but also competent tomonitor breath and sense joint gestures.

To extend the application scope of wearable textiles, efforts have beenmade into theHumanMachine
Interface (HMIs), which basically realizes the communication between humans and electronics [227–230]. In
2019,He et al reported a self-powered triboelectric glove consists of a PEDOT: PSS coated strip and a layer of
silicon rubberfilm (figure 6(f)) [221]. The glove-based system is suitable for awide range of applications,
including different controls in 2D/3D (wireless car, drone, robotic hand, etc), games, and cursor in cyberspace.
Except for applications in real space, wearable generators using anHMI can broaden to virtual space, including
virtual/augmented reality applications to enhance natural environments and offer perceptually enrich
experiences and real-time interactions [231, 232]. Besides, combingwithmachine/deep learning technology,
the electronics can achieve recognition applications including object, shape, gesture,motion recognition
[233, 234].

Wearable devices based on smart home applications for the lives of people are greatly investigated in the past
few years [235–237]. Especially for disease prevention and healthcaremonitoring, textile-based sensors have
brought a bright future to complementarymedical system technology. Up to now, the sensors are demonstrated
by diversified applications range frompillow, blanket, bed tofloor andwindow. Recently, a triboelectric sensor
pillow for sleepmonitoring is reported for remote healthcare and early disease diagnosis, as shown infigure 6(g)
[222]. Inside the pillow, high sensitivity feather-like structure sensors can distinguish various activities, such as
breathing,moving, turning over, and so on. It provides remote detecting for human bodies on sleep healthcare,
and therefore complete surveillance for patients or elderly people in case of sudden death during sleeping. In
addition to pillow structure for sleepmonitoring, a blanket and bed can also achieve the goal. Chen et al
demonstrate a non-contact battery-free pressure sensor with the advantages of working under a high-pressure
region and sensitivity (figure 6(h)) [223]. The piezoelectric-based sensor presents a reliable heartbeat and
respiration detection to transmit to a remote cell phone. Similarly, a triboelectric sensor with an arched structure
and conductive fiber using for bedsheets to fulfill the sleep detecting task, as shown infigure 6(i) [224]. Due to
the superiorities of high sensitivity, fast response time, and stability, the pressure sensor array canmonitor the
condition, evaluate the quality, andwarn dangers during sleeping. Figure 6(j) shows a 3D textile TENGbased on
afive-directional braided structure [225]. It presents a special frame structure thanks to its outer braided and
inner axial yarns twine, which achieves high flexibility, output, andwashable advantages. The textile
demonstrates good potential in smart home applications as shoe-embedded humanmotionmonitoring and
remote emergency rescue system. Aswell as being an identification of carpets/floor to recognize passcodes for
safe entrance and guard against theft system. Furthermore, Zhou et al present a transparent andflexible TENG
which can support finger-touching and pen-based screen (figure 6(k)) [226]. In this way, it can not only perform
as smart pens connecting to electrical devices, but alsowork as homewindows to collect signals when raindrops
fall down and then send out to smartphones to informpeople of closingwindow in time.With thewireless
transmission process, the device acts as a real-timeweathermonitoring smart window system for energy
harvesting and sensing applications. Accordingly, PENG andTENG sensors are desired formultiple
applications as crucial security/safetymonitoring devices or interesting human-machine interacting electronics
for people. In the long run, this kind of sensors would play amore essential role in complementary applications
in human life contribution.
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3.3. Textile based energy harvesting
Self-powered sensors canwork effectively independently without any external power supply if the output signal
is sufficiently high to operate the sensing system.However, if the output signal is low, an additional power unit
will be needed. In order to realize a self-sustainable sensing system in that case, an energy harvester that can
convert one ormore of the other environmental signals to electricity should be integratedwith the sensor.

Embedding energy harvesters in textile or textile based energy harvesters (T-EHs) attract great attention in
thefield of humanmotion energy harvesting. T-EHs can be embedded in textiles in the formoffibers, yarn, and
fabrics using cost-effective andwell established textile fabrication processes [28, 238–247]. Figure 5 shows
different presented T-EHs based on differentmechanisms. Kim et al [248] (figure 7(a)) presented a strongly
integrated fabric-basedwearable piezoelectric energy harvester (fabric-WPEH) using a ferroelectric polymer,
P(VDF-TrFE), and conducting fabrics, nickel and copper coated polyesters. The simulation and experimental
results show that the presented prototype has a piezoelectric d33 coefficient as high as 32 pC -N .1 It can generate
an output voltage of up to 5.3 V and current of 69 nA fromhuman pressing and bendingmotions, and an output
power density of 16.83 nW cm−2 at an applied impact pressure of 55.5 kPa. Triboelectric nanogenerator is also a
good candidate for textile-based energy harvesting, and is able to efficiently scavenge energy fromhuman
motion in this form, since it depends on relativemotion, compressive force, or stretching to activematerials. All
does not require a high force, which is compatible with humanmotion, and does notmake a disturbance to the
human body. For example, Lai et al [213] (figure 7(b)) presented a single—thread—basedTENG. It is fabricated
frommulti-twisted stainless steel thread, which acts as an electrode and coatedwith silicone rubber, which acts
as a negative triboelectricmaterial. The fabricated prototype is sewing in serpentine shape on an elastic textile.
Thus, a large area and highly stretchable energy harvesting textile are obtained. The proposed prototype can
generate an electric output that reached up to 200 V and 200 μA. The ability to harvest different kinds of human
motion, such as jointmovements, walking, taping, etc, is also demonstrated.Ning et al [249] (figure 7(c))
presented awashable textile single-electrode TENG (TS-TENG) based on polytetra fluoroethylene (PTFE)
polymerwith high hydrophobicity. A strained TS-TENG can be easily cleaned bywashing inwater. It can be
sewed on cloths, and effectively converted humanmotion such as arm swing into electricity by simple friction
with clothingmaterial. A TS-TENGprototype is testedwith simple arm swingingwhile walking and running.
The obtained output voltage and current are 1050 V and 22 μA, respectively.With this electric output, it shows
the ability to power a night running light and a digital watchwithout any energy storage component. Alongwith
itsflexibility, breathability, washability, TS-TENGmay be considered as a significant development in the self-

