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Haptic-feedback smart glove as a creative  
human-machine interface (HMI) for virtual/augmented 
reality applications
Minglu Zhu1,2,3,4, Zhongda Sun1,2,3, Zixuan Zhang1,2,3, Qiongfeng Shi1,2,3, Tianyiyi He1,2,3,4, 
Huicong Liu5, Tao Chen5*, Chengkuo Lee1,2,3,4,6*

Human-machine interfaces (HMIs) experience increasing requirements for intuitive and effective manipulation. 
Current commercialized solutions of glove-based HMI are limited by either detectable motions or the huge cost 
on fabrication, energy, and computing power. We propose the haptic-feedback smart glove with triboelectric-
based finger bending sensors, palm sliding sensor, and piezoelectric mechanical stimulators. The detection of 
multidirectional bending and sliding events is demonstrated in virtual space using the self-generated triboelectric 
signals for various degrees of freedom on human hand. We also perform haptic mechanical stimulation via piezo-
electric chips to realize the augmented HMI. The smart glove achieves object recognition using machine learning 
technique, with an accuracy of 96%. Through the integrated demonstration of multidimensional manipulation, 
haptic feedback, and AI-based object recognition, our glove reveals its potential as a promising solution for 
low-cost and advanced human-machine interaction, which can benefit diversified areas, including entertainment, 
home healthcare, sports training, and medical industry.

INTRODUCTION
Human-machine interfaces (HMIs), as a window of communication 
between the user and the particular equipment, robot, or virtual 
world, are the key elements for achieving effective, intuitive, and 
seamless manipulation to complete the tasks. With the aid of ad-
vanced technology, the solutions of HMI switch from the conven-
tional control terminals, such as keyboard, touchpad, and joystick, 
to more diversified and creative alternatives. As a result, more realistic 
interactions between users and machines eventually satisfy the 
additional needs beyond the simple controlling of objects, such as 
virtual social networking. For instance, voice control is widely 
applied in mobile phones, smart cars, and homes to execute verbal 
commands (1), while vision recognition can identify facial features 
and realize human motion capture (2). Furthermore, wrist bands 
containing electromyographic electrodes can record hand gestures 
(3), and electroencephalogram (EEG) electrodes are even able to 
detect human intentions directly, i.e., by detecting brain wave (4). 
However, some of these technologies expose several limitations in 
the applications of virtual reality (VR) and augmented reality (AR), 
for example, both vision and voice recognition struggle to detect 
fine features, such as finger motion. Hence, wearable glove-based 
HMIs have the unique advantages of high precision and multiple 
degree of freedom (DOF) control.

By using wearable glove-based HMI, hand motion could be 
projected into machine, robot, or devices in the VR and AR space. 

This kind of technology can be an important complementary solu-
tion to vision and voice recognition as well; hence, a considerable 
amount of the controlling tasks could be realized. Moreover, subtle, 
emotional, and detailed interaction between human and human 
and human and machine could be realized with the aid of gestures 
and hand motions. More specifically, there are several important 
parameters required to capture the comprehensive information from 
hand and deliver it to the controllable objects. Currently, the finger 
bending actions are the most commonly measured data, and the 
detectable DOFs and sensitivities become the guidelines of fabricating 
the desired data glove. Besides, the identification of shear force (5), 
i.e., the lateral directional motions, gradually becomes another 
research interest as per the requirement of recording the entire 
interactive forces for the use of external tool to enhance the ma-
nipulations from various HMIs. Meanwhile, a series of feedback 
techniques are also necessary to establish an immersed experience 
and improve our sensing capabilities toward the remote or virtual 
objects.

