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Abstract

Self-sustainable sensing systems composed of micro/nano sensors and nano-energy harvesters
contribute significantly to developing the internet of things (IoT) systems. As one of the most
promising IoT applications, smart home relies on implementing wireless sensor networks with
miniaturized and multi-functional sensors, and distributed, reliable, and sustainable power sources,
namely energy harvesters with a variety of conversion mechanisms. To extend the capabilities of IoT
in the smart home, a technology fusion of IoT and artificial intelligence (AI), called the artificial
intelligence of things (AIoT), enables the detection, analysis, and decision-making functions with the
aids of machine learning assisted algorithms to form a smart home based intelligent system. In this
review, we introduce the conventional rigid microelectromechanical system (MEMS) based micro/
nano sensors and energy harvesters, followed by presenting the advances in the wearable counterparts
for better human interactions. We then discuss the viable integration approaches for micro/nano
sensors and energy harvesters to form self-sustainable IoT systems. Whereafter, we emphasize the
recent development of AloT based systems and the corresponding applications enabled by the
machine learning algorithms. Smart home based healthcare technology enabled by the integrated
multi-functional sensing platform and bioelectronic medicine is also presented as an important future
direction, as well as wearable photonics sensing system as a complement to the wearable electronics
sensing system.

1. Introduction

Recent advances in semiconductor technologies have enabled cost-effective approaches for wireless network
connectivity between various sensors and processors, which lead to visible progress in the Internet of Things
(I0T).IoT, which consists of a large number of devices connected to the internet, is considered a promising
technology for the consumer electronics market. In particular, the smart home that provides an intelligent living
environment has been touted as a market segment with a high potential to deploy IoT. The smart home’s
eventual realization requires integrating countless sensors with diversified functionalities distributed around the
house to form a home network capable of monitoring the house environment and being managed via the
internet.

In general, sensors that contribute to the smart home application can be divided into three categories. One is
employed for the smart control of household appliances (e.g., voice control), another is used for environmental
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Figure 1. [llustration of smart home systems utilizing micro/nano sensors and energy harvesters.

monitoring in houses (e.g., temperature, humidity, and gas leakage detection), and the rest is adopted for human
activity tracking (e.g., healthcare monitoring) as shown in figure 1. Micro/nano sensors are miniature devices
that can convert changes in non-electrical signals such as temperature, pressure, humidity, motion, acoustic to
changes in electrical signals. They have the advantages of small size and mass, high sensitivity, low power
consumption, and low cost [1]. Therefore, micro/nano sensors have received tremendous research attention
and have shown significant development in the past two decades [2, 3]. In particular, the small size of micro/
nano sensors enables them to contribute to wireless sensor networks and IoT development by consuming only a
tiny space. And the use of batteries can fulfill the power demand of these micro/nano sensors in terms of their
low power consuption. However, when the wireless sensor network possesses a massive number of distributed
sensor, a considerable number of batteries will be needed to power these sensors [4]. Moreover, the batteries
have alimited lifetime and need continuous monitoring, replacing, and recycling, which would be an arduous
task and uneconomical.

Thanks to micro/nano sensors’ low power consumption, which can be down to micro-watts [5, 6], energy
harvesters can potentially charge micro/nano sensors without the need for batteries. The energy harvesting
approach as a good solution to the power problem of the IoT [7, 8] has been widely investigated in recent years to
replace batteries to push forward the realization of self-sustainable IoTs and systems. The required power for
micro/nano sensors can be obtained by harvesting one or more of the surrounding environmental energy
sources. The mechanism of the energy harvesters varies regarding the application scenarios and the available
energy sources, such as mechanical energy [9, 10], solar energy [11, 12], thermal energy[13, 14], etc. Since
mechanical motions such as noise, surfaces and floor vibrations, human motions, etc, are the most available
energy sources in the house. Motion energy harvesting systems have been considered as the most suitable power
source for home applications, which can be ranged in size from micro-scale (MEMS) [15—17] to centimeter-
scale [18] (figure 1). Motion energy harvesting systems rely on three main transduction mechanisms, which are
electromagnetic [19], piezoelectric [20], and electrostatic [21]. One recent advanced technology of electrostatic
transduction is the triboelectric nanogenerator (TENG). When two dissimilar materials come into contact in
TENG, opposite triboelectric charges are generated on the surfaces. Those charges can generate an electrical
potential when a mechanical force separates the surfaces. TENGs can be implemented with different working
modes, such as contact-separation mode [22], sliding mode [23, 24], single-electrode mode [25] and free-
standing mode [26]. Since the physical contact between objects and the human body in the surrounding area is
abundant during daily life, TENG can be an effective energy harvesting technology for smart home sensors.
Nevertheless, the selection of the energy harvester shape and size, as well as the transduction mechanism
depends on the application, the natural of the input motion, and the harvesting location (figure 1).
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When it comes to human body energy harvesting or human body motion sensing, intrinsically flexible
energy harvesters and sensors are preferable for better wearable comfortability. Therefore, new energy
harvesting devices and self-powered sensors based on textiles have been invented [27-29] in the form of
piezoelectric nanogenerators (PENGs), TENGs, and hybrid of both. Textile-based devices are advantageous for
smart home applications because they are lightweight, very flexible, and wearable, providing a sufficient degree
of comfortability to the body during daily activities.

Moving forward, the IoT and smart home are evolving towards a more intelligent and integrated system with
the on-going multidisciplinary research on sensors, energy harvesters, wireless transmission technologies,
artificial intelligence (AI), etc. With the rapid development of Al technology, the fusion of Al and IoT, i.e.,
Artificial intellegance of things (AIoT), becomes feasible to improve human-machine interactions, enhance data
analytics, refine decision-making processes, and perform intelligent tasks. Compared with IoT systems, AloT
systems can analyze the collected data and make decisions without human intervention once the system
(including the signal acquisition module, data transmission module, and data analysis module) is built up. The
AloT would also shape the future personal healthcare technologies by providing comprehensive physical and
chemical monitoring through the body sensor network, advanced data analysis via Al, and eventually prompt
treatment through the surging neural interfaces, skin patches, microneedles, etc.

In this paper, we review the progress in micro/nano sensors and energy harvesting aiming at future AloT-
based smart home applications. Firstly, the conventional building blocks (MEMS sensors and MEMS energy
harvesting) are presented, followed by discussing the new building blocks (flexible and wearable energy
harvesting systems, self-powered sensors, and Al). Specifically, the new building blocks consist of self-powered
sensors and energy harvesting based on PENGs and TENGs in the form of textiles are then described in detail.
After that, the integration of sensors with energy systems for self-sustainable IoT systems aiming at smart home
applications is demonstrated by reviewing recent self-sustainable IoT systems. Finally, future research directions
in AloT based smart home such as smart home control, healthcare technology, and wearable photonics asa
complementary technology for wearable electronics are discussed.

2. Conventional building blocks of micro/nano sensors and energy harvesting systems

Micro-electromechanical systems (MEMS) usually refers to a collection of micron-level feature sized
mechanical structures, sensors, actuators, and electronics [30]. The early version of MEMS devices appeared in
the 1950s and developed from integrated circuit technology [31]. In the following decades, the research on
MEMS devices has grown rapidly as the bulk silicon micromachining technology and surface micromachining
technology gradually mature [32—34]. Researchers in succession reported many milestones in MEMS
application research during this period. For instance, Nathanson et al developed a resonant gate transistor based
onssilicon technology in 1967 [35]; The Hewlett-Packard company invented a MEMS thermal inkjet printer
head in 1979 [36]; Spotts et al fabricated a disposable blood pressure sensor based on a piezoresistive-type silicon
strain gauge in 1982 [37]; Later in 1993, Younse reported a new projection display utilized a chip-based
micromirror array [38]; And in the 1990s, MEMS accelerometers were commercially used in the automotive
industry [39—41]. Until now, various kinds of MEMS devices have developed, like ultrasonic transducers
[42—-47], RF devices [48—52], biochemical sensors [53], and so on. All these MEMS devices can be mainly divided
into electrostatic MEMS [54-56], piezoelectric MEMS [57-63], piezoresistive MEMS [64—66], electromagnetic
MEMS [67-70], optical MEMS [71-75], and thermal MEMS [76—78] according to the driving and sensing
mechanism.

2.1. MEMS based sensors

Taking the advantages of small size, high sensitivity, low power consumption, and easy to integrate [79-81],
MEMS sensors are now widely used in people’s daily lives, as well as in smart homes. Firstly, the use of MEMS
sensors can cost-effectively detect indoor environmental conditions, such as temperature [82, 83], humidity
[84—87], air pressure [88], light [89-91], PM2.5 [92], and various gases [93—95] that may affect the human health.
As shown in figure 2(a), Le et al reported surface acoustic wave (SAW) humidity sensors based on uniform
graphene oxide (GO) film [96]. The humidity sensor possesses high sensitivity, high stability and repeatability,
fast response and recovery speed, enough to meet the application needs in smart homes. Besides, MEMS devices
also play important roles in the convenience and safety aspects of smart homes. MEMS microphones can be used
to recognize human voices, realize communication between human and smart electronic devices [97, 98], and
also can act as a hearing aid for hearing impaired people [99]. For the safety aspect of smart homes, Lu et al
developed an ultrasonic fingerprint sensor based on complementary metal-oxide-semiconductor (CMOS)
compatible piezoelectric micromachined ultrasonic transducer as shown in figure 2(b) [100]. This fingerprint
sensor can be integrated into smart electronic devices and doors as an unlock switch.
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Figure 2. (a) Graphene oxide-based surface acoustic wave (SAW) humidity sensor. Reproduced from [96], CC BY 4.0; (b) Piezoelectric
micromachined ultrasonic transducer (PMUT) based ultrasonic fingerprint sensor. Reprinted from [100] with the permission of AIP
Publishing; (c) Wearable human body motion capture system based on MEMS inertial measurement unit (IMU). © [2011] [EEE.
Reprinted, with permission, from [101]; (d) Silicon nanowires (SiNWs) embedded annular diaphragm piezoresistive pressure sensor.
© [2014] IEEE. Reprinted, with permission, from [102]; (e) Flexible acoustic device integrated with microfluidic and biosensing
functions. Reproduced from [103] CC BY 3.0; (f) Microneedle array for drug delivery. © [2014] IEEE. Reprinted, with permission,
from [104]; (g) Accelerometer contact microphones for longitudinal monitoring of mechano-acoustic cardiopulmonary signals.
Reproduced from [105] CC BY 4.0; (h) Human prostate ultrasound and photoacoustic imaging using capacitive micromachined
ultrasonic transducer (CMUT) array and optical components. Reprinted with permission from AAAS [106].

