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Artificial Intelligence of Things (AIoT) Enabled Virtual Shop
Applications Using Self-Powered Sensor Enhanced Soft
Robotic Manipulator

Zhongda Sun, Minglu Zhu, Zixuan Zhang, Zhaocong Chen, Qiongfeng Shi,
Xuechuan Shan, Raye Chen Hua Yeow, and Chengkuo Lee*

Rapid advancements of artificial intelligence of things (AIoT) technology pave
the way for developing a digital-twin-based remote interactive system for
advanced robotic-enabled industrial automation and virtual shopping. The
embedded multifunctional perception system is urged for better interaction
and user experience. To realize such a system, a smart soft robotic
manipulator is presented that consists of a triboelectric nanogenerator tactile
(T-TENG) and length (L-TENG) sensor, as well as a poly(vinylidene fluoride)
(PVDF) pyroelectric temperature sensor. With the aid of machine learning
(ML) for data processing, the fusion of the T-TENG and L-TENG sensors can
realize the automatic recognition of the grasped objects with the accuracy of
97.143% for 28 different shapes of objects, while the temperature distribution
can also be obtained through the pyroelectric sensor. By leveraging the IoT
and artificial intelligence (AI) analytics, a digital-twin-based virtual shop is
successfully implemented to provide the users with real-time feedback about
the details of the product. In general, by offering a more immersive experience
in human–machine interactions, the proposed remote interactive system
shows the great potential of being the advanced human–machine interface for
the applications of the unmanned working space.

1. Introduction

Digital twin refers to a digital replica that can provide real-time
monitoring or maintenance optimization of physical systems in
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the manufacturing, healthcare, and auto-
motive industry.[1,2] With the gradual roll-
out of the 5G and Internet of Things (IoT)
technology across the world, the digital
twin will be much easier to be achieved.
Based on the information from the dis-
tributed sensory network, one of the key
applications is to inspect the physical ob-
jects with the up-to-date status, including
both static properties, i.e., inherent features
of the physical objects such as shape, size,
color, etc., and dynamic properties, i.e., the
real-time position, movement, gesture, and
motion of objects that will change over
time, etc.[3] This type of cyber-physical sys-
tem enables the advanced interaction vir-
tually and remotely,[4] showing the poten-
tial in realizing real-time parallel control in
unmanned working spaces. Currently, the
global pandemic of the coronavirus disease
2019 (COVID-19) has made staying at home
a normal life. The digital-twin-based remote
interactive system may bring great conve-
nience in various scenarios, such as online

shopping and unmanned factory. Specifically, online shopping
has become an indispensable part of our daily life in the infor-
mation age.[5] The online virtual shop system will not only pro-
vide immersive experience and more details about the products
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in the augmented reality (AR) or virtual reality (VR) spaces, but
also enables the intelligent robots to perform the joint opera-
tions and to provide real-time feedback sensation in real space.
For establishing such a virtual shop system for shop floor man-
agement and screening of merchandise, except for the conven-
tional methods through computer mouse, touchscreen, or video-
based observation, many works have been done recently to de-
velop wearable manipulators[6–9] that provide immersive experi-
ence to users with the sensory and haptic feedback functions,
such as gesture control, direct projection of body motions, and
haptic stimulators. While for the anthropomorphic robots in real
space, the realization of the human perception system is essen-
tial to provide feedback information precisely. Compared with
the rigid robotic manipulators widely used in various indus-
tries, soft robots[10–21] made by flexible materials, e.g., thermo-
plastic polyurethanes (TPU), are more suitable to fabricate the
humanoid robotic finger due to the flexibility, lightweight, multi-
degree of freedom, and excellent conformability, etc.[22–37] Gener-
ally, the low-cost solution of a soft robotic system with marginal
sensing functions is desired for the massive deployment of the
humanoid robotics.

Currently, many works have used the camera as the sensing
unit to help robots to perceive the external world.[38–41] However,
this strategy has limitations in the dark environment of many un-
manned spaces due to the low visibility and poor image quality. In
this case, the infra-red (IR) camera is widely adopted as the sens-
ing method for the dark environment, which provides not only
the temperature information but also the shape-related informa-
tion of the objects. However, most of the recent IR-images related
works are focus on the object detection in the dark,[42,43], e.g., ve-
hicle and pedestrian detection, where the object recognition is a
two-class classification service for target detection, which means
only target and nontarget recognition are required. The scenario
of multiobject classification, especially indoor object recognition,
has not been given enough attention due to the relatively lower
resolution and fewer object features that can be captured com-
pared with the visible light-based camera. Under this circum-
stance, an embedded sensory system that is highly compatible
with the robots for working assistance in a dark environment can
be a complementary solution for the dark space applications in
addition to the technology using IR camera-based indoor object
recognition, with the advantages of providing additional features
other than that based on visual to enhance the recognition abil-
ity, as well as serving as a low-cost solution, i.e., saving bandwidth
and computing resources, due to the much lower data complexity
compared with that of visual images.

By considering the large deformability of the soft robots,
flexible tactile and strain sensors[44,44–64] have been developed
frequently due to the better compatibility compared to the
conventional rigid sensors, i.e., potentiometer and encoder. For
instance, Goldoni et al. have proposed a nanostructured resistive
strain sensor based on a carbon nanomaterial for monitoring
the motions of a robotic segment.[44] Bai et al. have proposed
a silica-based distributed fiber-optical sensor that can measure
the mechanical deformation of stretching, bending, or pressing
for soft robotics.[45] In summary, current common mechanical
stimulus sensing approaches for soft robots include conductive
nanocomposites,[65,66] photodetection,[67,68] and electromagnetic
effect.[69] Besides, the temperature sensing ability is also im-