Figure 7.Textile-based humanmotion energy harvesters (a) fabric-basedwearable piezoelectric energy harvester. Reprinted from
[248]Copyright (2020), with permission fromElsevier; (b) Single-Thread-BasedWearable andHighly Stretchable TENG [213] John
Wiley & Sons. © 2016WILEY‐VCHVerlagGmbH&Co.KGaA,Weinheim ; (c)washable textile-structured single-electrode TENG
based on a nanofibrous polytetrafluoroethylene (PTFE). Reproduced from [249]with permission of The Royal Society of Chemistry;
(d)Textile-based TENGwith alternating positive and negative freestanding grating structure. Reprinted from [29]Copyright (2019),
with permission fromElsevier, (e)Allfiber-based hybrid piezoelectric- triboelectric nanogenerator forwearable gesturemonitoring.
Reprinted from [250]Copyright (2018), with permission fromElsevier; (f)flexible and stretchable fabric Piezoelectric-triboelectric
hybrid nanogenerator. Reprinted from [251]Copyright (2019), with permission fromElsevier; (g) hybrid textile-based energy
harvester by integrating fabric grating structure TENGwith fiber-shaped dye-sensitized solar cells [252] JohnWiley& Sons. © 2016
WILEY‐VCHVerlagGmbH&Co.KGaA,Weinheim; (h) Stretchable fabric thermoelectric generator based onwoven thermoelectric
fibers Reproduced from [239]CCBY4.0.
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powering of wearable electronics. And Paosangthong et al [29] (figure 7(d)) demonstrated a new design textile-
based Triboelectric nanogenerator with alternate grated strips of positive and negative triboelectricmaterials
operating in freestandingmode. This design is different than previously presented grating—structure TENGs,
where the air gap is replaced by another triboelectricmaterial with opposite polarity to the existingmaterial.
Hence, an increase in the systemperformance is obtained due to the increase in the contact surface area. The
presented prototype, as shown infigure 7(d), consists of an upper substrate with gratings of nylon fabric and
polyvinyl chloride heat transfer vinyl (PVCHTV) and a lower substrate with screen-printed silver (Ag) IDEs on a
PVC coated fabric. An improvement in the output performance by this design is observed. A prototype of 10
gratings of nylon fabric and PVCheat transfer vinyl delivers anRMS voltage, RMS current, andmaximumRMS
power density of 136 V, 2.68 μA, 38.8 mWm−2, respectively.

The concept of a hybrid nanogenerator and combining the effect of two energy harvestingmechanisms are
utilized in the fabrication of T-EHs to improve the energy conversion efficiency. A hybrid triboelectric-
piezoelectric (TPNG) is a good example of hybrid system, which is capable of generating both triboelectricity
and piezoelectricity at the same time. Guo et al [250] (figure 7(e)) demonstrated an all-fiberwearable hybrid
TPNG. It consists of silkfibroin nanofibers and poly (vinylidene fluoride) (PVDF)nano-fibers, whichwere
electrospun on conductive fabrics, respectively. Both the silk nanofibers and PVDFnano-fibers on the
conductive fabrics were attached together to form a cloth-shape device, which has greatmechanical flexibility as
well as desirable wearing comfort. The presented prototype shows high output power levels with output voltage,
short-circuit current, and power density of 500 V, 12 μA, and 0.31 mW cm−2, respectively. The prototype is also
testedwith human bodymotion detection as a sensor. It is embeddedwith thewearer’s clothes to distinguish the
types of gesture by the difference of generated electric signals. He et al [251] (figure 7(f)) reported another
example of textile-based hybrid triboelectric—piezoelectric generator. The demonstrated prototype is based on
an intrinsicflexible and stretchable functional compositematerial, which involves two triboelectrification
processed and one piezoelectric electrification process. The two triboelectrification processesmainly exist in
contact-separate betweenwarps andwefts, and between triboelectric layers of the prototype and external
materials, respectively. By these three linked energy harvesting processes, the humanmovement can be
efficiently harvested. An optimized prototype can produce an electrical output ofmaximumopen circuit voltage
and short circuit current of 600 V and 17 μA, respectively, andmaximumpower density of 1.11Wm−2 at a load
resistance of 20MΩ. Besides, Pu et al [252] (figure 7(g)) reported a hybrid textile-based generator by integrating a
fabric TENGwithfiber-shaped dye-sensitized solar cells (FDSSCs). This hybrid generator can be suitable for
indoor and outdoor applications. Actually, FDSSCs showmany advantages for self-powering of wearable
electronics. They areflexible, lightweight, with have high output power and low fabrication cost. They have high
3D light-harvesting capability, and can also be threaded into fabric and give the same performance as flat solar
cells [11]. As shown infigure 7(g), the TENG is fabricated from two fabrics parts; the sleeve and underneath the
arm (moving fabric and stator fabric, respectively). They act as two pairs of sliding-mode TENGs. They harvest
the swing energy of the armduringwalking and running. The stator fabric underarmhas twometal electrodes
with interdigitated configuration, while themoving fabric consists of series of parallel grating segments, of which
the number, size, and spacing are identical to that one electrode under the arm. The output power of the TENGs
is optimized by reducing the segment size, achieving a peak power density of 3.2 Wm−2 at a sliding speed of
0.75 m s−1. For FDSSC, it is designed in theway that it can be sewed into the cloth as schemed by the lower part
offigure 5(g). It is composed of a Ti wire coated by amesoporous TiO2 layer, which is wrapped by a twisted Pt
wire serving as the counter electrode. FDSSC shows an average power conversion efficiency of 6%with an
average short circuit current density of 10.6 mA cm−2 and an average open circuit voltage of 0.6 V. The FDSSC
pack and rectified TENG fabric is connected in parallel, and the output current is about the sumof both. A self-
charging system is presented by charging a lithium-ion batterywith the hybrid—textile generator.