With constant attention to healthcare technology and the rise of the aging population in many countries,
MEMS devices have become the indispensable technology in healthcare applications including the monitoring
of daily activities of the elderly, e.g., fall detection at home. MEMS inertial sensors mainly include accelerometers
[107-112] and gyroscopes [113] and are the typical MEMS devices used in healthcare. The MEMS inertial
sensors are usually integrated with the detection circuit as an inertial measurement unit (IMU), as presented in
figure 2(c) [101], which can be further integrated into electronic devices such as mobile phones and watches, or
directly be worn on the human body for physical activity measurements [114], fall detection [115], heart rate and
breath monitoring [116] and sleep apnea detection [117]. As in the case of MEMS inertial sensors in human
motion monitoring, MEMS pressure sensors also provide an effective way for human blood pressure
monitoring [118-120], and the performance of MEMS pressure sensors continues to improve with the
deepening of their applications. Zhang et al embedded silicon nanowires (SiINWs) into the annular grooves of a
circular diaphragm to achieve a piezoresistive pressure sensor with remarkable improvement in pressure
sensitivity [102], as elucidated in figure 2(d). The high-profile point-of-care-testing (POCT) technology offers a
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quick approach to diagnose diseases and monitor the health status of the patients at home [121-123], and
microfluidic devices are an indispensable part of the POCT technology [124—126]. Recently, a single flexible
acoustic device integrated with microfluidic and biosensing functions was reported by Tao et al [103]. Hybrid
wave modes can be generated by the device, as indicated in figure 2(e), where lamb wave mode is used for fluidic
actuation, and biosensing mainly depends on thickness-shear wave mode. Based on the results of POCT, the
corresponding drug delivery can be carried out through microneedles to achieve personalized therapies to
patients [127-131]. Figure 2(f) shows a microneedle array integrated with carbon nanotube nano filters used for
transdermal drug delivery developed by Wang et al [104]. Under the action of air pressure or electric field, the
drug molecules can be selectively delivered into the subcutaneous tissues through the microneedle array. A non-
invasive medical diagnosis can also be performed at home with MEMS devices, such as using MEMS acoustic
devices to detect muscle disorders [132], blood flow rate [133], and other physical signs [134]. Gupta et al
integrated an accelerometer and a contact microphone into one wearable device, as illustrated in figure 2(g). This
device can precisely detect mechano-acoustic physiological signals from the human heart and lungs, thereby
realizing real-time monitoring of the human’s cardiopulmonary health [105]. Meanwhile, combining MEMS
devices with other transducers can endow MEMS devices with more powerful functions in healthcare. As shown
in figure 2(h), Kothapalli et al combined wide bandwidth, high signal-to-noise ratio capacitive micromachined
ultrasonic transducer (CMUT) arrays with optical components to realize an integrated ultrasound and
photoacoustic device, which can be used for transrectal imaging of human prostate [106].

2.2. MEMS based energy harvesters

The rapid development of smart homes has dramatically increased the need for the types and quantity of sensors
[135-137], and alarge number of applications of sensors have brought about energy consumption issues.
Although MEMS sensor nodes with low power consumption can be powered by small button batteries [138],
regular replacement of the batteries of these sensor nodes will also bring considerable economic costs. The use of
MEMS-based energy harvesters is considered to be a feasible way to solve the above problem, because they can
collect the energy from ambient vibrations (human body motion or hand sharking) to charge the batteries

[139, 140], thereby extending the lifetime of the sensor nodes. Typical MEMS energy harvesters include
electrostatic energy harvesters [141], electromagnetic energy harvesters [142—145], and piezoelectric energy
harvesters [146—148]. Electrostatic energy harvesters convert the external vibrations into the devices’ varying
capacitance through different configurations (e.g., in-plane overlap structure, in-plane gap-closing structure,
and out-of-plane gap-closing structure) of the capacitor electrode plates [149]. Figure 3(a) presents a 2D in-
plane MEMS electrostatic energy harvester [ 150], which utilizes capacitor electrode plates with a rotational in-
plane overlap structure to harvest kinetic energy from ambient planar vibrations. For electromagnetic energy
harvesters, the ambient vibrations are generally converted into the relative motion between conductive coils and
permanent magnets in the devices and then translated into electrical power through the electromagnetic
induction effect [151-154]. As shown in figure 3(b), Liu et al assembled a stationary magnet with moveable metal
coils patterned on micromachined spring-mass structures to achieve a wafer-scale in-plane electromagnetic
energy harvester [155]. They broadened the operation range of the device by incorporating four small
suspension mass-spring structures. Compared with the other two types of energy harvesters, piezoelectric
energy harvesters have the advantages of simple configuration and high electromechanical coupling effect

[156, 157]. Piezoelectric energy harvesters use the direct piezoelectric effect of piezoelectric materials to convert
energy from ambient vibrations into electrical energy. Their typical structure is illustrated in figure 3(c)
[158-161], mainly composed of a piezoelectric microcantilever with a proof mass fixed at its free end. Since the
above three energy harvesters (i.e. electrostatic, electromagnetic, and piezoelectric) have different advantages
[162], integrating different mechanisms into one energy harvester will bring potential benefits, e.g., higher
output energy. Yang et al reported a hybrid piezoelectric and electromagnetic energy harvester, which consists of
a piezoelectric cantilever with a permanent magnet fixed at its free end, and a substrate integrated with metal
coils, as displayed in figure 3(d) [163]. In addition to vibration energy, ambient thermal energy (e.g., the heat
from the human body) can also be collected and converted into electrical energy by using MEMS thermoelectric
power generators [164—166]. Figure 3(e) shows a thermoelectric power generator designed by Xie etal[167], in
which the thermopiles (core components) are embedded between the top and bottom cavities of the device. The
thermopiles’ hot and cold junctions are used to sense the temperature difference between the human body skin
and ambient air, and realize energy conversion through the Seeback effect. Besides, acoustic energy harvesters
are also wildly used for non-contact energy delivery [168—170]. They can collect energy from the vibrations of
external acoustic/ultrasonic waves, and are suitable for occasions where motion energy and thermal energy are
unstable or difficult to collect, such as forming a self-powered system with implanted biomedical devices.

Figure 3(f) illustrates the principle of non-contact acoustic energy transfers. The ultrasonic energy harvester
based ona PZT PMUT array is integrated with a pacemaker and placed around the heart [171]. When an external
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Figure 3. (a) In-plane MEMS electrostatic energy harvester using capacitor electrode plates with a rotational in-plane overlap
structure. Reproduced from [150] © IOP Publishing Ltd. All rights reserved; (b) Wafer-scale MEMS electromagnetic energy harvester
with broadband operation range [155]; (c) Various kind of MEMS piezoelectric energy harvester. Reprinted from [158—161]
Copyright (2011), with permission from Elsevier; (d) MEMS hybrid piezoelectric and electromagnetic energy harvester. Reprinted
with permission from [163] Copyright SPIE, Micro/Nanolithography, MEMS, MOEMS 9 023002; (¢) MEMS thermoelectric power
generators with top and bottom cavity configuration. Reprinted from [167] with the permission of AIP Publishing; (f) MEMS
piezoelectric ultrasonic energy harvester for non-contact energy delivery to implantable biomedical devices. Reproduced from [171]
CCBY 4.0; () Zinc oxide nanowire arrays based piezoelectric nanogenerators. Reprinted with permission from AAAS [172]; (h)
Typical structure of a triboelectric generator. Reprinted from [173] Copyright (2012), with permission from Elsevier; (i) Pressure
distribution imaging using the piezo-phototronic effect. Reprinted by permission from Springer Nature Customer Service Centre
GmbH: Springer, Nat. Photonics 7 752-8 (2013) [174]. (j) Dynamic triboelectrification-induced electroluminescence. John Wiley &
Sons. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim [175].
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ultrasound head approaches the human body and emits ultrasound waves, the ultrasonic energy harvester will
convert the vibration energy of ultrasonic energy into electrical power to charge the pacemaker’s battery and
extend its lifetime.

Apart from various MEMS energy harvesters, the microsensor nodes in a smart home can also be powered by
many other forms of energy harvesters. Nanogenerators based on zinc oxide nanowire arrays that can collect
ambient low-frequency vibration energy is one of them [176]. The first zinc oxide nanowire arrays based
piezoelectric nanogenerator was reported by Wang et al [ 172], and its structure and working principle are shown
in figure 3(g). The zinc oxide nanowires with coupling properties (piezoelectric and semiconducting) and the
Schottky barrier formed when they contact metal tip are the key to the nanogenerator’s energy conversion. In
recent years, triboelectric generators as a new type of energy harvester have received extensive research attention.
As schematically shown in figure 3(h), the triboelectric generator is formed by assembling two polymer sheets
with different triboelectric characteristics [173]. When the two triboelectric layers contact, equal charges with
opposite signs will be generated at two sides due to triboelectrification, and the charges can be collected by the
metal electrodes deposited on the top and bottom surfaces of the structure upon the separation of the two
triboelectric layers due to electrostatic induction.

Interestingly, both the piezoelectric effect and triboelectric effect can be utilized for self-powered lighting
and visualization. As shown in figure 3(i), a pressure sensor array (with a pixel density of 6350 dpi) integrated
with a light-emitting diode (LED) array was demonstrated by Z.L. Wang’s group in 2013 [174]. The
electroluminescence of each pixel composed of a single n-ZnO nanowire/p-GaN LED is determined by the local
strain due to the piezo-phototronic effect. Specifically, the voltage generated in the n-ZnO nanowires by the
piezoelectric effect in response to external pressure drives the GaN LED. When the mold patterned with the
word ‘piezo’ touches the sensor array, the blue light luminescence very well reflects the strain profile. A
triboelectric self-powered electroluminescence device counterpart was reported in 2016 (figure 3(j)) [175]. The
high voltage generated by the triboelectric effect induces the luminescence of the underlying phosphor. Due to
the broad material selection of triboelectric devices, the presented self-powered electroluminescence device
possesses good flexibility. The luminescence intensity shows negligible degradation when the curvature
increases from 0 m-1 to 100 m-1. The application for writing visualization is demonstrated by the real-time
recording of writing the character ‘Light ¢’ through a computer interface.

2.3. Centimeter-scale based energy harvesters

In addition to MEMS-based energy harvesters, plenty of centimeter-scale energy harvesters (Cm-EHs) are
presented [177—-180]. Cm-EHs can be more suitable than MEMS based ones for some cases. Generally, cm-EHs
have a simple fabrication method. They can be assembled and fabricated using conventional methods [177]
compare to MEMS-scale ones which need more sophisticated expensive equipment, and more complicated
fabrication steps. Higher output power could be expected from cm-EHs [181]. Thus, they are more appropriate
for the applications of higher power demand with relatively large allowable size [ 182]. More complicated
mechanical systems/mechanisms for better performance [183, 184], or matching lower frequencies [185-187]
can be easily fabricated in cm-scale.

