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Figure S1. The structure and the working mechanism of the pneumatic actuator. 

Figure S2. Analysis of the outputs generated in the T-TENG sensor for contact position and 

conact area detection.  

Figure S3. Working mechanism of piezoelectric under compressive/tensile stress. 

Figure S4. The set up to test the temperature sensing performance of the PVDF film. 

Figure S5. Response time of the pyroelectric output generated in the PVDF sensor when the 

temperature of the contact object is 20 ℃, 25 ℃ and 30 ℃ respectively. 

Figure S6. The output signal spectrums and the corresponding t-SNE visualization results for 

grasping elongated objects under different directions. 

Figure S7. The confusion map for the recognition result of the 5 elongated objects. 

Figure S8. The confusion map for the recognition result of the 28 different items with various 

shapes and sizes. 

Figure S9. Illustration of the PVDF sensor integrated smart manipulator. 
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Figure S10. The confusion map for the recognition result based on 10-channel data set. 

Figure S11. The confusion map for the recognition result of 28 items with the 5-channel data 

extracted from the original 15-channel data set. 

Figure S12. Output performance of the PVDF sensor when integrated on the soft manipulator. 

Figure S13. The confusion map for the recognition result of apple, orange, big box, long can 

and short can (labeled as 1-5) when one finger integrated with the TENG sensors with the 

number of short electrodes of (a) three and (b) four respectively. 

Figure S14. Humidity effects on the T-TENG sensor output.  

Table S1. Comparison of flexible solutions for soft robot perception. 

Table S2. The technical parameters of 3D printing. 

Table S3. The detailed parameters of the 1D-CNN ML architecture. 

Table S4. The stability test of the ML-enabled integrated sensory system after cycles of 

utilization. 

Table S5. The stability test of the ML-enabled integrated sensory system when grasping objects 

under different temperatures. 

Supplementary Note 1. The current limit of the resolution for the TENG sensors and the 

influence of the resolution on the machine learning result. 

Supplementary Note 2. Humidity effects on the T-TENG sensor output. 

Other Supplementary Material for this manuscript includes the following: 

Movie S1. Online virtual shop application. 

Movie S2. Shape-size-temperature fused sensory system. 

Movie S3. User interface for temperature distribution monitoring.  



  

4 

 

 

Figure S1. The structure and the working mechanism of the pneumatic actuator. (a) 

Illustration of the detailed hollow-bellows structure of the pneumatic actuator. (b) The 

corresponding cross-section figure. (c) Bending down motion of the pneumatic actuator 

when applied air pressure. 
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Figure S2. Analysis of the outputs generated in the T-TENG sensor for contact position and 

conact area detecting. (a) Voltage ratio analysis of the generated ouputs in T-TENG short 

electrodes (E1-E3) by tapping different positions of the T-TENG sensor patch. (b) Outpus 

generated in the long electrode (EL) by tapping different positions with the same area. (c) 

Outputs generated in EL by tapping with different areas. 
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Figure S3. Working mechanism of piezoelectric under compressive/tensile stress. 
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Figure S4. The set up to test the temperature sensing performance of the PVDF film. (a) 

Illustraion of a force gauge to control the contact force, and a TEC as the contact object with a 

TEC controller to control the temperature. (b) Enlarged figure shows the position where the 

PVDF sensor attached to the moving load. 
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Figure S5. Response time of the pyroelectric output generated in the PVDF sensor when the 

temperature of the contact object is 0℃, 10℃, 20 ℃, 25 ℃, 30 ℃, 40℃ and 50 ℃ respectively. 
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Figure S6. The output signal spectrums and the corresponding t-SNE visualization results for 

grasping elongated objects under different directions. (a) The typical 15-channel output spectra 

collected by the integrated TENG sensing system and (b) the corresponding t-SNE visualization 

results of the 5 elongated objects grasped by the manipulator vertically. (c) The typical 15-

channel output spectrums collected by the integrated TENG sensing system and (d) the 

corresponding t-SNE visualization results of the 5 elongated objects grasped by the manipulator 

horizontally. 
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Figure S7. The confusion map for the recognition result of the 5 elongated objects grasped (a) 

vertically, (b) horizontally. (c) The confusion map for the recognition result of the 5 elongated 

objects when the data of grasping vertically and horizontally are fused toghther. 
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Figure S8. The confusion map for the recognition result of the 28 different items with various 

shapes and sizes. 
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Figure S9. Illustration of the PVDF sensor integrated smart manipulator 
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Figure S10. The confusion map for the recognition result based on 10-channel data set. (a) The 

confusion map for the recognition result of apple, drink can and coffee cup with the 10-channel 

data collected by the TENG sensors integrated on two pneumatic fingers. (b) The confusion 

map for the recognition result of 28 items with the 10-channel data extracted from the original 