portant for the robot perception. Recent flexible solutions on
accurate 2D temperature mapping show the possibility of real-
izing a more biomimetic temperature sensing system with high
sensitivity and flexibility. Gong et al. have developed a graphene
nanoribbon-based flexible temperature sensor with high ther-
mosensitivity that can be used for body temperature monitoring,
human touch identification, and 5 × 5 array temperature
mapping.[70] Shin et al. have reported a negative temperature co-
efficient thermistor-based artificial skin, which can be attached to
the robotic hand in array to simulate the network of thermorecep-
tors densely distributed on the human skin with excellent spatial
resolution.[71] Moreover, an emerging sensor fusion concept that
integrates sensors capable of detecting various parameters, i.e.,
temperature, tactile, strain, etc., is also important in developing
the multifunctional sensory system of anthropomorphic robotic
fingers. Li et al. have reported a quadruple tactile sensor capable
of pressure sensing, material thermal conductivity sensing,
and bimodal temperature sensing, so that the shape, material,
and texture of objects can be perceived through the fusion of
multiple sensing information.[72] Wan et al. have proposed a
bimodal artificial sensory neuron based on ionic/electronic
hybrid neuromorphic electronics to implement the visual-haptic
fusion, providing multidimensional spatial information for the
robotic hand.[73] However, many of these mentioned meth-
ods are still confronted with challenges in cost effectiveness,
energy consumption, compatibility of materials and process.
Based on this, the flexible self-powered approaches, including
triboelectricity[74,75] and piezoelectricity[76] for stimulus detec-
tion, and thermoelectricity[77] and pyroelectricity[78] for temper-
ature sensing, will have great advantages in realizing long-term
sustainable IoT intelligent systems because these sensors can
generate electrical signals without external electrical bias, i.e.,
zero-power consumption at the sensor itself, and are made with
low-cost fabrication technology. These advantages are indispens-
able for enabling massive sensor nodes to collect multimodal sen-
sory information aiming at the future ubiquitous IoT framework.

Triboelectric nanogenerator (TENG) refers to a device or
a mechanism using the coupling effect of triboelectrification
and electrostatic induction to generate electrical charges. This
mechanism has been frequently studied as an emerging energy
harvesting technology that can efficiently scavenge the mechan-
ical energy.[79,80] Compared with flexible piezoelectric-based
sensors, TENGs possess the advantages of low cost, high flexi-
bility brought by the wide options of materials, making it being
widely explored as self-powered wearable sensors for strain,
tactile, and gesture sensing.[7,81–95] Meanwhile, pyroelectric-
based sensors with the self-generated electrical signals when
encountered with temperature changes,[96–100] can be utilized
as self-powered temperature sensing units. With the increas-
ing demand of flexibility for the wearable scenario, polymer
pyroelectric materials, such as poly(vinylidene fluoride) (PVDF),
polyvinylidene fluoride-trifluoro ethylene (P(VDF-TrFE)), have
been widely investigated. Compared with the thermoelectric sen-
sor whose performance is limited by the temperature gradient,[77]

pyroelectric-based self-powered temperature sensor capable of
converting temperature change over time into electrical potential
without strict working conditions shows great applicability in
the wearable and robotic fields.[101,102] Song et al. developed
a BaTiO3-based pyro-piezoelectric sensor system, in which
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pyroelectricity is applied to sense real-time temperature varia-
tions induced by a finger.[103] Wang et al. successfully utilized
a PVDF layer as the actuation, as well as the temperature sens-
ing unit of a light-driven robot for integrated perception and
motility.[78]

In terms of the advanced data interpretation, the new era of ML
from AI paves the way for strengthening the functionalities of
sensors with AI-enhanced data analytic.[104–106] Together with the
AIoT network, more comprehensive sensory information can be
extracted for more diversified applications in the wearable area.
Kim et al. proposed a novel electronic skin sensor attached to
the human wrist, which can real-time decode the complex mo-
tion of five fingers with a deep neural network-enabled rapid sit-
uation learning.[107] Recently, several works have demonstrated
the triboelectric-based wearable sensors with AIoT technology
for advanced human–machine interaction. Zhu et al. developed
a glove with 16 triboelectric tactile sensors to realize grasped ob-
ject recognition with high accuracy of 96%.[7] Wen et al. success-
fully used ten triboelectric textile sensors for gesture identifica-
tion with an accuracy of 95.23%.[92] The subtle features hidden in
the triboelectric waveform, including contact sequence, collision
vibration, etc., can effectively enhance the perceptual capability
of the integrated intelligent system.[108] Compared with the data
glove with the vast amount of sensor nodes,[109] the minimalistic
designs also show the comparable performance with the aid of
ML analytics.

Similar to the aforementioned wearable sensors, TENG-based
flexible sensors are also utilized to realize the monitoring of
the external stimulus and the self-deformation for establishing
the intelligent perception of the soft robotic system. Chen et al.
integrated TENG sensors inside the chamber of a soft actuator
for continuous bending measurement and feedback control.[110]

Lai et al. proposed triboelectric robotic skins for the active
sensing of proximity, contact and pressure.[111] Zhu et al. used
3D printing technology to directly print a soft robotic finger with
a triboelectric curvature sensor.[112] However, for realizing more
complex functions, e.g., objects recognition, to enhance the in-
telligence of anthropomorphic robots in virtual shop application,
the multimodal sensing data generated from different sensors
are needed to be further interpreted and integrated with ML tech-
nology, especially for the concerns of identifying different objects
with similar shapes, or the same objects with different grasping
direction.[72,113] In addition, the pyroelectric-based temperature
perception is also important for soft robots to enhance the
intelligence of object recognition, such as identifying the cold or
hot drink. Overall, as an instance of the virtual shop, an advanced
interactive system with both the intelligent soft manipulator
with the multifunctional sensory system, and the immersive
virtual interface which offers comprehensive information of the
products in real space, will greatly improve users’ experience.