Many sources of harvestable motion or energy are available in the house. Among them are the surface
vibrations, which can be due to the motion of nearby people or nearby vehicles moving outside the house,
human motion inside the house, Light and noise energies, wind energy, etc. All those types of energy can be
simply harvested using cm-EHs. Figure 4 shows samples of cm-EH that can deal with those types of energy.
Figure 4(a) and (b) present two prototypes for harvesting surface vibrations. Basically, surface vibrations can be
harvested using simple resonators. The resonator should be tuned to the input frequency to reach the optimum
performance. However, the input vibrations are usually random and unsteady. A single-frequency resonator can
cover a very narrow band of vibration frequencies. If the input frequency lies slightly away from this band, the
power drop drastically. Gupta et al [ 188] (figure 4(a)) introduce a broadband energy harvester based on anon-
linear polymer spring and Electromagnetic/Triboelectric hybrid mechanism. The broadband frequency is
achieved by utilizing a polymer spring that exhibits multimodal energy harvesting and mechanical stoppers that
introduce a non-linear stiffening effect [139]. Unlike many previously presented broadband EHs, this prototype
can reach broadband energy harvesting at a wide range of input accelerations (in the range of 0.1 gto 2 g).
Besides, Dhakar et al [189] describe a broadband energy harvester based on the triboelectric mechanism using a
cantilever to generate triboelectric charges between contact surfaces (figure 4(b)). This mechanism introduces
nonlinearity in the cantilever, which promotes the broadband behavior of the triboelectric energy harvester. A
peak output power of 0.91 W is achieved at an acceleration of 1 g. The amplitude limiter design allows the
bandwidth to increase, so that it can reach 22.05 Hzat 1.4 g.

For human motion energy harvesting, there are also many reported prototype designs based on
piezoelectric, electromagnetic, and triboelectric transductions, or a hybrid of both. One of the recent prototypes
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Figure 4. Centimeter-scale motion energy harvesters (a) broadband energy harvester based on a non-linear polymer spring and
Electromagnetic/Triboelectric hybrid mechanism. Reproduced from [188] CC BY 4.0; (b) broadband energy harvester based on
triboelectric mechanism and implemented by oscillating cantilever. © [2015] IEEE. Reprinted, with permission, from [189]; (c)
Rotational pendulum triboelectric—electromagnetic hybrid generator. Reprinted from [190] Copyright (2019), with permission
from Elsevier; (d) Noncontact mode TENG for human motion energy harvesting and monitoring. Reprinted from [191] Copyright
(2020), with permission from Elsevier; (e) DC triboelectric nanogenerator by charge transportation for next-generation IoT and real-
time virtual reality applications. Reprinted from [192] Copyright (2020), with permission from Elsevier; (f) Sound noise energy
harvester based on electrospun polyacrylonitrile (PAN) nanofibrous membranes. Reprinted from [193] Copyright (2020), with
permission from Elsevier.

is that presented by Hou et al [190]. They proposed a rotational pendulum triboelectric-electromagnetic hybrid
generator that can harvest mechanical vibrations of frequency less than 5 Hz (figure 4(c)). The prototype consists
of four stacked disk-shaped rotor magnets that can oscillate under the gravity or inertia force with a wideband
frequency range. Electromagnetic generator (EMG) is achieved by placing 4 stator coils in the way of the
pendulum oscillation, while the triboelectric generator (TENG) is realized through the contact-separation
between a copper ring attached to the rotor and fluorinated ethylene propylene (FEP) flexible strips attached to
the frame. In fact, TENGs are considered as promising energy harvesting technologies. They are very suitable for
low frequency irregular mechanical motions with a broad range of frequencies. Besides, they are flexible, low
cost, lightweight, easy to fabricate, and reliable with high output voltage. However, the main drawback of
TENGs is the low output current. On the other hand, EMGs generally can give a high output current due to low
internal impedance. Thus, coupling both generators can be a good approach for high harvesting performance
from unsteady—low frequency motion. Many hybrid TENG—EMG systems are presented in the literature
[194-197]. However, the prototype presented by Hou et al [ 190] based on rotation motion shows a good
performance with human motion and ocean waves. It shows a maximum power density of 3.25 W m ™ >and
79.9 W m™?atafrequency of 2 Hzand 14 cm amplitude by the TENG and EMG, respectively. Another way of
harvesting human motion in the house is by the movement of the whole or part of the body towards and away
from the walls. TENG can be utilized to harvest the body movement by considering the body as one of the
triboelectric layers and attaching the other layer to the wall. A recent study of this mechanism is presented by Xi
etal[191] (figure 4(d)), which can be used as an energy harvester or self-powered human motion monitoring.
They demonstrated a single electrode TENG working in a non-contact mode. The human body acts as one of the
TENG layers, and the other layer is composed of a printing paper together with a metallic electrode film. The
proposed TENG prototype can charge a capacitor of 4.7 yF to 2 V when a human subject is stepping at the same
place with a distance of around 30 cm against four A4 sized of the proposed TENGs in series connection for

20 min.

TENG and other motion energy harvesting techniques usually produce an AC output voltage/current [198].
However, a DC output current is very necessary for IoT applications and other electronic devices. To obtain a
stable DC output from TENG, a rectifier bridge in conjunction with a power management circuit is employed.
This usually affects the system portability by increasing the total size of the system, as well as increases the power
losses and consequently decrease the overall system efficiency. Some unique ways are proposed to produce a DC
output directly from TENG. For instance, Zhu et al[192] (figure 4(e)) developed a novel triboelectric
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mechanism using dual intersection TENGs and charge transportation for DC output to directly power the next-
generation self-sustained IoT and its real-time control in VR. This mechanism is Inspired by ancient waterwheel
transport water and P-N junction theory. They employed tribo-polarity reversal porous material as charges
transportation carrier sliding among the ultra-negative and ultra-positive dielectric materials, and the charges
were continuous unidirectional transported and repelled discharge onto electrodes for DC output without a
rectifier bridge. An output DC voltage is obtained of up to 5 times higher than the air breakdown in conventional
TENG, and a charging rate of up to 2 times higher than that of a TENG of the same materials.

Noise is considered as unwanted loud sound that causing discomfort or unpleasant feelings whether inside
and outside the house. It can be due to the nearby railways, highways, airports, machine workshops, etc. Since
this kind of sound is quite high and carries so much energy, it can be harvested and converted into a useful
energy source. Several technologies have been demonstrated to harvest sound energy. Among them are the
piezoelectricity [199, 200] and triboelectricity [201, 202], which received more attention because of their
relatively high conversion efficiency and larger output power density. Triboelectric devices mainly show high
output voltage. However, to ensure a responsive contact and separation, the inter-distance between the
triboelectrification layers has to be controlled precisely. Piezoelectric devices are easy to prepare and do not need
to control the inter-distance between electrodes precisely. Shao et al [193] (figure 4(f)) utilized electrospun
polyacrylonitrile (PAN) nanofibrous membranes for the first time to convert low-mid frequency noise into
electricity with high output power. A thing PAN fibrous membrane is sandwiched between two metal-coated
plastic film electrodes. Under 117 dB sound (frequency 100-500 Hz), a 3 x4 cm® PAN membrane can generate a
peak electrical of 58 Vand 12 pA, with a maximum power of 210.3 W (surface power density of
17.53 uW cm?). This output is much higher than that generated by PVDF nanofiber counterpart, and is
sufficient to power some electronic or portable devices after rectification.

3. New building blocks of self-powered sensors and energy harvesting systems

3.1. Textile based self-powered chemical sensing

As we know, the toxic gas monitoring plays an important role in industry security. Existing approaches (e.g.,
resistors) suffer from the requirement of external power supply, which may limit the human mobility. Hence,
the self-powered piezoelectric gas sensor may mitigate the limitation. A group from Northeastern University
developed a self-powered smelling electronic skin (e-skin) by employing a piezoelectric gas sensor array

(figure 5(a)) [203]. The multifunctional e-skin was composed of bare ZnO nanowires for humidity sensing, Pd/
ZnO nanowires for ethanol sensing, CuO/ZnO nanowires for hydrogen sulfide sensing, TiO,/ZnO nanowires
for methane sensing, which promoted the practical application in the smart home occasion. Simply driven by
daily human motions, the e-skin can operate independently without an external power supply, in which the
piezoelectric signal was significantly influenced by the surrounding atmosphere. Apart from environmental
monitoring, there is a requirement for the deep understanding of chemical events of the human body to capture
comprehensive information of health status. As provided in figure 5(b), Han et al reported a self-powered
multifunctional sweat sensing e-skin based on the piezoelectric-enzymatic coupling effect [204]. The four piezo-
biosensing units enabled glucose, uric acid, lactate, and urea detection from sweat, respectively. The
corresponding oxidase functionalized ZnO nanowire would generate signals when biomarkers combined with
immobilized oxidases by applying mechanical deformation. The electronic skin achieved noninvasive and self-
sustainable perspiration analysis, facilitating its use in personalized healthcare monitoring. Meanwhile, the
PENG also shows great potential in smart home-related applications through the capability of environmental
monitoring. Correspondingly, Zhu et al developed a TENG for melamine (Mel) detection (figure 5(c)), in which
the Aluminum (Al) surface was coated with a layer of Mel to enhance the output. Via etching the film of Mel, the
nanostructure was created and contacted with another layer of Al. Owing to Mel’s strong electron negativity, the
exposure of the sensor to Mel would greatly enhance the output of the triboelectric sensor. A linear range (1 ppb-
500 ppb) was obtained with a low detection of limit (0.5 ppb) [205].