15-channel data set. 
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Figure S11. The confusion map for the recognition result of 28 items with the 5-channel data 

extracted from the original 15-channel data set. 
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Figure S12. Output performance of the PVDF sensor when integrated on the soft manipulator. 

(a) The piezoelectric-triboelectric-pyroelectric superimposed output of the PVDF sensor when 

contact with TEC under different temperatures with the air pressure in the chamber of the 

pneumatic finger fixed at 130 kPa. (b) The calculated peak values of the PVDF sensor during 

contact motion when the temperature of the TEC equals to 0℃, 10℃, 20℃, 30℃, 40℃ and 50℃. 

The detailed output signal of the PVDF sensor when contact with TEC at (c) 10℃ and (d) 50℃ 

respectively. 
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Figure S13. The confusion map for the recognition result of apple, orange, big box, long can 

and short can (labeled as 1-5) when one finger integrated with the TENG sensors with the 

number of short electrodes of (a) three and (b) four respectively. 
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Figure S14. Humidity effects on the T-TENG sensor output.  
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Table S1. Comparison of flexible solutions for soft robot perception. 

Comparison of flexible solutions for soft robot perception 

Mechanism  Material Tactile Deformation Temperature Self-powered 

Microfluidic[1] PDMS Channel Yes Yes No No 

Capacitive[2] Galinstan No Yes No No 

Resistive[3] PLA-CNT No Yes No No 

Optical fibers[4] Illuminated 

elastomer foam 

No Yes No No 

Resistive[5] CNT Yes Yes No No 

Resistive[6] cPDMS No Yes No No 

Optical 

waveguides[7] 

LED, photodiode, 

elastomer 

Yes Yes No No 

Piezoelectric[8] PVDF No Yes No Yes 

Triboelectric[9] Ecoflex Yes No No Yes 

Triboelectric[10] PDMS No Yes No Yes 

Triboelectric & 

Potentiometric[11] 

PDMS & Ionic 

composite electrolyte 

Yes No No Yes 

Triboelectric[12,13] Ecofiex & PTFE Yes Yes No Yes 

Triboelectric[14] Silicone rubber No Yes No Yes 

Piezoresistive & 

Pyroelectric[15] 

Graphite-CNT & 

PVDF 

Yes Yes Yes Partly 
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Table S2. The technical parameters of 3D printing. 
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Table S3. The detailed parameters of the 1D-CNN ML architecture. 
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Table S4. The stability test of the ML-enabled integrated sensory system after cycles of 

utilization. 

 

Cycles of Utilization 

 500 

Correct / Total 

1000 

Correct / Total 

1500 

Correct / Total 

2000 

Correct / Total 

Baseball 19/20 18/20 17/20 18/20 

Egg 20/20 19/20 18/20 19/20 

Big box 20/20 20/20 20/20 19/20 

Cup 19/20 20/20 20/20 20/20 

Tape 19/20 19/20 20/20 20/20 

Accuracy 97/100 

(97%) 

96/100 

(96%) 

95/100 

(95%) 

96/100 

(96%) 

Note: “Correct/Total” means the correct times in total numbers testing.  
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Table S5. The stability test of the ML-enabled integrated sensory system when grasping 

objects under different temperatures. 

 

Object Temperature 

 0 ℃ 

Correct / Total 

10 ℃ 

Correct / Total 

25 ℃ 

Correct / Total 

40 ℃ 

Correct / Total 

50 ℃ 

Correct / Total 

Coffee Cup  20/20 

（100%） 

19/20 

（95%） 

19/20 

（95%） 

20/20 

（100%） 

Pepsi Can 19/20 

（95%） 

20/20 

（100%） 

20/20 

（100%） 

  

Note: “Correct/Total” means the correct times in total numbers testing.  
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Supplementary Notes 

Supplementary Note 1. The current limit of the resolution for the TENG sensors and the 

influence of the resolution on the machine learning result. 