Herein, we integrate a soft-robotic manipulator with an L-
TENG sensor (Figure 1a-ii) for finger bending monitoring, a T-
TENG sensor (Figure 1a-iii) for contact position and area detect-
ing, and a PVDF sensor (Figure 1a-iv) for temperature sensing.
The T-TENG sensor made of silicone rubber shows good flexi-
bility, which can fit and follow the pneumatic fingers well under
different deformation conditions. The L-TENG sensor measures
the bending angle by counting output peaks, capable of avoid-
ing environmental influences (humidity, temperature, etc.). The

PVDF sensor detects the temperature of grasped objects based
on pyroelectric output amplitude with high linearity in a wide
temperature range, and the temperature resolution can be as low
as 1 °C. The integrated multifunctional sensory system mimics
the biological sensory system of human skin (Figure 1b), which
contains various receptors responding to different physical infor-
mation, i.e., L-TENG-based strain sensing, T-TENG-based tactile
sensing, and PVDF-based temperature sensing. By integrating
the tactile and strain sensory information from the sensors at the
data level through the IoT module, ML enhanced data analytic
can be leveraged to help the manipulator realize more complex
perception functions. As a result, the recognition of grasped ob-
jects is realized as a validation feedback in the digital-twin-based
virtual shop application. Furthermore, the temperature sensory
data will be incorporated at the decision level, more comprehen-
sive information of the grasped objects can be obtained to pro-
vide the actual status of the item in real space. Compared with
the current flexible solutions listed in Table S1 (Supporting In-
formation), the proposed fully self-powered solution shows its
unique advantages considering the diversified sensing functions,
i.e., tactile, deformation, temperature sensing, that have been
achieved in the one integrated system. With the further explo-
ration of the proposed digital-twin-based sensory interactive sys-
tem, there will be a promising potential of enhancing intelligence
and efficiency in various applications, ranging from healthcare to
industrial automation.

2. Design and Working Mechanisms of the Soft
Manipulator Using Self-Powered Sensors

2.1. Working Mechanism of the Pneumatic Actuator

The soft-robotic manipulator consists of three pneumatic actua-
tors as shown in Figure 1a-i, and the working mechanism and
the detailed hollow-bellows design of the actuator are depicted in
Figure S1a,b (Supporting Information). The top of the pneumatic
actuator is a corrugated structure and the bottom is a flat surface.
The whole soft actuator is directly printed by the 3D printer, and
the technical parameters of the 3D printing process can be found
in Table S2 (Supporting Information) and Experimental Section.
As the device is inflated by air, the top of the actuator will have a
larger deformation due to the relatively lower stiffness compared
to the bottom, resulting in the bending of the soft actuator, as
shown in Figure S1c (Supporting Information). Besides, when
the cavity is inflated, it will bulge, causing the adjacent sidewalls
to contact and increase the deformation of the actuator. The bend-
ing angle of the actuator is nearly linear with the applied air pres-
sure within a specific range, which has been proven by the pre-
vious works[114] and can be used to precisely control the degree
of deformation of the soft actuator. When a certain amount of air
pressure is applied, the three actuators of the soft manipulator
will bend simultaneously, thereby exerting a three-sided balanced
contact force on the object and realizing the function of grasping.

2.2. Working Mechanisms of the TENG Sensors

The structure of the L-TENG sensor is shown in Figures 1a-ii
and 2a-i. A gear is mounted on the metal shaft, with a layer of
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Figure 1. a-i) The configuration of the sensor-integrated smart manipulator. The structure and functionality of a-ii) the L-TENG sensor, a-iii) the T-
TENG sensor and a-iv) the PVDF temperature sensor. a-v) Schematic diagram of diversified applications that can be enabled by the developed smart
manipulator system. b) The strain, tactile, and temperature sensing function enabled by various types of receptors in human skin under biological neural
network, corresponding to the three kinds of sensory information of bending angle, touch & pressure and temperature achieved by the L-TENG, T-TENG,
and PVDF sensor respectively.

Ni-fabric conductive textile covered on the gear surface. One end
of the strip is fixed on the shaft, and the other end is fixed on the
fingertip of the pneumatic actuator. When the pneumatic actua-
tor is inflated and deforms, the strip will be stretched and drives
the gear to rotate, resulting in intermittent contact between the
Ni-fabric covered gear teeth and PTFE thin film. Due to triboelec-
trification on the contact surface and electron affinity difference,
the PTFE thin film tends to attract electrons and hold them on the
surface, while the gear teeth tend to lose electrons and become
positively charged. During the following rotation and contact-
separation process, the variation of the electrical potential from
the electrostatic induction between the electrodes and the ground
will drive electrons flow and generating the triboelectric output
peaks as shown in Figure 2a-ii. Here, one output peak means a
complete cycle of contact and separation between a single tooth
of the gear and the PTFE film, and a bending angle of 30° of the
pneumatic actuator. So the continuous deformation of the fin-
ger can be measured according to the output peak numbers, and
the resolution of the L-TENG sensor could be further increased
with increasing gear size and gear teeth number. Besides, the disc
spring connected with the shaft is compressed when the pneu-
matic finger is inflated and will be released and provide the pull-
back force for the pneumatic finger to recover when air goes out,

making the manipulator respond more quickly and ready for the
next gripping.

For the design of the T-TENG sensor (Figures 1a-iii and 2b-
i, four distributed electrodes are attached to the TPU substrate,
with a layer of silicone rubber covered on the top. Three short
electrodes (5 mm × 20 mm, labeled as E1-E3) are arranged at
intervals of 20 mm for contact position detecting, and the long
electrode (5 mm × 100 mm, labeled as EL) is attached along the
long edge of the T-TENG patch for contact area measuring. When
the silicone rubber contacts with other objects, charges will be
induced in these four distributed electrodes due to triboelectrifi-
cation and electrostatic induction. The output voltage amplitude
in each short electrode is inversely proportional to the distances
between the electrodes and the contact point. As plotted in Fig-
ure 2b-ii, when the contact position is right above E1, the most
charges will be induced in E1, and the output amplitude is the
highest among the three short electrodes. However, when the
contact position is between two adjacent short electrodes (E1 and
E2), both electrodes will have outputs. Based on this feature, the
contact position on the T-TENG patch can be determined by fur-
ther calculating the voltage ratio of the three short electrodes, as
depicted in Figure S2a (Supporting Information). When the ratio
of one short electrode output to the total output of the three short
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Figure 2. Working mechanisms of integrated sensors. The working mechanism and the corresponding output signal of a) L-TENG sensor and b) T-
TENG sensor. c) The working mechanism of pyroelectric-based PVDF temperature sensor and d) its piezoelectric-pyroelectric superimposed output
when contacting with TEC under different temperatures with contact force of 40N. e-i) The calculated peak values of the PVDF sensor during contact
motion when the temperature of TEC equals to 0 °C, 10 °C, 20 °C, 30 °C, 40 °C, and 50 °C. The temperature sensing performance test of the PVDF sensor
in the temperature range of e-ii) 40 °C – 50 °C and e-iii) 10 °C–20 °C with 1 °C intervals. f) The influence of the pressure-induced output on temperature
sensing.