In addition to the PENG that offers self-sustainable response to external chemical stimulus, benefitting from
the low cost, light weight, broad material choices, simple mechanism, the TENG has also attracted increasing
attention from the academic community since 2012 [173]. Generally, the TENG either serves as the power
source or the self-powered sensor. As shown in figure 5(d), a self-powered electrochemical system was developed
by Chen et al. The electrochemical lactate sensor was consisted of the PdAu nanoparticle modified carbon fibers
(anode), and Pt decorated carbon fibers (cathode) in which the L-lactate oxidase was immobilized on the surface
of anode [206]. The TENG enabled by the microstructured PDMS and Gelatin pairs was used to supply power to
the as-fabricated electrochemical sweat sensor. Besides, the self-powered TENG sensor is another major branch
in the TENG-related domain. As depicted in figure 5(e), Khandelwal et al introduced an attractive material-
metal organic framework (MOF) to enhance the triboelectric sensor performance [207]. Observing from the 3D
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Figure 5. Representative works of PENG and TENG for healthcare monitoring and chemical sensing. (a) the self-powered smelling
e-skin based on the piezo-gas-sensor array. Reprinted from [203] Copyright (2018), with permission from Elsevier; (b) the
multifunctional sweat sensing e-skin based on piezoelectric-enzymatic coupling effects. Reprinted with permission from [204] Appl.
Mater. Interfaces 9 29526-37, Copyright (2017) American Chemical Society; (c) Mel enhanced TENG for Mel detection [205] John
Wiley & Sons. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (d) the electrochemical lactate system powered by TENG.
Reprinted from [206] Copyright (2017), with permission from Elsevier; (e) the MOF-based TENG for tetracycline detection [207]
John Wiley & Sons. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimy; (f) the self-powered triboelectric nanosensor for
Hg?* " ion Detection [208] John Wiley & Sons. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (g) the
triboelectric textile for CO, sensing. Reprinted from [209] Copyright (2019), with permission from Elsevier.

architecture of MOF-TENG, the MOF family ZIF-8 vertically contacted with Kapton. Interestingly, the ZIF-8
was highly selective to tetracycline, in which the benzene ring of tetracycline interacted with the imidazole ring of
ZIF-8 via m—m interactions. Upon contact-separation, increased tetracycline concentration would alter the
charge transferred. On the other hand, there are some works that use triboelectric self-powered sensors to sense
the hazard substance, which should facilitate its use in the surrounding monitoring and create great potential in
the smart home scene. For example, Wang and his co-workers demonstrated a self-powered triboelectric
nanosensor for mercury ion detection (figure 5(f)) [208]. They assembled Au nanoparticles onto the metal
surface to improve the performance of TENG and then further modified these metallic particles via
3-mercaptopropionic acid (3-MPA) molecules decoration that was highly sensitive and selective to Hg** ions.
The as-fabricated self-powered ion sensor showed a linear range from 100 nM to 5 yum with a detection limit of
30 nM. Finally, surrounding atmosphere monitoring is of vital importance for smart home-related applications.
CO,, as a critical indicator of air quality, is always an interesting target in the gas sensing field. As shown in

figure 5(g), Lee’s group initiated a textile triboelectric sensor for CO, monitoring [209]. The poly(3,4-
ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) coated textile showed good performance not only
on the daily human activity tracking but also on PEI-based CO, sensing by contacting with PTFE. The unique
soft characteristic of textiles provided a great possibility to integrate sensors on the cloth, achieving improved
wearability and portability.

3.2. Textile based self-powered physical sensing
For healthcare applications, PENG and TENG sensors are helpful in body motion detecting, voice repeating, and
even pulse or heartbeat monitoring, etc [210-215]. For instance, Fan et al developed a high-pressure sensitive
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Figure 6. Various advanced TENG and PENG for the wide range sensing applications of healthcare, HMI and smart home. (a)
Schematic diagram of a machine-knitted textile sensor (up), and photographs of arterial pulse waves (down). Reprinted with
permission from AAAS [216]; (b) Self-powered system for autonomous tumor inhibition and cancer therapy. Reprinted with
permission from [217] Copyright (2020) American Chemical Society; (c) Device structure of a piezoelectric 3D textile with pre-
strained monofilament (up), and photographs of the device detecting signals of voice, pulse and respiration (down). Reprinted from
[218] Copyright (2020), with permission from Elsevier; (d) Synthesis process of PEDOT:PSS cotton sock using piezoelectric and
triboelectric mechanism for energy harvesting and healthcare monitoring. Reprinted with permission from [219] Copyright (2019)
American Chemical Society; (e) Demonstration of super-elastic liquid metal fibers and textiles based on triboelectric mechanism with
self-powered breathing monitoring and gesture sensing capabilities. Reproduced from [220] CC BY 4.0; (f) Schematic drawing of
gloved-based interface for applications in real /cyber space. Reprinted from [221] Copyright (2019), with permission from Elsevier. (g)
A ZnO nanowires-based bedding for imperceptible sleep monitoring for sleep healthcare and early disease diagnosis. Reprinted from
[222] Copyright (2020), with permission from Elsevier; (h) A 3D schematic of a piezoelectric hollow microstructured pressure blanket
for noncontact heartbeat and respiration monitoring applications. Reprinted with permission from [223] Copyright (2018) American
Chemical Society; (i) Schematic diagram showing the bedsheet with triboelectric arched nanogenerator arrays for real-time and self-
powered sleep behavior monitoring [224] John Wiley & Sons. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (j)
Schematic of a highly shaped adaptable resilient 3D braided textile (left), and self-powered identity recognition carpet for safeguarding
entrance and early warning of intrusion. Reproduced from [225] CC BY 4.0; (k) Schematic diagram of a transparent triboelectric
nanogenerator for energy harvesting and home windows raindrop sensing for smart home applications. Reprinted from [226]
Copyright (2020), with permission from Elsevier.

(7.84 mV-Pa—1) and comfortable textile TENG sensor array, which exhibits wide working frequency bandwidth
(up to 20 Hz), fast response time (20 ms), and advantages of stable (over 100,000 cycles) and washable ((>40
washes). The machine-knitted textile is suitable for monitoring the epidermal and respiratory physiological
signals. In addition, a health monitoring system is developed for some chronic diseases, including cardiovascular
disease and sleep apnea syndrome, etc (figure 6(a)) [216]. Apart from monitoring and detecting disease, many
works are focused on therapy as shown in figure 6(b) [217]. The device shows a self-powered photodynamic
therapy system (s-PDT) with a bimorph piezoelectric nanogenerator. By harvesting from body motion, the PDT
is powered to stimulate the pulse light mode for inhibiting the growth of tumor cells. The s-PDT device is
implanted in mice for experiment and which realizes effective tumor tissue suppression and killing, i.e., an
87.46% tumor inhibition rate is achieved after 12 days of continuous miniature LED stimulation. In this way, the
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self-powered system may be used for cancer treatment in future clinical applications. Recently, Ahn et al
reported a wearable piezoelectric sensor for multi-local strain detecting, as illustrated in figure 6(c), which
consists of 3D textile monofilament with pre-strain and PVDF film in between [218]. The pre-strained textile
structure can amplify the piezoelectric output voltage of sensing strain results up to 5 times. The good pressure
sensitivity of the device performs multiple applications on human motion and healthcare, which means it not
only can detect joint (neck, elbow, and knee) movement, fingertip pressure, and gait based on the tensile and
compression signals, but also can fulfill voice repeating, respiration and blood pressure based on the vibration
signals. PENG and TENG devices rely on hybrid mechanisms of piezoelectric and triboelectric own diversified
advantages, including high output performance, multi-application for powering and sensing, etc figure 6(d)
demonstrates a cotton sock by combining PEDOT: PSS-coated triboelectric nanogenerator and PZT chips for
foot-based energy harvesting and monitoring [219]. It can successfully detect physiological signals of humidity,
temperature, and weight variations. Besides, the sock can recognize walking patterns and track motion
conditions for smart home applications. These wearable generators are remarkable candidates for power sources
and sensors. Instead of partly attaching to the human body, the functional textiles and fiber fabrics have the
potential to be clothing for human daily life. Dong et al demonstrated a fabrication process of stretchable
triboelectric fibers with high electrical output and sustain strain, as shown in figure 6(e) [220]. By using the
thermal drawing process and integration of micro-textured surface and liquid metal electrodes, the triboelectric
fibers are not only capable of energy harvesting, but also competent to monitor breath and sense joint gestures.

To extend the application scope of wearable textiles, efforts have been made into the Human Machine
Interface (HMIs), which basically realizes the communication between humans and electronics [227-230]. In
2019, He et al reported a self-powered triboelectric glove consists of a PEDOT: PSS coated strip and a layer of
silicon rubber film (figure 6(f)) [221]. The glove-based system is suitable for a wide range of applications,
including different controls in 2D /3D (wireless car, drone, robotic hand, etc), games, and cursor in cyberspace.
Except for applications in real space, wearable generators using an HMI can broaden to virtual space, including
virtual /augmented reality applications to enhance natural environments and offer perceptually enrich
experiences and real-time interactions [231, 232]. Besides, combing with machine/deep learning technology,
the electronics can achieve recognition applications including object, shape, gesture, motion recognition
[233,234].

Wearable devices based on smart home applications for the lives of people are greatly investigated in the past
few years [235-237]. Especially for disease prevention and healthcare monitoring, textile-based sensors have
brought a bright future to complementary medical system technology. Up to now, the sensors are demonstrated
by diversified applications range from pillow, blanket, bed to floor and window. Recently, a triboelectric sensor
pillow for sleep monitoring is reported for remote healthcare and early disease diagnosis, as shown in figure 6(g)
[222]. Inside the pillow, high sensitivity feather-like structure sensors can distinguish various activities, such as
breathing, moving, turning over, and so on. It provides remote detecting for human bodies on sleep healthcare,
and therefore complete surveillance for patients or elderly people in case of sudden death during sleeping. In
addition to pillow structure for sleep monitoring, a blanket and bed can also achieve the goal. Chen et al
demonstrate a non-contact battery-free pressure sensor with the advantages of working under a high-pressure
region and sensitivity (figure 6(h)) [223]. The piezoelectric-based sensor presents a reliable heartbeat and
respiration detection to transmit to a remote cell phone. Similarly, a triboelectric sensor with an arched structure
and conductive fiber using for bedsheets to fulfill the sleep detecting task, as shown in figure 6(i) [224]. Due to
the superiorities of high sensitivity, fast response time, and stability, the pressure sensor array can monitor the
condition, evaluate the quality, and warn dangers during sleeping. Figure 6(j) shows a 3D textile TENG based on
a five-directional braided structure [225]. It presents a special frame structure thanks to its outer braided and
inner axial yarns twine, which achieves high flexibility, output, and washable advantages. The textile
demonstrates good potential in smart home applications as shoe-embedded human motion monitoring and
remote emergency rescue system. As well as being an identification of carpets/floor to recognize passcodes for
safe entrance and guard against theft system. Furthermore, Zhou et al present a transparent and flexible TENG
which can support finger-touching and pen-based screen (figure 6(k)) [226]. In this way, it can not only perform
as smart pens connecting to electrical devices, but also work as home windows to collect signals when raindrops
fall down and then send out to smartphones to inform people of closing window in time. With the wireless
transmission process, the device acts as a real-time weather monitoring smart window system for energy
harvesting and sensing applications. Accordingly, PENG and TENG sensors are desired for multiple
applications as crucial security/safety monitoring devices or interesting human-machine interacting electronics
for people. In the long run, this kind of sensors would play a more essential role in complementary applications
in human life contribution.
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Figure 7. Textile-based human motion energy harvesters (a) fabric-based wearable piezoelectric energy harvester. Reprinted from
[248] Copyright (2020), with permission from Elsevier; (b) Single-Thread-Based Wearable and Highly Stretchable TENG [213] John
Wiley & Sons. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ; () washable textile-structured single-electrode TENG
based on a nanofibrous polytetrafluoroethylene (PTFE). Reproduced from [249] with permission of The Royal Society of Chemistry;
(d) Textile-based TENG with alternating positive and negative freestanding grating structure. Reprinted from [29] Copyright (2019),
with permission from Elsevier, (e) All fiber-based hybrid piezoelectric- triboelectric nanogenerator for wearable gesture monitoring.
Reprinted from [250] Copyright (2018), with permission from Elsevier; (f) flexible and stretchable fabric Piezoelectric-triboelectric
hybrid nanogenerator. Reprinted from [251] Copyright (2019), with permission from Elsevier; (g) hybrid textile-based energy
harvester by integrating fabric grating structure TENG with fiber-shaped dye-sensitized solar cells [252] John Wiley & Sons. © 2016
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (h) Stretchable fabric thermoelectric generator based on woven thermoelectric
fibers Reproduced from [239] CC BY 4.0.