The size of the L-TENG and T-TENG sensors is determined by the available space with a 

certain design or size of the manipulator structure. For the L-TENG sensor, the larger the size 

of the manipulator structure or more reserved space for the sensor, the larger gear that can be 

installed, thus reserving more space on the gear surface for more gear teeth and an improved 

detecting resolution due to the greater number of teeth under a certain arc of rotation. Besides, 

with a specific size of the L-TENG sensor or the gear, we can further utilize advanced 

fabrication processes, such as MEMS process, micro-machining, etc., to increase the teeth 

density and improve the resolution. Considering the relatively small size of the current 

manipulator design and the low cost of the 3D-printing fabrication process, the current 

resolution of the L-TENG sensor is acceptable as one feature of the object size for further 

machine learning. For the T-TENG sensor, the resolution is determined by the gap between 

adjacent electrodes and the total number of electrodes within a certain area of the tactile panel. 

Commonly, for such a grating structure, more grating electrodes with a smaller gap will result 

in a higher resolution, and many high-resolution grating solutions based on triboelectric have 

been proposed before.[16,17] However, in our design, more grating electrodes also mean more 

channels of the output signal and more complex data to be used for machine learning. Though 

more features and information can be extracted to increase the recognition accuracy due to the 

increasing channel numbers, when the accuracy has reached a certain level, the cost and benefit 

will not be proportional. In our case, the 10 mm level resolution of the T-TENG sensors already 
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able to contribute a high accuracy of 97.143% when fused with the L-TENG sensor data, which 

is acceptable for the low cost and energy-saving purpose with a minimalistic design.  

 

Additional test have been added to see the influence of the sensor resolution on the machine 

result. Due to the current limitation of the 3D-printing fabrication process we used and the 

specific manipulator size, the resolution of the L-TENG sensor is relatively difficult to be 

improved at this stage. However, it is easy for us to increase the number of short electrodes 

from three to four in the T-TENG sensors to improve the resolution from 10 mm to ~6.67 mm, 

and see the machine learning result. In the experiment, we integrated one pneumatic finger with 

the L-TENG sensor and the T-TENG sensor and test its recognition performance on 5 objects: 

apple, orange, big box, long can, and short can. Figure S13(a) shows that when the number of 

the short electrodes is three, the classification accuracy can reach 92%, and can be further 

improved to 94% when the number of the short electrodes increases to four depicted in Figure 

S13(b), proving that the enhanced resolution and the increased data/channel number will benefit 

the machine learning result. 

 

Supplementary Note 2. Humidity effects on the T-TENG sensor output.  

The main structure of the L-TENG sensor is packaged with the PLA material as shown in Figure 

1(a-i), while the T-TENG sensor is directly exposed to the surrounding air and the contact 

surface of the objects. So the moisture in the air or on the surface of the object will have a 

greater impact on the outputs of the T-TENG sensor. Actually, the contact position detecting 

mechanism of the T-TENG sensor is based on the voltage ratio between the short electrodes. 
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Although the output of triboelectricity will become smaller under high humidity, the degree of 

change of all short electrodes’ outputs is the same, so the ratio of each other will not change, 

and the position detection function will not be affected. However, for the long electrode which 

detects the contact area based on the output voltage amplitude, the detecting ability will be 

influenced. 

 

To further evaluate the humidity effects on the T-TENG sensor output, we have done the extra 

experiments under different humidity conditions as shown in Figure S14. The normal relative 

humidity in the surrounding air is about 70% - 80% RH. It is clear that the output voltage 

amplitude of the T-TENG sensor declines gradually when the humidity increase from 65% to 

85%, and drops sharply when the relative humidity reaches 95%. Because we use the voltage 

spectrum generated during the process of grasping objects directly for machine learning, the 

variation in voltage amplitude under different humidity will inevitably affect the results of 

machine learning. However, if we collect the data under different humidity and combine them 

into a more generalized data set, i.e. the category of each object contains the data that the object 

was captured under different humidity conditions, the influence of humidity on accuracy will 

be avoided to a certain extent. 
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