Human body heat is another source of energy that can be harvested and used for the self-powering of
wearable electronics. It can be harvested using thermoelectric generators (TEGs). However,most of the existing
TEGs are too rigid and bulky to be integratedwith portable devices and keep some degree of comfort to the
human body. The remarkable effort has been devoted to developing flexible TEGs [240–243]. Textile–based
generators can provide a significant degree of stretchability and comfort to the human body.However, when it
comes to textile-based TEGs [253, 254], it is hard tomaintain a high degree of stretchability without sacrificing
the thermoelectric performance. One of the effective trails tomeet thewearable TEG criteria [255–257] in the
textile form is that proposed by Sun et al [239] (figure 7(h)). They demonstrated a thermoelectricmodule
produced from thermoelectric fabricmade out of thermoelectric fibers. Doped carbon nanotubes alternately
wrappedwith acrylicfibers arewoven intoπ-type thermoelectricmodules. Thus, the obtained interlocked
thermoelectricmodules can provide an adequate degree of elasticity, and consequently the stretchable 3D
thermoelectric generators can give sufficient alignment with the heatflowdirection. The demonstrated
prototype shows a peak output power density of 70 mWm−2 for a temperature difference of 44 K, and an
excellent stretchability (of about 80% strain)without output degradation.
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4. Toward self-sustainable IoT and near zero-powered event-driven IoT

With the rapid development of wireless sensor networks and body sensor networks for smart home and
healthcare applications, thematched power system for such randomly andmassively distributed sensing nodes
is in need [4, 258, 259]. Self-powered sensors and portable power supplies have emerged as promising candidates
to solve the upcoming energy crisis [208, 210, 221, 260, 261]. To push forward the revolution of wearable
electronics especially under the smart home and healthcare framework, there are plenty of studies published to
provide various approaches for the future realization of self-sustainable IoT.Wen et al proposed a battery-free
wireless sensor network based on a novel direct sensory transmissionmechanism as indicated infigure 8(a)
[262]. A textile-based TENGpressure sensor is fabricated, which is connected to a coil through amechanical
switch. Upon closing the switch, the charges are released immediately, forming an oscillating signal in the
closed-loopRLC circuit, which can be inductively coupled to an external coil wirelessly. In this way, the short-
rangewireless transmission of the triboelectric output can be achieved. Besides, unlike previousworks where the
signal amplitude is used as the sensing parameter, the sensory information is contained in the frequency
spectrumof the transmission signal, which can largely reduce the environmental interferences, such as
humidity. Figure 8(b) presents anothermethod for the battery-less wireless signal transmission, i.e., near-field

Figure 8. Self-sustainable IoT: (a)Abattery-free wireless sensor network based on textile-based TENGsReprinted from [262]
Copyright (2020), with permission fromElsevier; (b)A self-poweredwearable eyemotion sensing system employing the near-field
electrostatic induction. Reprinted from [211]Copyright (2020), with permission fromElsevier; (c)A self-powered control interfaces
with hybrid triboelectric and photovoltaics energy harvesters Reprinted from [263]Copyright (2020), with permission fromElsevier;
(d)A self-poweredwearable pressure sensing systemwith aflexible thermoelectric generator and a pressure sensor Reprinted from
[229]Copyright (2020), with permission fromElsevier; (e)A self-sustainable wearable healthcaremonitoring systemwith textile-
based TENGs. Reproduced from [264]CCBY4.0;Near zero-powered IoT: (f)Azero-power infrared digitizer based on infrared
event-driven photoswitch [265]Reprinted by permission from SpringerNature Customer ServiceCentreGmbH:NatureNanotech
12, 969–973 (2017). (g)Anultra-compact antenna based onmagnetoelectric nanoplate resonator. Reprinted from [266]CCBY4.0.
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electrostatic induction [211]. Theworkingmechanism of the non-attachable electrode-dielectric triboelectric
sensor is elucidated infigure 8(b), where the electrostatic charges are generated on the dielectric surface and
coupled by the nearby electrode for the alternating current generation. Since it is based on the near-field
electrostatic induction effect, the effective transmission distance is quite short. By applying this sensing
technique, anOrbicularis Oculimusclemotion sensor is developed based on the glass platform tomonitor
voluntary and involuntary eye blinks, where the sensor is attached to one side of the eye and the charge collection
electrode and portable signal transmission systemfixed on the glasses. Thewhole system can function as a
wearableHMI for various control applications and even for driving fatiguemonitoring. To realize a longer
transmission distance for smart home applications, an energy sourcewith a larger power is in need.Qiu et al
reported a self-powered control interface combining a photovoltaic cell and a sliding operation TENG, as shown
infigure 8(c) [263]. This device can harvest solar energy aswell asmechanical energy to be stored for signal
readout andwireless transmission. The control disk interface can generate 3-bit binary-reflectedGray-code by
sliding on the control disk interface, which is employed for smart home control (e.g., remote appliance control)
and password authentication access control. This integration architecture that combines energy harvesters and
sensors/wireless transmissionmodules has become a promising approach for the realization of self-sustainable
IoTnodes for various applications. Figure 8(d) presents a self-poweredwearable pressure sensing systemby
integrating a conductive elastomer-based pressure sensor with aflexible thinfilm thermoelectric generator
(TEG) that converts body heat into electricity [229]. Theflexible TEGprovides a reliable and renewable power
supply for the pressure sensing system. This self-powered pressure sensing system achieved a high sensitivity of
17.1%/kPa, which can be used for real-timemonitoring of diversified physiological signals, e.g., wrist pulse.
Besides body heat, the biomechanical energy involving ubiquitous bodymotions is also an abundant and
renewable energy source that can be utilized for future self-sustainable IoT. As shown infigure 8(e), He et al
proposed a narrow-gap triboelectric textile that can harvest energy from various bodymotions, which is soft,
thin, and can be seamlessly integrated with regular garments [264]. To improve the output and the charging
speed, amechanical switch is introduced to produce instantaneous discharging. By integrating the triboelectric
textile,mechanical switchwith a Bluetooth lower powermodule, a self-sustainable temperature and humidity
sensing system is developed, as shown infigure 8(e).Within 80 times of stepping, the charged voltage is sufficient
enough for the powering of the Bluetoothmodule, whichwill transmit the current temperature and humidity
level to the paired smartphone. It can be anticipated thatmultifunctional self-sustainable sensing systems could
be feasible when integrating low-powermodules withmore functionalities.