One of the most matured techniques is to apply the inertial 
sensors including an accelerometer and a gyroscope. Relying on 
the high sensitivity of those microelectromechanical system (MEMS) 
sensors, smart gloves usually feature highly sensitive motion track-
ing, and the DOF is determined by the number of sensors (6). 
However, to detect the applied force, additional sensors are required, 
which usually lead to complex circuit and data processing for different 
types of signals. Another commercialized solution for smart gloves 
is to use resistive sensors (7). The strain, normal force, and shear 
force can be quantitatively measured using specific designs, such as 
meandered and spiral-shaped channels (8). In addition, the resistive 
sensors are capable of sensing both the static and dynamic force 
continuously as well. But these sensors also experience drawbacks 
from the temperature effect, zero shift, and creep issues, which need 
further corrections. Recently, attempts to use optical sensing have 
also been reported (9). The proposed devices mainly detect the 
deflection of incident light from a diode to recognize finger bending. 
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The major challenge will be the limitation of detectable bending 
angle within the deflection range of incident light. In general, 
those available glove products reveal their own drawbacks, and 
many of them rely on the introduction of unique designed sen-
sors to achieve advanced control which are not completely ready yet. 
Therefore, improvements of the HMI glove still require the im-
plementation of other emerging technologies.

Development of materials sciences facilitates research studies on 
the sensing of physiological signals (10–11). Numerous designs of 
soft and stretchable electronics have been reported, such as wavy 
shaped and gold or silver nanofiber based. In addition to conform-
ability, different sensing mechanisms have also been studied widely, 
such as transistor-based (12), resistive-based (13), and capacitive-
based (14) sensors for detecting strain, static force, and dynamic 
force, or even the slippery motions with high sensitivities (15). In 
the meantime, various nanogenerators, as devices that convert the 
diversified ambient energy into electricity, are frequently studied in 
recent years (16). For instance, a piezoelectric nanogenerator can 
scavenge the mechanical stimulus via the polarization of the dipole 
moment. For triboelectric nanogenerator (TENG), it refers to the 
charge transfer during the mechanical interactions of two materials 
with dissimilar electronegativity. Both of the two phenomena are 
frequently used to fabricate the self-powered tactile sensors now, as 
they can reduce the power consumption of the entire system. Lead 
zirconate titanate (PZT) (17) and polyvinylidene fluoride (PVDF) 
(18) were piezoelectric materials widely adopted for fabricating the 
tactile sensor array or flexible sensors on wearable devices. However, 
some constraints still limit the practical applications, such as low 
output for soft PVDF material, and too brittle for PZT chips. Alter-
natively, on the basis of high flexibility of customization and the 
low cost for triboelectric-based sensors, different designs have been 
proposed in studies of motion tracking (19), pressure mapping (20), 
and two-dimensional (2D)/3D space controlling (21). As a cost-
effective wireless solution of wearable HMI, our preliminary research 
studies have reported using arch-shaped strips attached to the finger 
joint to enable the bending detection and generate the pulse signals 
(22). Furthermore, the sliding mode of the grating structure improves 
the resolution of the bending angle by detecting the pulse peaks (23).

On the other hand, the stretchable and epidermal sensors with 
multipixel and multifunctional sensing array are frequently studied 
to mimic the entire function of human skin (24–25), i.e., large-area 
instantaneous pressure mapping (26) and neural receptors for 
mechanical and temperature stimulus (27). However, the enormous 
amount of generated data that consume more computing power 
will be another problem, which may not be necessary for all of the 
normal interactive applications. Eventually, a proper data analysis 
strategy is expected to be a solution of HMI for minimalistic design.

The rapid development of machine learning from artificial intel-
ligence (AI) paves the way for strengthening the functionalities of 
sensors without substantial effort on device upgrading (28, 29). By 
leveraging the proper learning model for specific sensing application, 
more comprehensive information can be extracted for those simply 
designed sensors, such as motion sequences, touch forces, and slip-
ping (30). On the basis of the training of the output pattern from the 
grabbing or touching behavior on different objects, gesture and 
object recognition can be realized instead of the primary simple 
motion detection. This will not only directly benefit the human-
machine interaction but also allow the smart glove to establish a 
database for supporting the research of anthropomorphic robot (31).