electrodes (Ratio = Vi∕
∑3

i=1 Vi, i means ith electrode) is higher
than 0.8, the contact position can be regarded as being directly
above the electrode. When the ratio value is between 0.3 and 0.7,
the contact position can be seen as being between two adjacent
electrodes. The resolution of the position detecting is 10 mm con-
sidering the 20 mm interval between two short electrodes and
can be further increased by decreasing the interval distance and
attaching more short electrodes along the length direction of the
patch. In addition, different contact areas will also induce differ-
ent amounts of charges in EL. As shown in Figure S2b (Support-
ing Information), when the external stimuli occur at different lo-
cations on the patch surface in the form of point contact with the
same contact force, there is almost no difference in the output
amplitudes of EL since the approximate contact area. However,

the increase of the contact area will generate more charges in EL.
The output voltage amplitude is nearly proportional to the con-
tact area (Figure S2c, Supporting Information), which can clearly
reflect the variation of contact area during grasping and used to
perceive the gripping mode of the soft manipulator, i.e., point
contact or area contact.

2.3. Working Mechanism of the PVDF Temperature Sensor

Temperature sensing is another important function by consid-
ering the relative higher or lower temperatures of many items
against the room temperature, e.g., frozen meat, iced drink, and
hot coffee, etc. This information is valuable for customers to have
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a thorough understanding of the good and choose the product
that best fits their preference. In order to be compatible with
the nonlinear deformation of soft robots, the polyvinylidene fluo-
ride (PVDF) sensor with high flexibility is chosen and integrated
with the smart manipulator serving as the temperature sensing
unit based on the pyroelectric mechanism. Figures 1a-iv and 2c
show the detailed structure of the PVDF sensor, including a poled
PVDF film with Ag electrodes on both surfaces and packaged
with polyethylene terephthalate (PET) thin film. Similar to the
T-TENG sensor panel, the PVDF sensing unit is also attached to
the inner surface of the pneumatic finger and utilized for gen-
erating the temperature-related output when in contact with the
external objects. The strain on the PVDF film will also induce
pressure-related output due to the piezoelectric property of the
PVDF material during the collision process. Decoupling the pres-
sure influence for obtaining the accurate temperature output is
then required to be solved. The working mechanisms of piezo-
electric and pyroelectric can be found in Figure S3 (Supporting
Information) and Figure 2c, respectively. As depicted in Figure S3
(Supporting Information), the piezoelectric output can be gener-
ated by the polarized PVDF sensor under the compressive/tensile
stress due to the change of the polarization intensity. However,
for the mechanism of pyroelectric shown in Figure 2c, the output
generated based on the thermally induced random swing of the
electric dipole around its balance axis. When the polarized PVDF
film cools, since the electric dipole oscillates within a smaller
spread angle due to lower thermal activity, the spontaneous polar-
ization will be enhanced. Then due to electrostatic induction, the
variation of the spontaneous polarization can drive electrons to
flow between the two electrodes and generate the output. When
the temperature applied to the polarized PVDF film rises, the
spread of the electric dipoles on their respective alignment axes
becomes greater, reducing the spontaneous polarization and re-
sulting in the electron flow in the opposite direction.

To test the temperature sensing performance of the PVDF
film, a force gauge and a thermoelectric cooler (TEC) are utilized
to simulate the situation of contact with objects under different
temperatures, and the detailed set up can be found in Figure S4
(Supporting Information), where the PVDF sensing unit (12 mm
× 22 mm) is attached to the moving load cell of the force gauge
and contact with a fixed TEC whose temperature can be con-
trolled by the TEC controller. Figure 2d shows the output voltage
of the PVDF film when in contact with the TEC under different
temperatures with the same contact force of 40 N. When there is
no temperature difference between the TEC and PVDF sensing
unit (TEC temperature = 25 °C, room temperature), the output
is purely generated by the contact pressure, where the contact
motion induces a negative peak, and followed by a positive peak
when the PVDF film and TEC are separated. When the tempera-
ture of the TEC cools down, and lower than that of the PVDF film
(TEC temperature = 20 °C, 10 °C, 0 °C), a larger and wider nega-
tive peak is generated due to the temperature difference based on
pyroelectric when contact happens, whose direction is the same
as that of the output caused by pressure, and shows a superim-
posed effect between the piezoelectric and pyroelectric outputs.
Besides, it can be seen that the negative peak value increases as
the temperature difference increases. However, when the tem-
perature of the TEC rises and higher than the room tempera-
ture (TEC temperature = 30 °C, 40 °C, 50 °C), a positive voltage

peak is generated during the collision due to the greater spread of
the electric dipoles on their respective alignment axes in PVDF,
whose peak direction is opposite to that of the pressure, as well
as the output caused by the lower temperature, and completely
counteract the piezoelectric output as shown in the right half
of Figure 2d. Figure 2e-i depicts that the pyroelectric peak value
is approximately linear in the temperature range of 0 °C to 50
°C and increases with the increasing temperature. Figure 2e-ii,iii
demonstrate the linearity and sensitivity of the PVDF sensing
unit under high temperature and low-temperature sensing, re-
spectively. Even measured at intervals of 1 °C, the variation of the
temperature can still be clearly distinguished, showing the strong
temperature perceiving ability of the PVDF sensor.