In addition to self-sustainable sensing nodes, the use of event-driven extremely low-power sensing nodes
offers another effective way to solve the energy crisis and greatly extend the lifetime of thewireless sensing nodes
[267, 268]. The event-based sensing nodes achieve extremely low power consumption by staying in a dormant
state formost of the time and only be activatedwhen an event-related signal is detected. For event-related
signals, they could be themeasured objects’ value changes, such as acceleration, light intensity, and temperature,
etc [269–271]. Qian, Z et al designed and fabricated a plasmonically enhancedmicro photoswitch as shown in
figure 8(f), whichwill undergo off-to-on state transition onlywhen specific spectral band infrared radiates on its
surface [265]. The photoswitch can be acted as a near zero-power infrared digitizer integrating sensing, signal
processing, and comparisonwith this property in place. Except for the event-driven signals of themeasured
object’s value changes, the sensing nodes can also be activated by artificially sending RFwakeup signals. To
implement this functionality, ultralow-powerwakeup receiver front ends are required to integrate with sensing
nodes to receive RFwake-up signals [272, 273]. As one of the core components in thewakeup receiver front
ends, the performance of RF antennas is of vital importance. To solve theminiaturization problemof the RF
antennas, Nan, T et al developed a nano-sized ultra-compact antenna based on amagnetoelectric nanoplate
resonator [266], as depicted infigure 8(g). The antenna is fabricated on ferromagnetic/piezoelectric
heterostructure and utilizes bothmagnetoelectric and piezoelectric effects to receive and transmit
electromagnetic waves.

5. Future research directions inAIoT based smart home

5.1. Current demonstration ofAIoT in the smart home application including gaming,HMI, and healthcare
Recently,machine learning technologies as sub-filed studies of AI powermany aspects ofmodern society, which
is increasingly presenting in various consumer products such as cameras and smartphones [274–277].
Therefore, the cutting-edge technology ofmachine learningwith rapid development enables themicro/nano
sensors to form awhole intelligent system related to the process of data acquisition, processing/analysis, and
transmission [278–280]. By combing the appropriate learning algorithmswith specific sensing systems,more
comprehensive information can be extracted to better control theMEMS system [281, 282]. Significant progress
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has beenwitnessed in tactile sensors forHMIs, related embodiments including smart keyboards [283–285],
voice recognition systems [286–288], robotics control [289–291], and smart home control systems [212, 292].

Wearable glove-basedHMIs possess the unique advantages in high precision andmultiple degrees of
freedom (DOFs) control, whichwould be an important complementary solution to vision and voice recognition
inmicro/nano systems. For instance, a newmeasuring system for a novel electronic skin integratedwith deep
neural network analytics captures dynamicmotions from a distance without creating a sensor network
(figure 9(a)) [293]. A long short-termmemory (LSTM)networkwas designed to utilize temporal sensor patterns
to correctly determine the handmotion. Thus the device can detectminute deformations from the unique laser-
induced crack structures. A single skin sensor decodes the complexmotion offivefingers in real-time, and the
rapid situation learning (RSL) ensures stable operation regardless of its position on thewrist. For device

Figure 9.The future ofmicro/nano Systems based onAIoT. (a)Electronic skin integratedwith a deep neural network that captures
dynamicmotions. Reproduced from [293]CCBY4.0; (B) Scalable tactile glovewithCNNanalytics [289]Reprinted by permission
from SpringerNature Customer ServiceCentreGmbH:Nature 569, 698–702 (2019); (c)Haptic-feedback smart glovewith
triboelectric and piezoelectric sensors. Reprintedwith permission fromAAAS [233]; (d)A facile carbon nanotubes/thermoplastic
elastomer (CNTs/TPE) coating gloves. Reproduced from [294]CCBY4.0; (e)Bioinspired data fusion architecture by integrating
visual datawith somatosensory data from skin-like stretchable strain sensors Reprinted by permission from SpringerNature
Customer Service CentreGmbH:Nat Electron 3, 563–570 (2020)[295]. (f)HSVMalgorithm for radar and pressure sensor.
Reproduced from [296]CCBY4.0; (g) Imperceptible, flexible epidermal sEMG tattoo-like patch for patients with loss of voice.
Reproduced from [286]CCBY4.0; (h) Flexible piezoelectric acoustic sensor based on theGMMalgorithm. Reprinted from [297]
Copyright (2018), with permission fromElsevier.
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expansion on other body parts, a concrete ergonomic analysis will be needed to select an optimum location to
measure epicentralmotions.

Moreover, figure 9(b) shows a scalable tactile glove (STAG) [289]. By analogizing the fundamental
perception primitives between the visual and tactile domains, the STAG is assembledwith a 584 piezoresistive
sensor array distributed on the palm for interacting with 26 different objects. After identifying the tactilemap of
the 32× 32 arrays in the sensor coordinates, the STAGuses a ResNet-18-based architecture [298] and reaches
themaximal classification accuracy in seven random input frames. The abovemethods reveal that amuch larger
volume of information is accessible for studying interaction processes at a deeper level with the improvement of
micro/nano sensors and the assistance of AI techniques, thereby aiding the future design and development of
the next-generationwearable electronics and systems. In addition, a haptic-feedback smart glovewith
triboelectric and piezoelectric sensors using a convolution neural network (CNN) expands the capabilities of
realizing advancedHMI, as shown infigure 9(c) [233]. To evaluate themapping of the static pressure during the
grabbing activities of different objects, the proposed glove is focusing on the investigation of the dynamic
changes alongwith the complete cycle of grabbingwaveforms from triboelectric sensors. In this regard, under a
trainedCNNmodel with three convolution layers, the realization of object recognition can achieve an accuracy
of 96%.Moreover,Wen et al designed a facile carbon nanotubes/thermoplastic elastomer (CNTs/TPE) coating
approach is investigated in detail to achieve superhydrophobicity of the triboelectric textile for performance
improvement, as shown infigure 9(d) [294]. By leveragingmachine learning analytics, aminimalist designwith
eachfinger only distributed one triboelectric sensor can perform recognition of complex and similar gestures.
Meanwhile, benefited by the superhydrophobic characteristic of thematerials, the negative effect of sweat is
minimized, leading to an improved recognition accuracy (96.7%) compared to that without
superhydrophobicity (92.1%).