For establishing a smarter system using the fusion of sensing and 
feedback functions, the mechanical stimulator for haptic feedback 
is crucial to reflect the interactive event in the virtual world. A 
well-designed feedback system can enrich the experience and assist 
the user to make adjustments. Several approaches were then explored, 
such as vibration motor (32), microfluidic or pneumatic chamber 
(33), and wire actuator (34). These techniques can more or less 
enable the feeling of impact events or even the shape of objects, 
but the bulky size of the whole actuation system and the power con-
sumption become the critical problems for portable and continuous 
use. As an alternative, the application of piezoelectric material as 
embedded mechanical stimulator can be considered as another choice 
(35) due to its much smaller size and lower energy consumption, 
which is highly desirable for long-term users.

Generally speaking, for the manipulations in the VR/AR and for 
the advanced robots, a glove with multidimensional sensors and 
well-designed haptic feedback are essential to achieve the precise 
control via immersed experience and comprehensive sensation. Here, 
we present a smart glove consisting of elastomer-based triboelectric 
tactile sensors and PZT piezoelectric haptic mechanical stimulator 
(Fig. 1) as a simple and cost-effective approach for intuitive HMI. 
The 3D-printed glove case (Fig. 1i) is designed to support the 
sensors and mechanical stimulators for multidimensional motion 
detections and real-time haptic feedback. The major functional units 
of triboelectric tactile sensors include the finger bending sensors, 
which can detect the motions of each phalanx with multiple DOFs, 
and the palm sensor that can sense the normal and shear force in 
eight directions (Fig. 1, i to v). The proposed smart glove can realize 
the joint advanced manipulation, in which the real-time impact 
event can also be delivered back via piezoelectric haptic stimulation 
(Fig. 1vi) for enhancing our sensation against the indirect inter-
action. This will also benefit the rehabilitation of disabled patients 
by monitoring the practice activities and offering a certain stimula-
tion. Moreover, to expand more functions with minimized number 
of sensors, the machine learning technique offers the possibilities of 
performing complex tasks using the proposed glove, such as object 
recognition. For the applications of VR/AR, this glove can be func-
tionalized as the complementary control interface in addition to the 
current vision and voice control terminal for augmented interactions. 
Hence, a promising solution with low economic and technical cost 
for advanced HMI is developed, which can benefit industrial pro-
ductivity, educational training, entertainment, and home care.

RESULTS
Design of smart glove
First, Eco-flex (00-20) is used as the elastomer material for fabricating 
the finger sensor with a hemisphere shape, and the aluminum elec-
trode is encapsulated at the flat side (see fig. S1). The as-fabricated 
sensors are bonded inside the individual finger case by epoxy (Fig. 2A). 
The distributions of sensors are defined by the available DOFs of 
three phalanges of fingers: distal phalanx (DP), middle phalanx (MP), 
and proximal phalanx (PP), because both DP and MP can only have 
upward or downward bending, where PP is able to deflect to the 
other directions. Hence, the number of sensor arrangement of two, 
two, and four corresponding to DP, MP, and PP, respectively, is 
decided. The palm sensor at the center (Fig. 1, i and iv; also see 
fig. S2) is applied to enable the detection of normal force and shear 
force when contacting with external object. Unlike the finger 
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sensors, the electrode pads feature four quadrants and separated 
from the above elastomer membrane with about 3 mm. For this elas-
tomer membrane, the top layer is made by polydimethylsiloxane 
(PDMS) with one large dome shape of 15 mm diameter, and there 
are four Eco-flex–based small hemispheres (3 mm) located at the 
bottom layer as the touching point against the below four electrode 
pads (see fig. S2). On the other hand, five PZT thin chips (Fig. 1, 
i and vi) are placed at the root of each finger for performing the 
haptic feedback.

To assemble all the separated finger cases with palm case, the 
metallic alloy wires with certain restoring force were used as the 
connector so that the entire case can be supported under the pressure 
of bending and enabling the deformation of the elastomer sensor.