To further investigate the influence of the contact pressure on
temperature sensing, the PVDF film is tested with different con-
tact forces under room temperature first, and the generated out-
puts are plotted in the black line with blue squares in Figure 2f.
The result shows that the negative piezoelectric output ampli-
tude is linear with the contact force and increases from 0.42 to
1.56 V with a slope of 0.028 V N-1 as the contact pressure in-
creases from 10 to 50 N. Due to the superimposed effect men-
tioned above, the varying piezoelectric outputs under different
contact pressures may affect the pyroelectric–piezoelectric super-
imposed outputs, resulting in the error of the temperature per-
ception in terms of low-temperature objects. As the black line
with green dots in Figure 2f shows, when the TEC temperature
is maintained at 15 °C, the output peak values change with the
contact pressure. The trend and degree of the variation are simi-
lar to that of the outputs purely induced by pressure, proving the
influence of contact pressure changes on low-temperature mea-
surement. However, when the temperature of TEC is higher than
the room temperature and maintained at 40 °C as depicted in the
red line in Figure 2f, there is no obvious change in the output
amplitudes under different pressures, indicating that the contact
pressure nearly has no influence on the high-temperature sens-
ing. The different effects of the contact pressure on the high/low-
temperature sensing may result from the different response time
of the pyroelectric output at high/low temperatures, as shown
in Figure S5 (Supporting Information). It is clear that the re-
sponse time in the high-temperature zone (temperature higher
than the room temperature) is generally longer than that of the
low-temperature zone (temperature lower than the room temper-
ature). The shorter response time under a low-temperature situa-
tion gives rise to more pressure output superimposed on the py-
roelectric peak, thus resulting in a greater impact. Combining the
results from Figure 2f,e-iii, an error of 0.06 °C N-1 can be calcu-
lated for a low-temperature sensing situation (T = 15 °C), which
is acceptable considering the small variation of the contact pres-
sure when grasping objects by the soft manipulator. Besides, in
Figure S5 (Supporting Information), we can also find that when
the temperature continues to decrease (T = 10 °C, 0 °C), the re-
sponse time will increase slightly, so that the influence and error
induced by the pressure will also be reduced accordingly.

3. ML-Enabled Automatic Grasped Objects
Recognition System

The above results prove that the L-TENG and the T-TENG sensors
are applicable to be used for contact area, position, and bending
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Figure 3. ML-enabled automatic grasped objects recognition system. a) The detailed framework of the 1D-CNN ML analytic. b) The typical 15-channel
output spectra collected by the integrated TENG sensing system of 6 spherical and 3 oval objects as the input of the ML algorithm. Columns of 15-
channel spectrums labeled as 1–9 from left to right corresponding to the signal of grasped objects labeled as 1–9. c) The corresponding confusion
map for the 6 spherical and 3 oval objects after recognition. d) The diagrams of the manipulator grasping 5 elongated objects in vertical and horizontal
manner. e) The deformation condition and contact point map of the manipulator for grasping elongated object horizontally and vertically. The marks of
five-pointed star represent the contact positions on the T-TENG sensor patches integrated on three pneumatic fingers f) The detailed framework of the
t-SNE visualization process. g) The t-SNE visualization results of the data from both grasping vertically and horizontally. 1V–5V and 1H-5H represent
the data points of the 5 elongated objects grasped vertically and horizontally respectively. h) The confusion map of the 5 elongated objects under two
different grabbing angles (grasping vertically: 1V–5V and grasping horizontally: 1H–5H).

angle detection for soft manipulators due to their high flexibil-
ity and good compatibility with soft robots’ no-joint deformation.
By integrating three L-TENG sensors and three T-TENG sensors
with a tri-finger pneumatic gripper, a smart soft robotic manip-
ulator is developed, as illustrated in Figures 1a-i and 3a. Each L-
TENG sensor has one channel, and each T-TENG sensor has four
channels. There are 15 channels in total for grasping data collec-

tion. When the objects are grasped by the soft manipulator, the
stimuli applied on the inner surface of each finger will generate
a three-dimensional sensory information that contains the con-
tact positions and areas of the three contact surfaces. The defor-
mation of each finger also contains information about the sizes
and shapes of the grasped objects, especially for the asymmetric
objects. Unlike the individual values of contact position, contact
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area, and bending angle calculated from the sensing signal, the
original 15-channel spectrum in the time domain of one gripping
motion may contain more hidden information, including contact
sequence, collision vibration, bending speed, etc. This informa-
tion is a valuable feature of each sample for better classification.
Moreover, machine learning methods, including support vector
machine (SVM),[115] one-dimensional convolutional neural net-
work (1D-CNN),[7,92,108] deep belief network (DBN),[116] etc., have
been proven as effective tools that can automatically extract the
features from the time domain data of the triboelectric signals
and make the identification between different samples with high
accuracy. As shown in Figure 3a, a three-layer 1D-CNN was then
constructed for data feature extraction and automatic recognition
to verify the sensing ability of the proposed intelligent manipu-
lator system. The detailed parameters of the ML architecture can
be found in Table S3 (Supporting Information).

A data set contains six spherical objects, including baseball,
tennis ball, apple, orange, tangerine, and ping-pong, and three
oval objects, including avocado, kiwi, and egg, with similar
shapes, is established by repeating grasping of each object by
100 times, as illustrated in Figure 3b. The data length for each
channel is 200, so there are 15 channels * 200 = 3000 features in
total for each sample as the input of the 1D-CNN analytic. The
100 samples of each object are randomly divided into training
and testing set at a ratio of 8:2. Though the output voltage spec-
tra of the six spherical objects and three oval objects look similar
and difficult to be directly classified through the output signal
as plotted in Figure 3b. After 50 epochs of training, the testing
accuracy of these nine objects can reach up to 96.111%, show-
ing the powerful perceiving ability of the proposed learning ar-
chitecture and sensing system when encountering objects with
approximate shapes. In the confusion map (Figure 3c), it can be
found that the most errors occur between baseball, tennis ball,
apple, and orange, which is acceptable considering the similar
sizes and shapes of these four spherical objects.

Different from grasping spherical objects, for which the grab-
bing angle nearly has no effect on the output signal, different
grasping angles of the same elongated object will result in differ-
ent contact positions on the T-TENG sensor panels (Figure 3e),
as well as different deformation of the three pneumatic fingers,
thus generating various output spectra for the same elongated
object. In addition, when different elongated objects are grasped
with the same angle, the similar contact position, contact area,
and fingers’ bending angle caused by their approximate diam-
eter also increases the difficulty of recognition. Here, five elon-
gated objects are selected to be grasped vertically and horizontally
as illustrated in Figure 3d. Though their shapes and sizes have
visible differences, it is difficult to directly distinguish these five
elongated objects from the output spectrum due to the similar
contact position under the same grasping angle as plotted in Fig-
ure S6a,c (Supporting Information). However, after the feature
extraction process of the construed 1D-CNN learning architec-
ture, the t-distributed stochastic neighbor embedding (t-SNE) al-
gorithm as a nonlinear dimensionality reduction technique well-
suited for embedding high-dimensional data for visualization in
a low-dimensional space of two or three dimensions is success-
fully utilized.[117] It can reduce the dimensionality of extracted
features achieved by 1D-CNN (Figure 3f) and visualize the clus-
tered results of the data set of vertical and horizontal grip, re-

spectively, as shown in Figure S6b,d (Supporting Information).
In Figure S6b (Supporting Information), it is clear that the 100
sample points of each object grasped vertically are clustered to-
gether, proving that the proposed smart manipulator system is
able to sense the subtle differences hidden in the waveform be-
tween different categories and make the correct perception. By
connecting a layer of softmax for further identification, the test-
ing accuracy of the vertical grip can reach 98.0% with only two
errors in 100 testing samples, as depicted in Figure S7a (Support-
ing Information). Similarly, a high perceiving accuracy of 97.0%
can also be achieved for the horizontal grip as shown in the con-
fusion map in Figure S7b (Supporting Information).