Recently, another important technology for smart glove systems is combining diversified sensors to form an
intelligent system and improve recognition accuracy. As shown in figure 9(e), a bioinspired data fusion
architecture was developed to performhuman gesture recognition by integrating visual data with
somatosensory data from skin-like stretchable strain sensors [295]. The strain sensors weremade from single-
walled carbon nanotubes and the learning architecture used a convolutional neural network for visual
processing and then implemented a sparse neural network for sensor data fusion and recognition at the feature
level. This approach of data fusion achieves a high recognition accuracy of 100%andmaintains recognition
accuracy in non-ideal conditions of the image sensor, e.g., noisy and under-or over-exposed. The demonstration
of robot navigation via hand gestures shows the stability of this data fusion approachwith an error of 1.7%under
normal illumination and 3.3% in the dark. Another novel approach of data fusing frommultiple sensors using a
hierarchical support vectormachine (HSVM) algorithm is presented in figure 9(f) [296]. The validation of this
method is experimentally carried out using an intelligent learning system that combines a radar for detecting the
movements of the hands andfingers with aflexible pressure sensor array formeasuring pressure distribution
around thewrist. TheHSVMarchitecture is developed to effectively fuse different data types in terms of
sampling rate, data format, and gesture information from the pressure sensors and radar. The results of the
collected datasets from15 different participants show that the radar on its own provides amean classification
accuracy of 76.7%,whereas the pressure sensors provide an accuracy of 69.0%. At the same time, the proposed
HSVMalgorithmby integrating the output of pressure sensors with radar improves the classification accuracy
to 92.5%.

Speaker recognition has received the spotlight as an important research direction ofmicro/nano systems,
such as personalized voice-controlled assistants, smart home appliances, biometric authentication based onAI
and IoT framework.Owing to the recent advances in softmaterials and fabrication, the emerging field ofmicro/
nano systems offers a technological solution to realize voice recognition systems. As shown infigure 9(g), the
design of an imperceptible, flexible epidermal sEMG tattoo-like patch is used as a newHMI for patients with loss
of voice [286].When a tester speaks silently, the patch shows reliable performance in recording the sEMG signals
from threemuscle channels with high accuracy by using thewavelet decomposition and pattern reorganization.
With the aid of the linear discriminant analysis (LDA) algorithm, the average accuracy of action instructions can
reach up to 89.04%, and the average accuracy of emotion instructions is 92.33%. Besides, another speaker
recognition system is reported using aflexible piezoelectric acoustic sensor (f-PAS) based on theGaussian
MixtureModel (GMM) algorithm as indicated infigure 9(h) [297], which get an excellent speaker recognition
accuracy of 97.5%. The intrinsic voice information is obtained from the highly sensitivemulti-channel
membrane, which is beneficial for identifying speakers. Finally, the 75% reduction of the error rate compared to
the commercializedMEMS sensors indicates that the f-PAS platform can be further applied to voice-based
biometric authentication and highly accurate speech recognition.
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5.2. New trend of healthcare—Bioelectronicmedicines (or electroceuticals)
Since the creation of transistors, there have been different kinds of devices developed to build up a
communication channel between humans and the digital world [299].With the rapid progress onwearable
electronics, diversifiedflexible physical sensors such as tactile sensors or strain sensors have been developed,
which communicate with the digital system effectively by reflecting user intent from the usermovement
[300, 301].Moving forward, a direct communication channel bypassing these devices becomes the ultimate goal
of such communication, which creates a bridge between the user intent (i.e., neural signals) and the digital world
[302–304]. This kind of devices that directly interact with biological tissue is termed a neural interface, which not
only can record neural signals to detect the human intent but also could deliver electrical stimulation to the
biological tissues formodulating biological functions [305]. In this regard, the neural interfaces have successfully
built up a bidirectional communication channel between a subject’s nervous system and a synthetic device.

The physical interaction between the neural interface and biological tissue could be sophisticated, which is
an essential considerationwhen choosing the activematerials of the neural interfaces. Biocompatibility and
biostability are also important considerations for the implanted interfaces. Koo et al reported a peripheral nerve
stimulation platformwith bioabsorbable activematerials, includingmagnesium and silicon oxide, which has
opened up a new possibility to future transient electronics [306]. This implantable wireless stimulator consists of
a radio frequency power harvester and an electrical interface to the peripheral nerve. The harvester combines a
bilayer and dual-coil loop antenna (Mg)with a PLGAdielectric interlayer, a radio frequency diode, and a
parallel-plate capacitor, as shown infigure 10(a). Thewhole system is constructedwithmaterials that can be
resorbed in a controlledmanner. Figure 10 (a) shows photos of the devices at various timing after immersion in
PBS at 37 °C. It can be observed that the constituentmaterials dissolvedwithin 3weeks, and all the residues
completely disappeared on day 25. Softmicroelectronic devices with similarmechanical properties as biological
tissues will provide an intimate and stable electrical couplingwith neural tissues for efficient recording and
stimulation. Besides, it is also suggested by recent studies that reducedmechanicalmismatch between the tissue
and electronics would significantly reduce adverse immune response for chronic implantation [307]. To address
this issue, Liu et al developed a soft and elastic hydrogel-basedmicroelectronic interface for localized
neuromodulation [308]. This soft neural interface consists of amicropatterned electrically conductive hydrogel
(MECH) sandwiched by two PFPE-DMAencapsulation layers that are tuned tomatchYoung’smodulus of
nerve tissue, as shown infigure 10(b). ThisMECH shows a highly reduced interfacial impedancewith biological
tissue and a~30 times higher current injection density than that of platinum electrodes, which is demonstrated
for localized electrical stimulation of the sciatic nerve in livemice. Recently, to accommodate rapid tissue growth
and avoid repeated interventions and complications, amorphing electronic device (MorphE) is developedwith
novel growth-adaptive properties, as presented infigure 10(c) [309]. ThisMorphE consists of a viscoplastic
polymer electrode and a self-healable insulating viscoplastic polymer. This device showed zero stress at a low
strain rate of 0.05% s−1, indicating nomechanical constrain applied to the sciatic nerve at a normal growth rate.
TheMorphE causesminimal damage to the rat nerve during the 2-monthmonitoring and chronic stimulation
process, which grows 2.4-fold in diameter alongwith the fast growth of the rat. Combiningwith the self-healing
property, theMorphE paves theway to growth-adaptive pediatric electronicmedicine in the near future.