Working principles
For both finger and palm sensors, as mentioned earlier, the tri-
boelectric output is generated from the contact electrification during 
the surface interaction between two dissimilar materials. Hence, in 
terms of multiple sensors applied on the glove, the triboelectric-
based sensors with self-generated signals can reduce a considerable 
amount of power consumption. The reported devices usually used 
two external materials to conduct either the contact and separation 
of the arch-shaped structure (36) or the sliding of grating patterned 
strips (23). In this work, the skin is used as a positive triboelectric 

material to contact with negative sensors that can effectively reduce 
the entire size of device while achieving the detection of additional 
DOFs. As shown in Fig. 1i, triboelectric sensor usually shows two 
opposite pulse waveforms that correspond to either contact or 
separation cycle, depending on which side the output signal is 
extracted. In the proposed glove, the finger sensor relies on the 
interaction between elastomer and finger skin. At the original state, 
the sensor is at its neutral state, where the surface negative charges 
are balanced by positive charges from the embedded electrode pad. 
Switching the contact state, as skin is much more electrically positive 
compared to elastomer, the positive charges from the skin surface 
neutralize the negative potential at the sensor surface and cause the 
previous positive charges on the electrode pad to be repulsed to the 
ground. Hence, when the output signal is measured from the elec-
trode pad, the positive pulse can be observed due to the current flow 
direction. In contrast, the separation between finger and sensor will 
then lead to the returning flow of positive charge on the electrode 
pad to neutralize the negative sensor surface and generate a nega-
tive signal.

For the palm sensor, as illustrated in Fig. 1ii, the external impact 
on the top dome will cause the deformation of the entire membrane, 
and the direction of deviation is related to the shear force, i.e., forward 
sliding motion will cause the forward sensor to deform more than 
the other three sensors and result in a larger triboelectric output 

Fig. 1. Schematics of glove-based HMI for diversified applications. (i) Three major functional units: triboelectric finger sensor and (ii) the working principle for (iii) 
detecting bending motions, triboelectric palm sensor, and (iv) the working principle for (v) detecting sliding motions, as well as piezoelectric haptic mechanical stimulator 
for (vi) haptic stimulation.
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Fig. 2. Schematics and characterization of triboelectric finger bending sensors. (A) Designs of finger case of each phalanx, the positions of sensors, and the photo of 
the PP. (B) Comparison of triboelectric outputs of sensor made by PDMS and Eco-flex. (C) Characterized relationship between the changing loading force and the 
triboelectric output of sensor under 2-Hz frequency. (D) Variations of triboelectric outputs with different sensor sizes (diameter: 3, 3.5, and 4 mm) for a finger size of (i) 
60 mm and (ii) 50 mm in perimeter. (E) Measured triboelectric outputs from eight sensors (DU, DD, MU, MD, PU, PD, PR, and PL) under the bending of (i) DP, (ii) MP, (iii) PP, 
and (iv) all three phalanges (curling). The dashed boxes indicate the functional signals. (F) Measured triboelectric outputs from four sensors (PU, PD, PR, and PL) under the 
bending of finger in eight directions: (i) up, down, left, and right and (ii) up + left, up + right, down + left, and down + right. Photo credit: Minglu Zhu, National University 
of Singapore.
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as an indication of shear force direction. The palm sensor uses the 
elastomer and the electrode as the negative and positive material, 
respectively. The electrode will extract positive charges from the 
ground to balance the negative charge on the elastomer during 
contact, and hence, a negative output is generated instead of positive 
for finger sensor. In general, it is important that this work uses the 
positive signals from finger sensor and the negative signals from the 
palm sensor as the sensing signals for further application.

To perform the haptic mechanical stimulation (Fig. 1vi), the 
converse piezoelectric effect is applied on the PZT chips. Once the 
command of interaction event was triggered, the microcontroller 
will send the pulse width modulation (PWM) signal with resonant 
frequency to actuate the vibration of chips, and the intensity can be 
tuned by the supplied power to reflect the degree of interaction.