By combining these two data sets of different gripping angles
into a whole data set, the clustered result of the 10-category data
set is visualized in Figure 3g. Though the data points from the
same object under the same gripping angle are clearly gathered
together, the data of the same object’s two gripping angles is di-
vided into two clusters, showing that the learning architecture
has identified the different angles of the same object into dif-
ferent categories due to the varying contact positions, contact ar-
eas, and pneumatic fingers’ deformation degrees. A clear divid-
ing line can be seen in Figure 3g between the five horizontally
gripping and five vertically gripping data points, indicating that
the generalized gripping angle for elongated objects can also be
detected by the smart sensing system. When an unknown elon-
gated object is grasped, this object could be classified into a big
category according to the grasping angle first, then processed in
the category without the influence of the gripping angle for better
classification. The confusion map in Figure 3h demonstrates the
high recognition accuracy of 97% for the combined data set by the
constructed learning architecture. Most errors occur within the
same gripping angle, which is reasonable considering the simi-
lar contact and bending situation. Moreover, if we fuse the data
of the same object under different grasped angles into the same
class and tag with one label, then retraining, the perceiving accu-
racy is still as high as 96.0% as shown in Figure S7c (Supporting
Information), meaning that the effect of gripping angles could be
avoided by collecting more data of different grasped angles for the
same elongated object to make the data set more generalized.

4. Online Virtual Shop Application

With the rapid development of the Internet and logistics, online
shopping has become an indispensable part of our daily lives,
which brings us great convenience and helps us collect favorite
products without going out. Besides, with the gradual rollout of
AIoT technology, AI robots have the potential to replace humans
and become the main force in the simple working environments,
e.g., assembly factories, shops, etc. To show the potential of the
proposed intelligent manipulator for future online shopping and
unmanned shop applications, we propose a digital-twin-based
virtual shop system, as illustrated in Figure 4a. With this tool,
users can have an immersive shopping experience in the digital-
twin virtual store enabled by VR technology, which duplicates and
simulate the real space of the physical store. In the meantime, an
intelligent robotic manipulator in the real unmanned shop space
will perform coordinated movements corresponding to the mo-
tions and selections from the user side, then grasping the cho-
sen good and making the perception according to the sensory
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Figure 4. The demonstration of the digital-twin-based virtual shop application. a) System architecture of the digital-twin-based virtual shop. b) The 28
objects with different shapes and sizes to be identified by the system. c) The t-SNE visualization of the clustered result of the data set including 28
categories. d) The real-time system interface with the testing object of a big box. The processes with red background represent the user operations in
the cyber space. The processes with blue background represent the robot motions in the real unmanned space.

information of sizes and shapes collected from the TENG sen-
sors. The predicted results from the manipulator side can be real-
time transmitted back to the user side and utilized to reconstruct
the selected good in VR space for feedback and validation pur-
poses.

In order to make our system applicable to the normal store sit-
uation, we enlarged the data set with more common goods in var-
ious shapes, including cubic, elongated, cylindrical, oval, spher-
ical, etc., as illustrated in Figure 4b. The number of categories
is increased to 28, which is much larger than the data set com-
posed of 16 objects reported previously,[114] and the correspond-
ing t-SNE visualized result is plotted in Figure 4c. It is obvious
that the data points from each good are clustered together, with
some overlaps between several categories. This overlapping phe-
nomenon does not mean that these data cannot be distinguished
by the machine learning algorithm. The result of this aggregation

is obtained through two-dimensional features for visualization,
and it is difficult for some similar categories to be identified just
based on only two-dimensional features. When using more ex-
tracted features for classification, the high recognition accuracy
of 97.14% can still be achieved as shown in Figure S8 (Supporting
Information), even though the number of categories is as high as
28, showing the applicability of the ML-enabled smart manipu-
lator to various object shapes. In Figure 4c, except for the aggre-
gation of the data from each object, the data points from similar
shapes, i.e., elongated, cubic, cylindrical, oval, and spherical, are
also gathered together and circled with different colors. This phe-
nomenon indicates that when the data set is more generalized
with massive injected categories and data, unknown objects for
the trained model could still be identified based on their specific
shapes: cubic object, spherical object, oval object, etc., demon-
strating the applicability of the sensing system in more general
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object recognition. The stability test of the integrated sensory sys-
tem can be found in Table S4 (Supporting Information). Though
there are some fluctuations in the accuracy when the utilization
cycles reach 500, 1000, 1500, and 2000, there is no obvious de-
cline in the accuracy after continuous testing for two thousand
times, proving the stability of our proposed sensory system for
long-term use.