3.3. Textile based energy harvesting
Self-powered sensors can work effectively independently without any external power supply if the output signal
is sufficiently high to operate the sensing system. However, if the output signal is low, an additional power unit
will be needed. In order to realize a self-sustainable sensing system in that case, an energy harvester that can
convert one or more of the other environmental signals to electricity should be integrated with the sensor.
Embedding energy harvesters in textile or textile based energy harvesters (T-EHs) attract great attention in
the field of human motion energy harvesting. T-EHs can be embedded in textiles in the form of fibers, yarn, and
fabrics using cost-effective and well established textile fabrication processes [28, 238—247]. Figure 5 shows
different presented T-EHs based on different mechanisms. Kim et al [248] (figure 7(a)) presented a strongly
integrated fabric-based wearable piezoelectric energy harvester (fabric-WPEH) using a ferroelectric polymer,
P(VDE-TrFE), and conducting fabrics, nickel and copper coated polyesters. The simulation and experimental
results show that the presented prototype has a piezoelectric ds; coefficient as high as 32 pC N~ L. It can generate
an output voltage of up to 5.3 V and current of 69 nA from human pressing and bending motions, and an output
power density of 16.83 n'W cm ™2 at an applied impact pressure of 55.5 kPa. Triboelectric nanogenerator is also a
good candidate for textile-based energy harvesting, and is able to efficiently scavenge energy from human
motion in this form, since it depends on relative motion, compressive force, or stretching to active materials. All
does not require a high force, which is compatible with human motion, and does not make a disturbance to the
human body. For example, Lai et al [213] (figure 7(b)) presented a single—thread—based TENG. It is fabricated
from multi-twisted stainless steel thread, which acts as an electrode and coated with silicone rubber, which acts
as a negative triboelectric material. The fabricated prototype is sewing in serpentine shape on an elastic textile.
Thus, alarge area and highly stretchable energy harvesting textile are obtained. The proposed prototype can
generate an electric output that reached up to 200 V and 200 p:A. The ability to harvest different kinds of human
motion, such as joint movements, walking, taping, etc, is also demonstrated. Ning et al [249] (figure 7(c))
presented a washable textile single-electrode TENG (TS-TENG) based on polytetra fluoroethylene (PTFE)
polymer with high hydrophobicity. A strained TS-TENG can be easily cleaned by washing in water. It can be
sewed on cloths, and effectively converted human motion such as arm swing into electricity by simple friction
with clothing material. A TS-TENG prototype is tested with simple arm swinging while walking and running.
The obtained output voltage and current are 1050 V and 22 A, respectively. With this electric output, it shows
the ability to power a night running light and a digital watch without any energy storage component. Along with
its flexibility, breathability, washability, TS-TENG may be considered as a significant development in the self-
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powering of wearable electronics. And Paosangthong et al [29] (figure 7(d)) demonstrated a new design textile-
based Triboelectric nanogenerator with alternate grated strips of positive and negative triboelectric materials
operating in freestanding mode. This design is different than previously presented grating—structure TENGs,
where the air gap is replaced by another triboelectric material with opposite polarity to the existing material.
Hence, an increase in the system performance is obtained due to the increase in the contact surface area. The
presented prototype, as shown in figure 7(d), consists of an upper substrate with gratings of nylon fabric and
polyvinyl chloride heat transfer vinyl (PVC HTV) and a lower substrate with screen-printed silver (Ag) IDEson a
PVC coated fabric. An improvement in the output performance by this design is observed. A prototype of 10
gratings of nylon fabric and PVC heat transfer vinyl delivers an RMS voltage, RMS current, and maximum RMS
power density of 136 V, 2.68 1A, 38.8 mW m ™2, respectively.

The concept of a hybrid nanogenerator and combining the effect of two energy harvesting mechanisms are
utilized in the fabrication of T-EHs to improve the energy conversion efficiency. A hybrid triboelectric-
piezoelectric (TPNG) is a good example of hybrid system, which is capable of generating both triboelectricity
and piezoelectricity at the same time. Guo et al [250] (figure 7(e)) demonstrated an all-fiber wearable hybrid
TPNG. It consists of silk fibroin nanofibers and poly (vinylidene fluoride) (PVDF) nano-fibers, which were
electrospun on conductive fabrics, respectively. Both the silk nanofibers and PVDF nano-fibers on the
conductive fabrics were attached together to form a cloth-shape device, which has great mechanical flexibility as
well as desirable wearing comfort. The presented prototype shows high output power levels with output voltage,
short-circuit current, and power density of 500 V, 12 pA, and 0.31 mW cm 2, respectively. The prototype is also
tested with human body motion detection as a sensor. It is embedded with the wearer’s clothes to distinguish the
types of gesture by the difference of generated electric signals. He et al [251] (figure 7(f)) reported another
example of textile-based hybrid triboelectric—piezoelectric generator. The demonstrated prototype is based on
an intrinsic flexible and stretchable functional composite material, which involves two triboelectrification
processed and one piezoelectric electrification process. The two triboelectrification processes mainly exist in
contact-separate between warps and wefts, and between triboelectric layers of the prototype and external
materials, respectively. By these three linked energy harvesting processes, the human movement can be
efficiently harvested. An optimized prototype can produce an electrical output of maximum open circuit voltage
and short circuit current of 600 Vand 17 pA, respectively, and maximum power density of 1.11 W m ™~ > at aload
resistance of 20MS2. Besides, Pu et al [252] (figure 7(g)) reported a hybrid textile-based generator by integrating a
fabric TENG with fiber-shaped dye-sensitized solar cells (FDSSCs). This hybrid generator can be suitable for
indoor and outdoor applications. Actually, FDSSCs show many advantages for self-powering of wearable
electronics. They are flexible, lightweight, with have high output power and low fabrication cost. They have high
3D light-harvesting capability, and can also be threaded into fabric and give the same performance as flat solar
cells [11]. As shown in figure 7(g), the TENG is fabricated from two fabrics parts; the sleeve and underneath the
arm (moving fabric and stator fabric, respectively). They act as two pairs of sliding-mode TENGs. They harvest
the swing energy of the arm during walking and running. The stator fabric underarm has two metal electrodes
with interdigitated configuration, while the moving fabric consists of series of parallel grating segments, of which
the number, size, and spacing are identical to that one electrode under the arm. The output power of the TENGs
is optimized by reducing the segment size, achieving a peak power density of 3.2 W m™ > at a sliding speed of
0.75ms ™ '. For FDSSC, it is designed in the way that it can be sewed into the cloth as schemed by the lower part
of figure 5(g). Itis composed of a Ti wire coated by a mesoporous TiO, layer, which is wrapped by a twisted Pt
wire serving as the counter electrode. FDSSC shows an average power conversion efficiency of 6% with an
average short circuit current density of 10.6 mA cm ™2 and an average open circuit voltage of 0.6 V. The FDSSC
pack and rectified TENG fabric is connected in parallel, and the output current is about the sum of both. A self-
charging system is presented by charging a lithium-ion battery with the hybrid—textile generator.

Human body heat is another source of energy that can be harvested and used for the self-powering of
wearable electronics. It can be harvested using thermoelectric generators (TEGs). However, most of the existing
TEGs are too rigid and bulky to be integrated with portable devices and keep some degree of comfort to the
human body. The remarkable effort has been devoted to developing flexible TEGs [240—243]. Textile—based
generators can provide a significant degree of stretchability and comfort to the human body. However, when it
comes to textile-based TEGs [253, 254], it is hard to maintain a high degree of stretchability without sacrificing
the thermoelectric performance. One of the effective trails to meet the wearable TEG criteria [255-257] in the
textile form is that proposed by Sun et al [239] (figure 7(h)). They demonstrated a thermoelectric module
produced from thermoelectric fabric made out of thermoelectric fibers. Doped carbon nanotubes alternately
wrapped with acrylic fibers are woven into 7-type thermoelectric modules. Thus, the obtained interlocked
thermoelectric modules can provide an adequate degree of elasticity, and consequently the stretchable 3D
thermoelectric generators can give sufficient alignment with the heat flow direction. The demonstrated
prototype shows a peak output power density of 70 mW m > for a temperature difference of 44 K, and an
excellent stretchability (of about 80% strain) without output degradation.
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Figure 8. Self-sustainable IoT: (a) A battery-free wireless sensor network based on textile-based TENGs Reprinted from [262]
Copyright (2020), with permission from Elsevier; (b) A self-powered wearable eye motion sensing system employing the near-field
electrostatic induction. Reprinted from [211] Copyright (2020), with permission from Elsevier; (c) A self-powered control interfaces
with hybrid triboelectric and photovoltaics energy harvesters Reprinted from [263] Copyright (2020), with permission from Elsevier;
(d) A self-powered wearable pressure sensing system with a flexible thermoelectric generator and a pressure sensor Reprinted from
[229] Copyright (2020), with permission from Elsevier; () A self-sustainable wearable healthcare monitoring system with textile-
based TENGs. Reproduced from [264] CC BY 4.0; Near zero-powered IoT: (f) A zero-power infrared digitizer based on infrared
event-driven photoswitch [265] Reprinted by permission from Springer Nature Customer Service Centre GmbH: Nature Nanotech
12,969-973 (2017). (g) An ultra-compact antenna based on magnetoelectric nanoplate resonator. Reprinted from [266] CC BY 4.0.