Device optimization and characterization
In Fig. 2A, the design of the finger sensor together with the printed 
finger cases is illustrated. To ensure the sensitivity of signal and the 
comfortability of long-term use, two common biocompatible materials 
are investigated: Eco-flex and PDMS. As the comparison test is shown 
in Fig. 2B, for the same dimension of hemisphere of 4 mm diameter, 
the output of 200 mV for Eco-flex is much larger than that of PDMS, 
which is preferable for conducting accurate sensing. According 
to triboelectric theorem, the generated output is mainly determined 
by the contact area for the same materials due to the amount of 
interacted surface charge. The output response against the applied 
force was then characterized (Fig. 2C). For a 3.5-mm sensor, a typical 
sensing range from 0.1 to 3.5 N was obtained under 1.5-Hz pressing, 
and the maximum detectable force is defined by the largest area 
between the deformed sensor and finger for contacting. This range 
is also considered as the reference for choosing the stiffness of 
connection wires, which exert restoring force during finger bending. 
Furthermore, the size effect of the sensor was studied with three 
samples of different diameters: 3, 3.5, and 4 mm. The output shows 
an increasing trend as the size becomes larger (Fig. 2D). However, 
the perimeters of human finger are quite different throughout a large 
population. For a specific size of finger case and the user, there is 
always an optimized configuration for the highest output as depicted 
from Fig. 2D (i and ii), because the limited inner space will set the 
constraints for the contact and separation process, i.e., bigger finger 
will experience less contact and separation motion that lead to less 
surface charge interaction. Owing to the unique design of separated 
finger cases, each joint of the glove can be replaced and customized 
to achieve the desired performance. In this work, the participant used 
3.5 mm as the dimension for all the finger sensors.

Triboelectric output signal characterization of finger sensor
As shown in Fig. 2E, the index finger was tested with a series of com-
mon motions to investigate the sensing capabilities of as-fabricated 
finger sensors. On the basis of three segments of index finger, six 
sensors are designed for upward and downward bending: DU, DD, 
MU, MD, PU, and PD. In addition, the left and right bending sen-
sors, named PL and PR, are added for PP. For the tests of individual 
phalanx (Fig. 2E, i, to iii), the signals of major functional sensors are 
highlighted in the dashed box. On the basis of the stiffness of the 
chosen elastomer, the response time is around 30 to 40 ms. To ensure 
the distinction among different bending angles, the primary resolution 
of each phalanx is set to 30° according to the obtained data with the 
reasonable tolerance of data error. The DP shows two angles due to 

the real motion range of human finger. Similarly, for the experimental 
data of MP and PP, there are still minor signals detected from DD 
and MD except for the major functional sensor, especially for the 
larger bending angle. This phenomenon was caused by the controlling 
capability of the actual motion of individual phalanx for a specific 
user, and it is frequently observed that the phalanx at the front will 
also be bent unintentionally during the bending of the middle phalanx 
or PP. All of these were also detected by finger sensors, and the minor 
output was then generated. In Fig. 2Eiv, as an advantage of multiple 
sensors, the curling motion of finger can be differentiated from the 
previous bending motion of the PP. From the data of three dashed 
boxes, it is obvious that both the DD and MD for curling shows 
signals above the active threshold, and there are only negligible out-
puts observed for DD and MD in bending motion.

As mentioned earlier, the joint of PP has more DOF compared 
to the other. Hence, eight directions are tested, including four 
standard directions of up, down, left, and right, and four diagonal 
directions of up-right, down-left, up-left, and down-right. First, the 
functional sensors and the output signals are depicted accordingly 
(Fig. 2F). It is worth mentioning that all of the four sensors are 
measured simultaneously so that the signals of the theoretically 
inactivated sensor pairs can be monitored for the potential inter-
ferences, as the finger was barely contacting with all the sensors at 
the original state. The measured data (Fig. 2Fi) indicate that there 
is almost no interference between the two pairs of counter sensors, 
PR/PL and PU/PD. That is, although the finger may slide across the 
surface of PU/PD when performing left and right motion, the 
contacted surface area is actually maintained the same and leads 
to very low charge transfer based on triboelectric theorem. For four 
diagonal directions, each direction can be detected using two adjacent 
sensors that are marked as well. As the contact force is distributed 
over two sensors, the decrease of output from ~150 mV to less than 
100 mV is also noticed.