The specific operation details of the virtual shop system can be
found in Figure 4d and Movie S1 (Supporting Information). In
Figure 4d-i, a big box that existed in the data set is selected and
grasped by the user in the virtual space first. Then the soft manip-
ulator in the real unmanned shop space will grasp the same prod-
uct according to the user’s movement and selection, generating
a 15-channel output spectrum collected from the T-TENG and
L-TENG sensor as plotted in Figure 4d-ii based on the actual con-
tact and deformation conditions of the pneumatic fingers. Next,
the trained ML-enabled analytic model based on the data set of 28
objects makes the identification according to the 15-channel out-
put spectrums, and real-time transmit the feedback information
and reconstruct the virtual objects with the same size and shape
in VR store space. The generated virtual goods are floating above
the user’s hand in the VR space as shown in Figure 4d-iii, where
the user can turn his hand and have a more detailed observation
of the goods from all directions. This function offers a more intu-
itive impression of the products, as well as the feeling of choosing
goods on-site. Besides, the user will also be able to know whether
the robotic manipulator grasps the correct product or not as a
validation function considering the possible errors between the
real and virtual spaces caused by the delay of the status update
in real space. After verification, the user can easily make the fi-
nal decision by putting the object directly to the trolley or back
to the shelf in the virtual space as illustrated in Figure 4d-iv,vi,
triggering the collaborative operations of the robotic arm in the
real space to move the chosen product to the physical trolley or
just leave at its original position (Figure 4d-v,vii). The operation
details are demonstrated in Movie S1 (Supporting Information).
Such an interactive feedback system can help users to interact
with the real space remotely in real-time while giving them an
immersive operating experience.

5. Virtual Shop User Interface Enriched by
Temperature Sensing Information

Apart from the tactile and deformation perception function,
the ability of temperature sensing is also an important part of
realizing the anthropomorphic robotic finger that simulates
the multifunctional human biological perception system. Thus,
we integrate the flexible PVDF temperature sensor onto the
smart manipulator, as illustrated in Figure S9 (Supporting
Information). A piece of sponge is attached between the PVDF
sensing film and the pneumatic finger to increase the contact
area on the PVDF sensor surface during grasping, considering
the bulged surface of the inflated finger. In order to reduce the
mutual influence between the PVDF and T-TENG sensor, one
pneumatic finger is integrated with the PVDF sensor for temper-
ature detecting, with the remaining two fingers integrated with
both of the TENG sensors for shape and size perceiving. Though
the channel number of the TENG sensors has been reduced
from 15 to 10, and the shape/size related information of one

face of the grasped object is lost, the confusion map in Figure
S10a (Supporting Information) shows that a high identification
accuracy of 100% can still be achieved for apple, drink can, and
cup illustrated in Figure 5a based on a new 10-channel data set.
In addition, if a 10-channel data set is extracted from the original
15-channel data set of the 28 objects for retraining, the accuracy
of 95.89% can still be maintained (Figure S10b, Supporting
Information), proving the effectiveness of the 10-channel infor-
mation for object shape perception. To verify the influences of
finger numbers on the recognition accuracy, we have done the
additional test as shown in Figure S11 (Supporting Information),
where only one finger is integrated with the TENG sensors and
the accuracy is 92.857% for the five-channel data set. To conclude,
when the number of TENG sensor-equipped fingers increased
from one to two, the accuracy rate of 28 objects has increased by
more than three percentage points. However, when the number
of fingers equipped with the TENG sensors increased from two
to three, the accuracy increases only about one percentage point
at the expense of much more data from five channels and 1.5
times the data set size. If we continue to increase the number of
fingers equipped with sensors, the accuracy rate will definitely
increase, but the profit will be relatively lower, considering the
increase in the data set size as well as the cost in data processing.

Taking into account that the temperature distribution of many
goods themselves is relatively uniform, a piece of PVDF sensor
(12 mm × 22 mm) is first attached to the fingertip of the pneu-
matic finger to detect the overall temperature of the products,
and the architecture of the TENG–PVDF integrated system is
shown in Figure 5a. When the object is grasped by the smart ma-
nipulator, the ML-enabled analytic will perceive the shape/size
of the object first according to the 10-channel signal spectrum
collected by TENG sensors. After this step, the grasped object
can be successfully classified into different categories based on
its shape/size. Then the output signal of the PVDF sensor can
be utilized to further fuse the temperature-related information
with the identification result at a decision level. It is worth men-
tioning that, when the PVDF sensor is mounted on the soft
manipulator, the collision speed during grasping is faster than
that of using the force gauge, resulting in a much faster gen-
eration of the piezoelectric output than the pyroelectric output,
and less superimposed effect as plotted in Figure S12c,d (Sup-
porting Information). Besides, due to the electron affinity differ-
ence between the PVDF packaging material (PET) and various
objects, the triboelectric output will also be generated during the
collision. However, such collision-induced output peaks are al-
ways generated before the temperature output and can be eas-
ily separated as Figure S12c,d (Supporting Information) shows,
so the interference to the pyroelectric output peak caused by
the collision could be ignored in this case. Figure 5b,c demon-
strates the real-time shape/size/temperature perception of the
smart system for unmanned shop applications, where cups of
coffee and canned drinks with two different temperatures are
tested. The soft manipulator grasps the cup or the canned drink
according to the user’s selection first. Then based on the 10-
channel sensory spectrum plotted in Figure 5b-i,c-i, the grasped
object is successfully recognized as the cup of coffee or canned
drink according to its shape/size. Next, with the temperature
information calculated from the pyroelectric output amplitude
shown in Figure 5b-ii,iii,c-ii,iii, the grasped objects can be further

Adv. Sci. 2021, 2100230 © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH2100230 (10 of 14)



www.advancedsciencenews.com www.advancedscience.com

Figure 5. Unmanned shop temperature sensing. a) The flow chart for the shape-size-temperature fused sensory system. The real-time system interface
with testing object of b) hot/cold coffee and c) room temperature/iced canned drink. d) Illustration of the manipulator integrated with three PVDF
sensors for temperature distribution sensing. The temperature distribution map and the corresponding sensor outputs achieved by the IR camera and
PVDF sensors for e) 1/3 bottle of hot water and f) 2/3 bottle of hot water.

classified into cold/hot coffee or room temperature/iced canned
drink as illustrated in Figure 5b-iv,v,c-iv,v, respectively. The py-
roelectric outputs here are collected by the IoT module, whose
values are slightly different from those directly collected by the
oscilloscope mentioned in the sensor characterization part, and
needed to be recalibrated as Figure S12a,b (Supporting Informa-
tion) shows. The operation details can also be found in Movie S2
(Supporting Information). Besides, the result in Table S5 (Sup-
porting Information) shows that the object temperature nearly
has no influence on the TENG sensor-based object recognition,
where the coffee cup and the Pepsi can are repeatedly grasped
20 times under different temperatures to test the classification
accuracy.