4. Toward self-sustainable IoT and near zero-powered event-driven IoT

With the rapid development of wireless sensor networks and body sensor networks for smart home and
healthcare applications, the matched power system for such randomly and massively distributed sensing nodes
isinneed [4, 258, 259]. Self-powered sensors and portable power supplies have emerged as promising candidates
to solve the upcoming energy crisis [208, 210, 221, 260, 261]. To push forward the revolution of wearable
electronics especially under the smart home and healthcare framework, there are plenty of studies published to
provide various approaches for the future realization of self-sustainable [oT. Wen et al proposed a battery-free
wireless sensor network based on a novel direct sensory transmission mechanism as indicated in figure 8(a)
[262]. A textile-based TENG pressure sensor is fabricated, which is connected to a coil through a mechanical
switch. Upon closing the switch, the charges are released immediately, forming an oscillating signal in the
closed-loop RLC circuit, which can be inductively coupled to an external coil wirelessly. In this way, the short-
range wireless transmission of the triboelectric output can be achieved. Besides, unlike previous works where the
signal amplitude is used as the sensing parameter, the sensory information is contained in the frequency
spectrum of the transmission signal, which can largely reduce the environmental interferences, such as
humidity. Figure 8(b) presents another method for the battery-less wireless signal transmission, i.e., near-field
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electrostatic induction [211]. The working mechanism of the non-attachable electrode-dielectric triboelectric
sensor is elucidated in figure 8(b), where the electrostatic charges are generated on the dielectric surface and
coupled by the nearby electrode for the alternating current generation. Since it is based on the near-field
electrostatic induction effect, the effective transmission distance is quite short. By applying this sensing
technique, an Orbicularis Oculi muscle motion sensor is developed based on the glass platform to monitor
voluntary and involuntary eye blinks, where the sensor is attached to one side of the eye and the charge collection
electrode and portable signal transmission system fixed on the glasses. The whole system can function as a
wearable HMI for various control applications and even for driving fatigue monitoring. To realize a longer
transmission distance for smart home applications, an energy source with a larger power is in need. Qiu et al
reported a self-powered control interface combining a photovoltaic cell and a sliding operation TENG, as shown
in figure 8(c) [263]. This device can harvest solar energy as well as mechanical energy to be stored for signal
readout and wireless transmission. The control disk interface can generate 3-bit binary-reflected Gray-code by
sliding on the control disk interface, which is employed for smart home control (e.g., remote appliance control)
and password authentication access control. This integration architecture that combines energy harvesters and
sensors/wireless transmission modules has become a promising approach for the realization of self-sustainable
IoT nodes for various applications. Figure 8(d) presents a self-powered wearable pressure sensing system by
integrating a conductive elastomer-based pressure sensor with a flexible thin film thermoelectric generator
(TEG) that converts body heat into electricity [229]. The flexible TEG provides a reliable and renewable power
supply for the pressure sensing system. This self-powered pressure sensing system achieved a high sensitivity of
17.1%/kPa, which can be used for real-time monitoring of diversified physiological signals, e.g., wrist pulse.
Besides body heat, the biomechanical energy involving ubiquitous body motions is also an abundant and
renewable energy source that can be utilized for future self-sustainable IoT. As shown in figure 8(e), He et al
proposed a narrow-gap triboelectric textile that can harvest energy from various body motions, which is soft,
thin, and can be seamlessly integrated with regular garments [264]. To improve the output and the charging
speed, a mechanical switch is introduced to produce instantaneous discharging. By integrating the triboelectric
textile, mechanical switch with a Bluetooth lower power module, a self-sustainable temperature and humidity
sensing system is developed, as shown in figure 8(e). Within 80 times of stepping, the charged voltage is sufficient
enough for the powering of the Bluetooth module, which will transmit the current temperature and humidity
level to the paired smartphone. It can be anticipated that multifunctional self-sustainable sensing systems could
be feasible when integrating low-power modules with more functionalities.

In addition to self-sustainable sensing nodes, the use of event-driven extremely low-power sensing nodes
offers another effective way to solve the energy crisis and greatly extend the lifetime of the wireless sensing nodes
[267,268]. The event-based sensing nodes achieve extremely low power consumption by staying in a dormant
state for most of the time and only be activated when an event-related signal is detected. For event-related
signals, they could be the measured objects’ value changes, such as acceleration, light intensity, and temperature,
etc [269-271]. Qian, Z et al designed and fabricated a plasmonically enhanced micro photoswitch as shown in
figure 8(f), which will undergo off-to-on state transition only when specific spectral band infrared radiates on its
surface [265]. The photoswitch can be acted as a near zero-power infrared digitizer integrating sensing, signal
processing, and comparison with this property in place. Except for the event-driven signals of the measured
object’s value changes, the sensing nodes can also be activated by artificially sending RF wakeup signals. To
implement this functionality, ultralow-power wakeup receiver front ends are required to integrate with sensing
nodes to receive RF wake-up signals [272, 273]. As one of the core components in the wakeup receiver front
ends, the performance of RF antennas is of vital importance. To solve the miniaturization problem of the RF
antennas, Nan, T et al developed a nano-sized ultra-compact antenna based on a magnetoelectric nanoplate
resonator [266], as depicted in figure 8(g). The antenna is fabricated on ferromagnetic/piezoelectric
heterostructure and utilizes both magnetoelectric and piezoelectric effects to receive and transmit
electromagnetic waves.

5. Future research directions in AIoT based smart home

5.1. Current demonstration of AloT in the smart home application including gaming, HMI, and healthcare
Recently, machine learning technologies as sub-filed studies of Al power many aspects of modern society, which
is increasingly presenting in various consumer products such as cameras and smartphones [274-277].
Therefore, the cutting-edge technology of machine learning with rapid development enables the micro/nano
sensors to form a whole intelligent system related to the process of data acquisition, processing/analysis, and
transmission [278-280]. By combing the appropriate learning algorithms with specific sensing systems, more
comprehensive information can be extracted to better control the MEMS system [281, 282]. Significant progress
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Figure 9. The future of micro/nano Systems based on AloT. (a) Electronic skin integrated with a deep neural network that captures
dynamic motions. Reproduced from [293] CC BY 4.0; (B) Scalable tactile glove with CNN analytics [289] Reprinted by permission
from Springer Nature Customer Service Centre GmbH: Nature 569, 698—702 (2019); (c) Haptic-feedback smart glove with
triboelectric and piezoelectric sensors. Reprinted with permission from AAAS [233]; (d) A facile carbon nanotubes/thermoplastic
elastomer (CNTs/TPE) coating gloves. Reproduced from [294] CC BY 4.0; (e) Bioinspired data fusion architecture by integrating
visual data with somatosensory data from skin-like stretchable strain sensors Reprinted by permission from Springer Nature
Customer Service Centre GmbH: Nat Electron 3, 563-570 (2020)[295]. (f) HSVM algorithm for radar and pressure sensor.
Reproduced from [296] CC BY 4.0; (g) Imperceptible, flexible epidermal sSEMG tattoo-like patch for patients with loss of voice.
Reproduced from [286] CC BY 4.0; (h) Flexible piezoelectric acoustic sensor based on the GMM algorithm. Reprinted from [297]
Copyright (2018), with permission from Elsevier.

has been witnessed in tactile sensors for HMIs, related embodiments including smart keyboards [283-285],
voice recognition systems [286—288], robotics control [289-291], and smart home control systems [212, 292].
Wearable glove-based HMISs possess the unique advantages in high precision and multiple degrees of
freedom (DOFs) control, which would be an important complementary solution to vision and voice recognition
in micro/nano systems. For instance, a new measuring system for a novel electronic skin integrated with deep
neural network analytics captures dynamic motions from a distance without creating a sensor network
(figure 9(a)) [293]. Along short-term memory (LSTM) network was designed to utilize temporal sensor patterns
to correctly determine the hand motion. Thus the device can detect minute deformations from the unique laser-
induced crack structures. A single skin sensor decodes the complex motion of five fingers in real-time, and the
rapid situation learning (RSL) ensures stable operation regardless of its position on the wrist. For device
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expansion on other body parts, a concrete ergonomic analysis will be needed to select an optimum location to
measure epicentral motions.

Moreover, figure 9(b) shows a scalable tactile glove (STAG) [289]. By analogizing the fundamental
perception primitives between the visual and tactile domains, the STAG is assembled with a 584 piezoresistive
sensor array distributed on the palm for interacting with 26 different objects. After identifying the tactile map of
the 32 x 32 arrays in the sensor coordinates, the STAG uses a ResNet-18-based architecture [298] and reaches
the maximal classification accuracy in seven random input frames. The above methods reveal that a much larger
volume of information is accessible for studying interaction processes at a deeper level with the improvement of
micro/nano sensors and the assistance of Al techniques, thereby aiding the future design and development of
the next-generation wearable electronics and systems. In addition, a haptic-feedback smart glove with
triboelectric and piezoelectric sensors using a convolution neural network (CNN) expands the capabilities of
realizing advanced HMI, as shown in figure 9(c) [233]. To evaluate the mapping of the static pressure during the
grabbing activities of different objects, the proposed glove is focusing on the investigation of the dynamic
changes along with the complete cycle of grabbing waveforms from triboelectric sensors. In this regard, under a
trained CNN model with three convolution layers, the realization of object recognition can achieve an accuracy
0f 96%. Moreover, Wen et al designed a facile carbon nanotubes/thermoplastic elastomer (CNTs/TPE) coating
approach is investigated in detail to achieve superhydrophobicity of the triboelectric textile for performance
improvement, as shown in figure 9(d) [294]. By leveraging machine learning analytics, a minimalist design with
each finger only distributed one triboelectric sensor can perform recognition of complex and similar gestures.
Meanwhile, benefited by the superhydrophobic characteristic of the materials, the negative effect of sweat is
minimized, leading to an improved recognition accuracy (96.7%) compared to that without
superhydrophobicity (92.1%).

Recently, another important technology for smart glove systems is combining diversified sensors to form an
intelligent system and improve recognition accuracy. As shown in figure 9(e), a bioinspired data fusion
architecture was developed to perform human gesture recognition by integrating visual data with
somatosensory data from skin-like stretchable strain sensors [295]. The strain sensors were made from single-
walled carbon nanotubes and the learning architecture used a convolutional neural network for visual
processing and then implemented a sparse neural network for sensor data fusion and recognition at the feature
level. This approach of data fusion achieves a high recognition accuracy of 100% and maintains recognition
accuracy in non-ideal conditions of the image sensor, e.g., noisy and under-or over-exposed. The demonstration
of robot navigation via hand gestures shows the stability of this data fusion approach with an error of 1.7% under
normal illumination and 3.3% in the dark. Another novel approach of data fusing from multiple sensors using a
hierarchical support vector machine (HSVM) algorithm is presented in figure 9(f) [296]. The validation of this
method is experimentally carried out using an intelligent learning system that combines a radar for detecting the
movements of the hands and fingers with a flexible pressure sensor array for measuring pressure distribution
around the wrist. The HSVM architecture is developed to effectively fuse different data types in terms of
sampling rate, data format, and gesture information from the pressure sensors and radar. The results of the
collected datasets from 15 different participants show that the radar on its own provides a mean classification
accuracy of 76.7%, whereas the pressure sensors provide an accuracy of 69.0%. At the same time, the proposed
HSVM algorithm by integrating the output of pressure sensors with radar improves the classification accuracy
10 92.5%.