Demonstration of real-time virtual hand control and  
mouse control
As a primary verification of the HMI function, the detected tri-
boelectric output signals were used to project the motions of human 
finger into the virtual hand in Unity with frame per second (FPS) 
of 60. The external circuit of reading multiple triboelectric signals 
consists of a microprocessor with multichannel analog inputs and a 
customized conditioner printed circuit board for preprocessing the 
triboelectric signals before the input channels (further described in 
fig. S6 and text S2). For a typical example of index finger bending, 
the real-time signal waveforms of eight sensors were monitored. As 
mentioned before, the thresholds of specific bending angles were 
calibrated for the sensors from each phalanx, such as the dashed 
black lines on the signals of PD. As an example of 30°, a positive 
triboelectric signal from PD was generated when bending the PP 
and pressing PD, and a negative signal was also recorded on PU due 
to the separation event that has no function in this case. Next, the 
returning motion of the PP led to the pressing of PU and induced a 
positive signal, while the separation of PD gave a negative signal. In 
terms of demonstration program, once the signal reaches the threshold 
(Fig. 3Ai), the program in the microprocessor will send the cor-
responding code out, i.e., “0,0,1,0,0,0,0,0” and “0,0,2,0,0,0,0,0” for 
30° and 60° bending of PD, respectively, where the positions of each 
number stand for different sensors. Meanwhile, the program of Unity 
can receive the code as a command via communication protocol of 
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serial port and converted it into the motion of virtual hand. For the 
validation of multiple DOF manipulation (Fig. 3Aii), similar to 
the characterized data in Fig. 2, the functional signals are marked in 
dashed boxes, and all the upper sensors—DU, MU, and PU—are 
in charge of returning motion. On the basis of the real-time signal 
waveforms, each bending activity was performed with a cycle of 
bending and returning. For instance, with the curling motion (bend-
ing of DP + MP + PP), all three bending sensors were triggered, 

with DP and MP reaching the threshold of 60° and PP reaching the 
threshold of 30°, which were projected into the virtual hand. Then, 
all three returning signals from DU, MU, and PU were activated to 
set the finger back to the original state, and there was only a unified 
low threshold for these upper sensors to simplify the returning 
process. In general, the triboelectric outputs in practical application 
proved to be consistent with the experimental data during charac-
terization and showed a good signal quality with low noise. Hence, 

Fig. 3. Demonstrations of finger bending sensing as main functions of HMI. (A) (i) Projection of the motions of PP in virtual space (FPS: 60) and the corresponding 
positive triboelectric outputs from eight sensors (DD, MD, PD, DU, MU, PU, PL, and PR) on index finger with three distinguishable bending angles (30°, 60°, and 90°) and 
the following returning motion detected by positive signals of PU for each bending, (ii) projection of the motions of index finger with three phalanges under DP bending, 
DP + MP bending and DP + MP + PP bending, and the following returning motion detected by positive signals of DU, MU, and PU for each bending, as well as left/right 
deflection of the PP. The dashed lines and boxes indicate the functional signals. (B) Screenshots of the demonstrations of (i) alphabet writing and (ii) online shopping, (iii) 
schematics of the detailed procedure of alphabet writing, with photos of finger motions and the corresponding triboelectric output signals for (1) activate dragging, 
(2) upward writing and stop, (3) down + right writing and stop, (4) upward writing and stop, (5) activate moving, (6) right moving and stop, (7) activate dragging, and 
(8) downward writing and stop. Photo credit: Minglu Zhu, National University of Singapore.
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the proposed glove with triboelectric sensing mechanism is a prom-
ising solution of conducting the dexterous manipulation of virtual 
hand as a complimentary device for the conventional vision and 
voice recognition.