Moving forward, neural interfaces not only becomemore capable in terms of electrical andmechanical
properties but also are evolving towards implantable systems to enable long-termmonitoring or stimulation for
various applications, such as translational therapeutic solutions [317]. The power source is an essential part of
the implantable system, and conventional batteries arewidely adopted solutions for powering implantable
systems [318–320]. However, the battery suffers from a limited lifetime, a potential hazard to health, and
subsequent replacement requirements. New solutions, includingwireless powering and energy harvesting, then
have emerged to replace the battery in recent years [321, 322]. Among them, self-powered energy harvesting is
receiving tremendous research attention frommultidisciplinary fields [264, 323, 324]. Lee et al developed a self-
powered neuromodulation systemby integrating a triboelectric nanogenerator with aflexible neural clip
interface, as shown infigure 10(d) [310]. The bladder contraction formicturition can be successfully induced
with the neuromodulation systemby applymechanical force to the TENG to deliver current to the flexible clip
interface on a pelvic nerve in a rat. Unlike nerve thatμA level current is high enough to penetrate the nerve tissue,
muscle typically requires higher current for stimulation. Similarly,figure 10(e) presents a self-poweredmuscle
stimulation system combining a triboelectric nanogenerator and aflexiblemultiple-channel intramuscular
electrode [311]. A stacked-layer TENG is developed to boost up the current output, and amultiple-channel
intramuscular electrode is designed, allowingmapping of sparsely distributedmotoneurons in themuscle tissue
to further improve the stimulation efficiency. For a self-sustainable and fully implantablemedical device,
implantable energy harvesters that directly convert inner-body biomechanical energy into electricity is of crucial
importance. Figure 10(f)demonstrates an implanted symbiotic cardiac pacemaker based on an implanted
TENG [312]. The implantable TENGharvests energy from the heartbeat, which is then delivered to the
pacemaker for the regulation of cardiac physiological activity. It is demonstrated that the symbiotic pacemaker
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can correct sinus arrhythmia and avoid the deteriorating condition.With the profound investigation and
improvement of the neural interface, it can be foreseen that it would reshape healthcaremonitoring and
treatment significantly by integratingwith emerging self-powered technologies, data transmission, and artificial
intelligence.

As a new trendwith the background of aging of the population, domiciliarymedical care is emerging to
improve the quality of life, especially for the elderly and patients with chronic disease [325]. Implantable
electronicsmake a great contribution to the development of home care, which helps to understand the health
status via physiologicalmonitoring but cannot apply for amedicine according to indications. Thus, researchers
devote extensive efforts to develop easy-to-usemedical devices to fulfill the personalized requirement of

Figure 10.Healthcare new trend. (a)Abioresorbable andwireless electrical stimulator for neuroregeneration. Reprinted by
permission from SpringerNature Customer Service CentreGmbH:NatMed 24, 1830–1836 (2018) [306]; (b)A soft and elastic
hydrogel-based neural electrode for localized neuromodulation. Reprinted by permission fromSpringerNature Customer Service
CentreGmbH:Nat BiomedEng 3, 58–68 (2019) [308]; (c)Amultilayeredmorphing neural interface for neuromodulation in growing
tissues. Reprinted by permission fromSpringerNatureCustomer Service CentreGmbH:Nat Biotechnol 38, 1031–1036 (2020) [309].
(d)Mechano-neuromodulation of autonomic pelvic nerve realized by integrating a TENGwith aflexible neural clip interface.
Reprinted from [310]Copyright (2019), with permission fromElsevier; (e) Self-powered directmuscle stimulation achievedwith a
stacked TENG and a flexiblemultichannel electrode. Reprintedwith permission from [311]Copyright (2019)AmericanChemical
Society; (f)A self-powered implanted symbiotic pacemaker based on an implantable TENG.Reproduced from [312]CCBY4.0; (g)
Stretch-trigger drug delivery based on integratedmicrodepots andmicroneedles. Reprintedwith permission from [313]Copyright
(2015)AmericanChemical Society; (h)Themultifunctional sensing- therapeutic system composed of the pH sensors and drug
delivery scaffolds. JohnWiley& Sons. © 2017WILEY‐VCHVerlagGmbH&Co. KGaA,Weinheim [314]; (i) thewireless drug delivery
patch based onminiaturized needles. JohnWiley & Sons. © 2020WILEY‐VCHVerlagGmbH&Co.KGaA,Weinheim [315]; (j)The
TENG-driven iontophoretic transdermal drug delivery system. JohnWiley& Sons. © 2019WILEY‐VCHVerlag GmbH&Co.KGaA,
Weinheim [316].
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patients. Conventional oral administration is limited by the low bioavailability andmetabolism in the digestive
system.On the other hand, due to the pain associatedwith needles, common subcutaneous intravenous
injection suffers from lowpatient compliance [326]. The emerging drug delivery technology is highly desirable
formedical care at home by offering easy access and controlled administration, which keeps the patient from
frequently going to the hospital for expertise equipment and allows them to participate in their ownhealth
management. Furthermore, the on-demand drug delivery provides great significancewith the feedback
therapeutic systembuilding [327]. Among various drug delivery platforms,microneedles have been explored as
a promising candidate that has high patient compliance and avoids some of these drawbacks, such as patient
acceptability and injection safety [328].