Speaker recognition has received the spotlight as an important research direction of micro/nano systems,
such as personalized voice-controlled assistants, smart home appliances, biometric authentication based on Al
and [oT framework. Owing to the recent advances in soft materials and fabrication, the emerging field of micro/
nano systems offers a technological solution to realize voice recognition systems. As shown in figure 9(g), the
design of an imperceptible, flexible epidermal sSEMG tattoo-like patch is used as a new HMI for patients with loss
of voice [286]. When a tester speaks silently, the patch shows reliable performance in recording the sSEMG signals
from three muscle channels with high accuracy by using the wavelet decomposition and pattern reorganization.
With the aid of the linear discriminant analysis (LDA) algorithm, the average accuracy of action instructions can
reach up to 89.04%, and the average accuracy of emotion instructions is 92.33%. Besides, another speaker
recognition system is reported using a flexible piezoelectric acoustic sensor (f-PAS) based on the Gaussian
Mixture Model (GMM) algorithm as indicated in figure 9(h) [297], which get an excellent speaker recognition
accuracy of 97.5%. The intrinsic voice information is obtained from the highly sensitive multi-channel
membrane, which is beneficial for identifying speakers. Finally, the 75% reduction of the error rate compared to
the commercialized MEMS sensors indicates that the f-PAS platform can be further applied to voice-based
biometric authentication and highly accurate speech recognition.
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5.2.New trend of healthcare—Bioelectronic medicines (or electroceuticals)

Since the creation of transistors, there have been different kinds of devices developed to build up a
communication channel between humans and the digital world [299]. With the rapid progress on wearable
electronics, diversified flexible physical sensors such as tactile sensors or strain sensors have been developed,
which communicate with the digital system effectively by reflecting user intent from the user movement

[300, 301]. Moving forward, a direct communication channel bypassing these devices becomes the ultimate goal
of such communication, which creates a bridge between the user intent (i.e., neural signals) and the digital world
[302-304]. This kind of devices that directly interact with biological tissue is termed a neural interface, which not
only can record neural signals to detect the human intent but also could deliver electrical stimulation to the
biological tissues for modulating biological functions [305]. In this regard, the neural interfaces have successfully
built up a bidirectional communication channel between a subject’s nervous system and a synthetic device.

The physical interaction between the neural interface and biological tissue could be sophisticated, which is
an essential consideration when choosing the active materials of the neural interfaces. Biocompatibility and
biostability are also important considerations for the implanted interfaces. Koo et al reported a peripheral nerve
stimulation platform with bioabsorbable active materials, including magnesium and silicon oxide, which has
opened up a new possibility to future transient electronics [306]. This implantable wireless stimulator consists of
aradio frequency power harvester and an electrical interface to the peripheral nerve. The harvester combines a
bilayer and dual-coil loop antenna (Mg) with a PLGA dielectric interlayer, a radio frequency diode, and a
parallel-plate capacitor, as shown in figure 10(a). The whole system is constructed with materials that can be
resorbed in a controlled manner. Figure 10 (a) shows photos of the devices at various timing after immersion in
PBS at 37 °C. It can be observed that the constituent materials dissolved within 3 weeks, and all the residues
completely disappeared on day 25. Soft microelectronic devices with similar mechanical properties as biological
tissues will provide an intimate and stable electrical coupling with neural tissues for efficient recording and
stimulation. Besides, it is also suggested by recent studies that reduced mechanical mismatch between the tissue
and electronics would significantly reduce adverse immune response for chronic implantation [307]. To address
thisissue, Liu et al developed a soft and elastic hydrogel-based microelectronic interface for localized
neuromodulation [308]. This soft neural interface consists of a micropatterned electrically conductive hydrogel
(MECH) sandwiched by two PFPE-DMA encapsulation layers that are tuned to match Young’s modulus of
nerve tissue, as shown in figure 10(b). This MECH shows a highly reduced interfacial impedance with biological
tissue and a ~30 times higher current injection density than that of platinum electrodes, which is demonstrated
for localized electrical stimulation of the sciatic nerve in live mice. Recently, to accommodate rapid tissue growth
and avoid repeated interventions and complications, a morphing electronic device (MorphE) is developed with
novel growth-adaptive properties, as presented in figure 10(c) [309]. This MorphE consists of a viscoplastic
polymer electrode and a self-healable insulating viscoplastic polymer. This device showed zero stress atalow
strain rate of 0.05% s~ ', indicating no mechanical constrain applied to the sciatic nerve at a normal growth rate.
The MorphE causes minimal damage to the rat nerve during the 2-month monitoring and chronic stimulation
process, which grows 2.4-fold in diameter along with the fast growth of the rat. Combining with the self-healing
property, the MorphE paves the way to growth-adaptive pediatric electronic medicine in the near future.

Moving forward, neural interfaces not only become more capable in terms of electrical and mechanical
properties but also are evolving towards implantable systems to enable long-term monitoring or stimulation for
various applications, such as translational therapeutic solutions [317]. The power source is an essential part of
the implantable system, and conventional batteries are widely adopted solutions for powering implantable
systems [318—320]. However, the battery suffers from a limited lifetime, a potential hazard to health, and
subsequent replacement requirements. New solutions, including wireless powering and energy harvesting, then
have emerged to replace the battery in recent years [321, 322]. Among them, self-powered energy harvesting is
receiving tremendous research attention from multidisciplinary fields [264, 323, 324]. Lee et al developed a self-
powered neuromodulation system by integrating a triboelectric nanogenerator with a flexible neural clip
interface, as shown in figure 10(d) [310]. The bladder contraction for micturition can be successfully induced
with the neuromodulation system by apply mechanical force to the TENG to deliver current to the flexible clip
interface on a pelvic nerve in a rat. Unlike nerve that yA level current is high enough to penetrate the nerve tissue,
muscle typically requires higher current for stimulation. Similarly, figure 10(e) presents a self-powered muscle
stimulation system combining a triboelectric nanogenerator and a flexible multiple-channel intramuscular
electrode [311]. A stacked-layer TENG is developed to boost up the current output, and a multiple-channel
intramuscular electrode is designed, allowing mapping of sparsely distributed motoneurons in the muscle tissue
to further improve the stimulation efficiency. For a self-sustainable and fully implantable medical device,
implantable energy harvesters that directly convert inner-body biomechanical energy into electricity is of crucial
importance. Figure 10(f) demonstrates an implanted symbiotic cardiac pacemaker based on an implanted
TENG [312]. The implantable TENG harvests energy from the heartbeat, which is then delivered to the
pacemaker for the regulation of cardiac physiological activity. It is demonstrated that the symbiotic pacemaker
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Figure 10. Healthcare new trend. (a) A bioresorbable and wireless electrical stimulator for neuroregeneration. Reprinted by
permission from Springer Nature Customer Service Centre GmbH: Nat Med 24, 1830-1836 (2018) [306]; (b) A soft and elastic
hydrogel-based neural electrode for localized neuromodulation. Reprinted by permission from Springer Nature Customer Service
Centre GmbH: Nat Biomed Eng 3, 58—68 (2019) [308]; (c) A multilayered morphing neural interface for neuromodulation in growing
tissues. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Nat Biotechnol 38, 1031-1036 (2020) [309].
(d) Mechano-neuromodulation of autonomic pelvic nerve realized by integrating a TENG with a flexible neural clip interface.
Reprinted from [310] Copyright (2019), with permission from Elsevier; (e) Self-powered direct muscle stimulation achieved with a
stacked TENG and a flexible multichannel electrode. Reprinted with permission from [311] Copyright (2019) American Chemical
Society; (f) A self-powered implanted symbiotic pacemaker based on an implantable TENG. Reproduced from [312] CC BY 4.0; (g)
Stretch-trigger drug delivery based on integrated microdepots and microneedles. Reprinted with permission from [313] Copyright
(2015) American Chemical Society; (h) The multifunctional sensing- therapeutic system composed of the pH sensors and drug
delivery scaffolds. John Wiley & Sons. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim [314]; (i) the wireless drug delivery
patch based on miniaturized needles. John Wiley & Sons. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim [315]; (j) The
TENG-driven iontophoretic transdermal drug delivery system. John Wiley & Sons. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim [316].

can correct sinus arrhythmia and avoid the deteriorating condition. With the profound investigation and
improvement of the neural interface, it can be foreseen that it would reshape healthcare monitoring and
treatment significantly by integrating with emerging self-powered technologies, data transmission, and artificial
intelligence.

As anew trend with the background of aging of the population, domiciliary medical care is emerging to
improve the quality of life, especially for the elderly and patients with chronic disease [325]. Implantable
electronics make a great contribution to the development of home care, which helps to understand the health
status via physiological monitoring but cannot apply for a medicine according to indications. Thus, researchers
devote extensive efforts to develop easy-to-use medical devices to fulfill the personalized requirement of
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patients. Conventional oral administration is limited by the low bioavailability and metabolism in the digestive
system. On the other hand, due to the pain associated with needles, common subcutaneous intravenous
injection suffers from low patient compliance [326]. The emerging drug delivery technology is highly desirable
for medical care at home by offering easy access and controlled administration, which keeps the patient from
frequently going to the hospital for expertise equipment and allows them to participate in their own health
management. Furthermore, the on-demand drug delivery provides great significance with the feedback
therapeutic system building [327]. Among various drug delivery platforms, microneedles have been explored as
a promising candidate that has high patient compliance and avoids some of these drawbacks, such as patient
acceptability and injection safety [328].