Expert for objects with uniform temperature distribution,
some objects, e.g., 1/2 cup hot/cold water, etc., have tempera-
ture variation in different parts of the body. In view of this sit-
uation, distributed temperature sensor nodes are needed to be
arranged onto the manipulator to capture the temperature dis-
tribution across the object and reflect its accurate temperature
information. Here, we integrate one pneumatic finger with three
PVDF temperature sensors as illustrated in Figure 5d to detect
the temperature of three contact points during grasping: bottom,
mid, and top. By dividing the temperature gradient between two
adjacent detecting points equally, a rough temperature distribu-
tion map could be achieved as shown in Figure 5e,f, and Movie
S3 (Supporting Information). In Figure 5e, 1/3 bottle of hot water
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is grasped and perceived by the smart manipulator, and the real-
time temperature distribution map of the bottle is captured by the
infrared (IR) camera shown in Figure 5e-ii. According to the pyro-
electric outputs generated in the three distributed PVDF temper-
ature sensors during grasping as plotted in Figure 5e-iv,iii illus-
trates another temperature map that calculated based on the col-
lected sensory information, which shows high similarity to the re-
sults achieved by the IR camera, verifying the temperature distri-
bution sensing function of the proposed system. Similarly, when
the hot water in the bottle increased to two thirds (Figure 5f-i), the
hot zone area in the temperature distribution graphs obtained by
the IR camera and PVDF sensor increases simultaneously and
remains consistent, as shown in Figure 5f-ii,iii, proving the re-
liability of the temperature distribution information achieved by
the PVDF sensors.

In addition to the shape and temperature, there are also other
aspects that may be important for shopping, such as the fresh-
ness, which still requires further research to enrich the func-
tionalities of the sensory system. For instance, as a solution to
identifying the freshness, the gas and chemical sensing technol-
ogy are utilized.[118] The corresponding wearable solutions with
high flexibility for food security and industrial applications have
attracted great attention in recent years,[119] showing the great
compatibility to be integrated with the current embedded sen-
sory system to realize the freshness detection function for the
soft manipulator without the help of the camera. On the other
hand, the application of the camera to capture the shape, tem-
perature, and freshness-related information, i.e., color and sign
of defects, is definitely a straightforward solution with the trade-
off of a large volume of data which required greater transmission
bandwidth and computing capacity. The embedded sensory sys-
tem still could be a complementary solution for the visual images
by providing more shape and temperature-related information
from other dimensions (non-visual) to enhance the performance
of the intelligent system after adopting the deep learning enabled
data fusion technology.

6. Conclusion

In general, a soft robotic manipulator integrated with an L-TENG
sensor for bending angle detecting, a T-TENG sensor for contact
position and area sensing, and a PVDF sensor for temperature
sensing is developed, which can mimic the complex and multi-
functional biological perception system of human skin and re-
alize automatic object recognition function. By integrating three
sensors on one pneumatic finger, temperature distribution infor-
mation of the grasped object can also be achieved, which enriches
the perception function of the robotic finger and gives users a
more comprehensive understanding of the product. With the
help of the 1D-CNN ML algorithm for automatic feature extrac-
tion, the classification accuracy for 6 spherical and 3 oval objects
can reach up to 96.1%, showing the identification performance of
the proposed system for objects with similar shapes and sizes. By
tagging the same object grabbed from different angles with the
same label, the influence of grasping angle can be avoided. This
integrated system is also applicable to other shapes of objects,
e.g., cubic, cylindrical, etc., and high identification accuracy of
97.143% is achieved for 28 different shapes of goods. With the im-
proved intelligence of the soft manipulator, a virtual shop which

is able to real-time synchronize user’s intended actions in the VR
space and robotic arm’s motion in the real space with AIoT plat-
form, as well as providing accurate feedback information of prod-
ucts with robot’s integrated multifunctional system, is success-
fully implemented to provide more immersive online shopping
experience. Moreover, with the fusion of the temperature sensory
information from the PVDF sensor and the TENG tactile sensory
data at the decision level, the further interpretation of the objects
related to the temperature distribution can be achieved in addi-
tion to the shape recognition. As a future prospect under the 5G
and AIoT infrastructure, by utilizing the self-powered sensory in-
teractive system with the features of the facile design, low cost,
and high compatibility, etc., together with ML techniques, a smart
society can be established through the intelligent industrial au-
tomation, shopping, education, healthcare, etc.

7. Experimental Section
Fabrication of the TENG-Based Sensors: The short and long electrodes

of the T-TENG sensor were made of Nickel conductive textile, and the di-
mensions were 5 mm × 20 mm and 5 mm × 120 mm, respectively. These
electrodes were attached to the surface of the TPU substrate first, then
poured a layer of mixed solution on top with equal amounts of A part and
B part of the EcoFlex 00-30. After baking at 50 °C for 20 min, the mixed so-
lution will form into a layer of flexible film and become the negative tribo-
electric layer of the T-TENG sensor. The area of the T-TENG sensor patch
is 26 mm × 120 mm. The L-TENG sensor’s main structure was directly
printed by a 3D printer (4max pro, Anycubic), with a layer of Nickel con-
ductive textile covered on gear teeth and a layer of embedded PTFE layer
as the positive and negative triboelectric material respectively.

Fabrication of the Soft Pneumatic Actuator: The bellows-structured
pneumatic actuator was designed with a solid modeling software: Solid-
works 2016, and fabricated by 3D printing with a commercialized 3D
printer (4max pro, Anycubic) using TPU filament (NinjiaFlex, hardness of
shore 85A) as the soft printing material. The detailed parameters of print-
ing can be found in Table S2 (Supporting Information).

Experiment Instruments and Software Platform: The output signals
of the T-TENG, L-TENG, and PVDF sensor for sensor characterization
were collected by an oscilloscope (DSOX3034A, Agilent) with 100 MΩ
impedance. The output signals for the data set collection and IoT based
applications were directly collected by the IoT module (Arduino Mega
2560) with a customized circuit for signal processing. For the soft robot
actuation, the air pressure was detected by an air pressure sensor (ISE30A,
SMC) and controlled by a reducing valve and solenoid valve. The ML-based
data analysis was conducted in the programming environment of Python
and the network architecture was constructed with the help of Keras deep
learning module.
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Supporting Information is available from the Wiley Online Library or from
the author.
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