At the early stage,mechanical force stimulus, such as compression and stretch, provides an easy and simple
way to trigger the drug release [329], inwhich the strain variation can be expediently achieved by dailymotions
of humans. Di et al reported a finger joint stretch-triggeredmicroneedle array as shown infigure 10(g) [313]. The
microgel-depot that contained drug-loaded nanocapsules was fabricated on the stretchable elastomer. By
integratedwithmicroneedle channels, the drug-release patchwas obtained and tensile stress would promote the
drug release frommicrodepots along themicroneedle. After 40 stretch cycles, the doxorubicin hydrochloride
(DOX) release amount reached 110 μg ml−1 for in vitro study. Regarding in vivo results fromdiabeticmice, the
stretch cycles can readily control the delivered insulin and hence control the blood glucose (BG) level, while the
passive group (natural release)was only effective at the beginning and gradually cannotmaintain the normal BG
level. However, pure drug delivery obviously cannotmeet the need for feedbacks that indicatewhen to start and
end the drug delivery. Tomitigate the drawback, Akbari’s group developed amultifunctional sensing-
therapeutic system for smart woundmanagement (figure 10(h)) [314]. It could be seen that therewere four
pH sensors and two drug-releasing scaffolds on thewound dressing, inwhich the colorimetric response of the
pH sensor indicated the bacterial infection of thewound site and reminded drug delivery actions. Besides, the
interface smartphonewas used for digital image capture to quantify the pH value.Moving forward, the smart-
home application puts a requirement on the portability of themedical device, so as to achieve less restriction on
human activity for the realization of portability, the capability of wireless transmission is greatly significant to
achieve such vision. Accordingly, Derakhshandeh et al proposed awirelessly controlled smart bandagewith 3D-
printedmicroneedle arrays. As shown infigure 10(i), the 3Dprinter fabricated theminiaturized needle in a
biocompatible resin, followed by dissolving the supportmaterial inNaOH solution [315]. To reduce the cost of
bandage, a reusablemodule and a disposablemicroneedle patchwere separately designed, inwhich the reusable
module housed the drug reservoirs, micropump, Bluetooth, and power source components. The applied voltage
could control themicropump and regulate theflow rate through the app on the smartphone. As expected, each
pumpoperation increased the delivered drug volume. Apart from the capability of wireless communication,
independent and sustainable operation is also of vital importance for a portable system, especially in the
condition of long-termwear.Nowadays, themost popularmobile energy supplier is the traditional battery that
is subject to limited lifetime and periodic replacement. Developed energy harvesting technology offers a facile
and cost-effective approach to achieve a self-sustainable system,which overcomes the limitation of batteries and
steps forward to amore integrated system. As provided infigure 10(j),Wu et al investigated a biomechanical
motion driven drug delivery system [316]. Awearable insole (TENG) that consists of PTFE andAl triboelectric
pairs andKapton as the spacerwas fabricated on the PET substrate. Integratedwith the hydrogel-based drug
patch, the energy converted frommechanicalmotions of humans actively promoted the iontophoretic
transdermal drug delivery. It wasworth noting that the precise relationship between the delivered dose and
generated energy needed further clarification.

5.3. Next generation ofwearable electronics—toward thewearable photonics systems
In the era of AIoT, numerous sensors and processers are interlinkedwith each other to allow the flowof
abundant information. Photonics is envisioned to be a complementary technology to electronics because it
provides information communication channels with ultra-high data transmission speed [330] and sensing
channels invulnerable to electromagnetic interferences [331]. Flexible photonics have been studied and found in
various applications in data communications, robotics, optogenetics, and tactile sensing.

Flexible waveguides have been developed as optical interconnects for data transmission [330]. Currently,
mostflexible waveguides for data links are based on polymermaterials andworking in themultimode. As shown
infigure 11(a),flexible waveguides can be fabricated on a largeflexible substrate (145 mm× 129 mm) [332]. The
cross-section of the polymerwaveguides is relatively large (H>50 μm) compared towaveguides fabricated on
the silicon-on-insulator (SOI) platform [333] (H=0.22 μm) because of the small refractive index difference
between thewaveguide core and cladding. At a bend radius of 4 mm, the flexible waveguide can transmit data at
a rate of 40 Gb s−1, demonstrating the state-of-the-art technology. Flexible waveguides have also been adopted
in robotics applications because they offer advantages, including easy to fabricate, chemically inert,
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environmental stability, high speed, as compared toflexible electrical sensors. Figure 11(b) presents an
optoelectronically innervated soft prosthetic hand based onflexible optical waveguides [334]. Thewaveguides
can be bent, twisted (figure 11(b.i)), and embedded in soft robotic fingers. Upon inflation, thewaveguides bend,
causing the transmission change in eachwaveguide. By embedding a total of six waveguides in one soft robotic
finger (figure 11(b.ii)), the robotic fingermotion can be preciselymonitored. By equipping the full robotic hand
with theflexible waveguides, object holding, grasping, hand-shading, roughness-sensing, and softness-sensing
are demonstrated (figure 11(b.iii)). Flexible waveguides have found applications in optogenetics [335, 336].
Light-guiding hydrogels basedwaveguides have been developedwith a low loss of<1 dB cm−1 and good
stretchability (>540° twist angle) as shown infigure 11(c) [335]. Optogenetic therapy targeting diabetes inmice
has been demonstrated using blue light excitation. Flexible photonics were also used in tactile sensing [337, 338].