At the early stage, mechanical force stimulus, such as compression and stretch, provides an easy and simple
way to trigger the drug release [329], in which the strain variation can be expediently achieved by daily motions
of humans. Di et al reported a finger joint stretch-triggered microneedle array as shown in figure 10(g) [313]. The
microgel-depot that contained drug-loaded nanocapsules was fabricated on the stretchable elastomer. By
integrated with microneedle channels, the drug-release patch was obtained and tensile stress would promote the
drug release from microdepots along the microneedle. After 40 stretch cycles, the doxorubicin hydrochloride
(DOX) release amount reached 110 pug ml ™" for in vitro study. Regarding in vivo results from diabetic mice, the
stretch cycles can readily control the delivered insulin and hence control the blood glucose (BG) level, while the
passive group (natural release) was only effective at the beginning and gradually cannot maintain the normal BG
level. However, pure drug delivery obviously cannot meet the need for feedbacks that indicate when to start and
end the drug delivery. To mitigate the drawback, Akbari’s group developed a multifunctional sensing-
therapeutic system for smart wound management (figure 10(h)) [314]. It could be seen that there were four
pH sensors and two drug-releasing scaffolds on the wound dressing, in which the colorimetric response of the
pH sensor indicated the bacterial infection of the wound site and reminded drug delivery actions. Besides, the
interface smartphone was used for digital image capture to quantify the pH value. Moving forward, the smart-
home application puts a requirement on the portability of the medical device, so as to achieve less restriction on
human activity for the realization of portability, the capability of wireless transmission is greatly significant to
achieve such vision. Accordingly, Derakhshandeh et al proposed a wirelessly controlled smart bandage with 3D-
printed microneedle arrays. As shown in figure 10(i), the 3D printer fabricated the miniaturized needle in a
biocompatible resin, followed by dissolving the support material in NaOH solution [315]. To reduce the cost of
bandage, a reusable module and a disposable microneedle patch were separately designed, in which the reusable
module housed the drug reservoirs, micropump, Bluetooth, and power source components. The applied voltage
could control the micropump and regulate the flow rate through the app on the smartphone. As expected, each
pump operation increased the delivered drug volume. Apart from the capability of wireless communication,
independent and sustainable operation is also of vital importance for a portable system, especially in the
condition of long-term wear. Nowadays, the most popular mobile energy supplier is the traditional battery that
is subject to limited lifetime and periodic replacement. Developed energy harvesting technology offers a facile
and cost-effective approach to achieve a self-sustainable system, which overcomes the limitation of batteries and
steps forward to a more integrated system. As provided in figure 10(j), Wu et al investigated a biomechanical
motion driven drug delivery system [316]. A wearable insole (TENG) that consists of PTFE and Al triboelectric
pairs and Kapton as the spacer was fabricated on the PET substrate. Integrated with the hydrogel-based drug
patch, the energy converted from mechanical motions of humans actively promoted the iontophoretic
transdermal drug delivery. It was worth noting that the precise relationship between the delivered dose and
generated energy needed further clarification.

5.3. Next generation of wearable electronics—toward the wearable photonics systems

In the era of AloT, numerous sensors and processers are interlinked with each other to allow the flow of
abundant information. Photonics is envisioned to be a complementary technology to electronics because it
provides information communication channels with ultra-high data transmission speed [330] and sensing
channels invulnerable to electromagnetic interferences [331]. Flexible photonics have been studied and found in
various applications in data communications, robotics, optogenetics, and tactile sensing.

Flexible waveguides have been developed as optical interconnects for data transmission [330]. Currently,
most flexible waveguides for data links are based on polymer materials and working in the multimode. As shown
in figure 11(a), flexible waveguides can be fabricated on a large flexible substrate (145 mm x 129 mm) [332]. The
cross-section of the polymer waveguides is relatively large (H > 50 pm) compared to waveguides fabricated on
the silicon-on-insulator (SOI) platform [333] (H = 0.22 um) because of the small refractive index difference
between the waveguide core and cladding. At a bend radius of 4 mm, the flexible waveguide can transmit data at
arate of 40 Gb s~ !, demonstrating the state-of-the-art technology. Flexible waveguides have also been adopted
in robotics applications because they offer advantages, including easy to fabricate, chemically inert,
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Figure 11. (a) Flexible optical interconnects. © [2018] IEEE. Reprinted, with permission, from [332]; (b) Optical fiber-based robotic
hand. Reprinted with permission from AAAS [334]; (c) Implantable light-guiding hydrogel. Reprinted by permission from Springer
Nature Customer Service Centre GmbH: Nature Photon 7, 987-994 (2013) [335]; (d) Polymer waveguide based flexible tactile sensor
array. John Wiley & Sons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim [337]; (e) Flexible single mode waveguide.
Reproduced from [339] CC BY 4.0; (f) Flexible waveguide photodetector. Reproduced from [340] CC BY 4.0; (g) Flexible nanorod
laser. Reprinted with permission from [341] Copyright (2017) American Chemical Society; (h) Wearable triboelectric-aluminum
nitride photonics nano-energy-nano-system. Reproduced from [260] CCBY 4.0.

environmental stability, high speed, as compared to flexible electrical sensors. Figure 11(b) presents an
optoelectronically innervated soft prosthetic hand based on flexible optical waveguides [334]. The waveguides
can be bent, twisted (figure 11(b.i)), and embedded in soft robotic fingers. Upon inflation, the waveguides bend,
causing the transmission change in each waveguide. By embedding a total of six waveguides in one soft robotic
finger (figure 11(b.ii)), the robotic finger motion can be precisely monitored. By equipping the full robotic hand
with the flexible waveguides, object holding, grasping, hand-shading, roughness-sensing, and softness-sensing
are demonstrated (figure 11(b.iii)). Flexible waveguides have found applications in optogenetics [335, 336].
Light-guiding hydrogels based waveguides have been developed with alowloss of <1 dB cm ™" and good
stretchability (>540° twist angle) as shown in figure 11(c) [335]. Optogenetic therapy targeting diabetes in mice
has been demonstrated using blue light excitation. Flexible photonics were also used in tactile sensing [337, 338].
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As shown in figure 11(d), a polymer waveguide based flexible tactile sensor array was demonstrated based on the
total internal reflection mechanism [337]. Upon touching, the top free-standing layer approaches the middle
waveguide core and disturbs the total internal reflection. The transmitted light indicates the decree of touching.
The demonstrated sensor array consists of 27 pixels working independently, showing a fast response, high
bendability, and high reproducibility.

Although polymer waveguides have the advantages of broad material availability, easy-fabrication, and good
intrinsic flexibility, many polymer materials are only transparent in the visible light, and realizing single-mode
polymer waveguides is also a challenge [342, 343]. Thus, research effort has also been devoted to developing
single-mode flexible waveguides working in the 1310 nm and 1550 nm near-infrared wavelength region
[344,345].In 2018, Hu’s group demonstrated the first single-mode flexible waveguide using chalcogenide
(figure 11(e)) [339]. The rigid chalcogenide waveguides are embedded in large core SU-8 waveguides used to
absorb the mechanical strain. The reported device still presents high performance after 3000 stretching cycles at
41% nominal tensile strain. In the same year, a flexible chalcogenide waveguide-integrated indium phosphide
(InP) photodetector was reported by the same group (figure 11(f)) [340]. After 1000 bending cycles ata 0.8 mm
bending radius, the waveguide-integrated photodetector can still operate with 0.3 A W™ responsivity,

0.02 pW-Hz'/? noise equivalent power, and 1.4 GHz speed. Flexible lasers have also been investigated], as shown
in figure 11(g), a nanowire laser directly integrated into flexible waveguides was demonstrated in 2017 [341].
Both the end-fire coupling scheme and the evanescent coupling scheme were demonstrated successfully with an
optimal couplingloss of 17 dB and peak power of 11.8 W measured from the waveguide output. Besides
waveguides, photodetectors, and lasers, the other critical component of integrated photonics is modulators.
Recently in 2020, Lee’s group reported the wearable triboelectric-aluminum nitride (AIN) photonics nano-
energy-nano-system (NENS) [231, 260]. The triboelectric nanogenerator (TENG) serves as a self-generated
power source for nanophotonics modulation, while the AIN nanophotonics provides a robust and real-time
sensing channel for TENG sensors in the other way round (figure 11(h.i)). Electronically, the TENG is a high
impedance power source with a high capacitance (figure 11(h.ii)). The AIN modulator is a pure capacitor. The
high voltage output (>100 V) from the TENG can be supplied to the AIN modulator with negligible degradation
to alter its optical transmission via the Pockels effect. Under the optimized working condition, self-sustainable
photonic modulation is achieved with clear ‘I’s and ‘0’s. Meanwhile, the optical transmission also serves as a
readout for the tactile sensing information of TENG sensors. Optical Morse code transmission and human arm
patting monitoring are demonstrated with continuous sensing information in real-time (figure 11(h.iii)).

6. Conclusion

With the development of IoT systems, self-sustainable and battery-free sensing systems become essential to
realize long term functionality. Energy harvesting technologies have emerged as an alternative and promising
choice of wireless sensors’ power source, leading to self-sustainable electronics/systems. MEMS-based devices
show a significant contribution to the development of self-sustainable sensing systems, due to their low power
consumption. They can be integrated with MEMS or centimeter-scale energy harvesters to form self-sustainable
sensing systems. However, when it comes to smart home and human body applications, more flexible and
planar devices are needed to provide more comfort to the human body during daily activities. Thus, a new
generation of self-powered sensors and energy harvesters using textile materials based on PENGs and TENGs
mechanisms has been presented. These devices are lightweight, wearable, and highly flexible. Besides, textile is
the most associated material with the human body and is very available inside the house. All make textile-based
devices very suitable for smart home applications. On this basis, significant research activities have been done for
further development of AloT based smart home, for example, the development of HMI, voice recognition, etc,
for smart home control. Moreover, the next generation of healthcare systems where the multi-functional
physical and chemical sensing is provided along with the prompt treatment approach through the advanced
neural interfaces, microneedles, skin patches, etc. Beyond wearable electronics, wearable photonicsisa
promising platform for the next generation of wearable technology because it can provide high data
transmission speed and EMI-free sensing paths.

The development of wearable, self-sustainable, and intelligent sensing systems accelerates the realization of a
smart home. However, some technical gaps still lay in building a real smart home. First of all, the healthcare
monitoring system’s function needs to be diversified and not limited to a single physical or chemical sensing.
Ideally, medical treatment components such as microneedles should be integrated at the same time. Thus, with
the help of machine learning algorithms, the monitoring data can be analyzed to timely guide corresponding
medical treatment (druginjection via microneedles) for patients with chronic diseases (like high blood pressure
and diabetes). Secondly, all sensing systems in a smart home, including house environmental monitoring and
human healthcare monitoring systems, should be consolidated to realize information interaction to enhance the
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smart home’s role. For example, by comparing the monitoring information of human body temperature and
sweat sensors with the ambient temperature and humidity sensors, it can be inferred whether environmental
factors or diseases cause the abnormal body temperature and sweating. Last but not least, low-cost and
integrated high-speed networks for big data transmission should be built in the sensing systems to achieve
interlink between numerous sensors and processers, and to meet the 5 G era’s development needs. The use of
photonic devices provides possible solutions to solve the above issue. Nevertheless, significant improvement still
needs to be done to deal with the current photonic devices’ high energy consumption, high fabrication cost, and
difficulty integration with other components in the sensing system to promote their practical progress.
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