Figure 11. (a) Flexible optical interconnects. © [2018] IEEE. Reprinted, with permission, from [332]; (b)Optical fiber-based robotic
hand. Reprintedwith permission fromAAAS [334]; (c) Implantable light-guiding hydrogel. Reprinted by permission fromSpringer
Nature Customer Service CentreGmbH:Nature Photon 7, 987–994 (2013) [335]; (d)Polymer waveguide based flexible tactile sensor
array. JohnWiley& Sons. © 2014WILEY‐VCHVerlagGmbH&Co.KGaA,Weinheim [337]; (e) Flexible singlemodewaveguide.
Reproduced from [339]CCBY4.0; (f) Flexible waveguide photodetector. Reproduced from [340]CCBY4.0; (g) Flexible nanorod
laser. Reprintedwith permission from [341]Copyright (2017)AmericanChemical Society; (h)Wearable triboelectric-aluminum
nitride photonics nano-energy-nano-system. Reproduced from [260]CCBY4.0.
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As shown infigure 11(d), a polymerwaveguide based flexible tactile sensor arraywas demonstrated based on the
total internal reflectionmechanism [337]. Upon touching, the top free-standing layer approaches themiddle
waveguide core and disturbs the total internal reflection. The transmitted light indicates the decree of touching.
The demonstrated sensor array consists of 27 pixels working independently, showing a fast response, high
bendability, and high reproducibility.

Although polymerwaveguides have the advantages of broadmaterial availability, easy-fabrication, and good
intrinsicflexibility,many polymermaterials are only transparent in the visible light, and realizing single-mode
polymerwaveguides is also a challenge [342, 343]. Thus, research effort has also been devoted to developing
single-mode flexible waveguidesworking in the 1310 nmand 1550 nmnear-infraredwavelength region
[344, 345]. In 2018,Hu’s group demonstrated thefirst single-mode flexible waveguide using chalcogenide
(figure 11(e)) [339]. The rigid chalcogenidewaveguides are embedded in large core SU-8waveguides used to
absorb themechanical strain. The reported device still presents high performance after 3000 stretching cycles at
41%nominal tensile strain. In the same year, aflexible chalcogenide waveguide-integrated indiumphosphide
(InP) photodetector was reported by the same group (figure 11(f)) [340]. After 1000 bending cycles at a 0.8 mm
bending radius, thewaveguide-integrated photodetector can still operate with 0.3 AW−1 responsivity,
0.02 pW·Hz1/2 noise equivalent power, and 1.4 GHz speed. Flexible lasers have also been investigated], as shown
infigure 11(g), a nanowire laser directly integrated into flexible waveguides was demonstrated in 2017 [341].
Both the end-fire coupling scheme and the evanescent coupling schemewere demonstrated successfully with an
optimal coupling loss of 17 dB and peak power of 11.8 μWmeasured from thewaveguide output. Besides
waveguides, photodetectors, and lasers, the other critical component of integrated photonics ismodulators.
Recently in 2020, Lee’s group reported thewearable triboelectric-aluminumnitride (AlN) photonics nano-
energy-nano-system (NENS) [231, 260]. The triboelectric nanogenerator (TENG) serves as a self-generated
power source for nanophotonicsmodulation, while the AlNnanophotonics provides a robust and real-time
sensing channel for TENG sensors in the otherway round (figure 11(h.i)). Electronically, the TENG is a high
impedance power sourcewith a high capacitance (figure 11(h.ii)). TheAlNmodulator is a pure capacitor. The
high voltage output (>100 V) from the TENGcan be supplied to the AlNmodulator with negligible degradation
to alter its optical transmission via the Pockels effect. Under the optimizedworking condition, self-sustainable
photonicmodulation is achievedwith clear ‘1’s and ‘0’s.Meanwhile, the optical transmission also serves as a
readout for the tactile sensing information of TENG sensors. OpticalMorse code transmission and human arm
pattingmonitoring are demonstratedwith continuous sensing information in real-time (figure 11(h.iii)).

6. Conclusion

With the development of IoT systems, self-sustainable and battery-free sensing systems become essential to
realize long term functionality. Energy harvesting technologies have emerged as an alternative and promising
choice of wireless sensors’ power source, leading to self-sustainable electronics/systems.MEMS-based devices
show a significant contribution to the development of self-sustainable sensing systems, due to their low power
consumption. They can be integratedwithMEMSor centimeter-scale energy harvesters to form self-sustainable
sensing systems.However, when it comes to smart home and humanbody applications,moreflexible and
planar devices are needed to providemore comfort to the human body during daily activities. Thus, a new
generation of self-powered sensors and energy harvesters using textilematerials based on PENGs andTENGs
mechanisms has been presented. These devices are lightweight, wearable, and highlyflexible. Besides, textile is
themost associatedmaterial with the human body and is very available inside the house. Allmake textile-based
devices very suitable for smart home applications. On this basis, significant research activities have been done for
further development of AIoT based smart home, for example, the development ofHMI, voice recognition, etc,
for smart home control.Moreover, the next generation of healthcare systemswhere themulti-functional
physical and chemical sensing is provided alongwith the prompt treatment approach through the advanced
neural interfaces,microneedles, skin patches, etc. Beyondwearable electronics, wearable photonics is a
promising platform for the next generation of wearable technology because it can provide high data
transmission speed and EMI-free sensing paths.

The development of wearable, self-sustainable, and intelligent sensing systems accelerates the realization of a
smart home.However, some technical gaps still lay in building a real smart home. First of all, the healthcare
monitoring system’s function needs to be diversified and not limited to a single physical or chemical sensing.
Ideally,medical treatment components such asmicroneedles should be integrated at the same time. Thus, with
the help ofmachine learning algorithms, themonitoring data can be analyzed to timely guide corresponding
medical treatment (drug injection viamicroneedles) for patients with chronic diseases (like high blood pressure
and diabetes). Secondly, all sensing systems in a smart home, including house environmentalmonitoring and
humanhealthcaremonitoring systems, should be consolidated to realize information interaction to enhance the
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smart home’s role. For example, by comparing themonitoring information of human body temperature and
sweat sensors with the ambient temperature and humidity sensors, it can be inferredwhether environmental
factors or diseases cause the abnormal body temperature and sweating. Last but not least, low-cost and
integrated high-speed networks for big data transmission should be built in the sensing systems to achieve
interlink between numerous sensors and processers, and tomeet the 5 G era’s development needs. The use of
photonic devices provides possible solutions to solve the above issue. Nevertheless, significant improvement still
needs to be done to deal with the current photonic devices’high energy consumption, high fabrication cost, and
difficulty integrationwith other components in the sensing system to promote their practical progress.
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