As a basic function of glove-based HMI, except gesture projec-
tion, the replacement of conventional mouse control is also important 
to minimize the complexity of the whole system of manipulation. 
By converting the index finger into a virtual pointer to initiate the 
motions of cursor, the glove-based mouse control was realized with 
the demonstration of online shopping and alphabet writing (Fig. 3B, 
i and ii, and movie S1). In addition to the motions of eight direc-
tions using the four sensors of PP of index finger, the functions of 
scroll, drag, and click are assigned to middle finger and thumb, re-
spectively. As shown in Fig. 3Biii, the dragging mode was initiated 
by the positive peak from the bending of the thumb detected by DD 
(step 1), and the index finger was then used to write the alphabet 
(step 2). For the writing process, the positive and negative peaks 
corresponding to bending and releasing actions were responsible for 
the commands of start and stop, respectively, and the diagonal writing 
(step 3: down + right) was achieved by pressing both PD and PR 
sensors based on the writing motion of finger. After finishing the 
first alphabet, the thumb was then returned back and DU was pressed 
to initiate the moving mode of cursor (step 5), in which the motions 
were again controlled by the index finger (step 6). In general, by using 
the glove with the proper programming, the intuitive interaction can 
be realized, which can minimize the learning cost compared to other 
systems with multiple controllers.

Triboelectric output signal characterization of palm sensor
Except for recognizing the finger motions of hand, the detection 
of external interactions from the additional tools is expected to 
enhance the controlling experience for VR/AR. The design of the 
palm sensor is shown in Fig. 4A. Typically, there are two important 
parameters to define the categories of interactions, including the 
normal force and the shear force. Additionally, because the palm 
sensor used the negative elastomer hemisphere to contact the bottom 
electrodes, and the negative triboelectric outputs collected from the 
electrodes become the functional signals as shown in Fig. 4C. As the 
proposed palm sensor, the normal force can be determined by 
the amplitude of the negative triboelectric output as shown in Fig. 4B. 
As most of those interactions are not the contacts in pure normal 
direction, the four-quadratic design of the palm sensor is then used 
for simultaneous measurement to identify the lateral direction of 
the applied force, i.e., the shear force as decomposed part. In this 
case, we defined the four standard directions: upward, downward, 
forward, and backward based on the straight fingers pointing toward 
the front and the center of palm pointing to the left or right side. 
The output data in Fig. 4C indicate that a total of eight directions 
can be detected, including the four standard directions sensed by 
each quadrant of the electrode pad individually, and the other four 
diagonal directions measured by two adjacent quadrants. In Fig. 4D, 
by sliding the palm sensor across the object, the demonstration 
using virtual hand shows the functions of defining the trends of the 
entire hand motion. For example, the downward sliding of the palm 
sensor induces the contact of the electrode in charge of downward 
sensing and the separation for the electrode of upward sensing at 
the opposite side and leads to one negative and one positive signal, 
respectively. For the diagonal motions, such as up + backward, the 
sliding caused the contacts of two adjacent electrodes for sensing up 

and backward motions and the separation from two opposite elec-
trodes and, hence, generated two positive and two negative signals. 
Meanwhile, it is worth mentioning that the characterized data were 
tested under the pure lateral force exerted on the top dome to 
obtain the featured outputs. The practical scenarios usually engage 
with the combination with both the normal and shear force, for 
instance, a typical forward pushing will generate not only the signal 
from the forward sensor but also some smaller signals from other 
three sensors. Hence, in the programming part, the comparison code 
for the triboelectric outputs from four electrodes is implemented to 
assist the identification, i.e., the direction judgment is conducted if 
one or two outputs show much larger amplitude than the others.

Characterization of piezoelectric haptic  
mechanical stimulator
PZT chips as piezoelectric components were applied using the 
converse piezoelectric effect to transform the electrical PWM input 
into the mechanical stimulation with the tunable intensity by 
controlling the input voltage from 6 to 12 V. The resonant frequency 
is determined as 270 Hz based on the dimensions (Fig. 4E). Three 
levels of intensities are set for activation of mechanical haptic 
stimulation in demonstration as illustrated in Fig. 4F. As a validation, 
two PZT chips were bonded together, and one of them was used 
to convert the mechanical stimulation back into electricity via 
piezoelectric effect. Hence, the real-time stimulation can be visual-
ized during the demonstration. As depicted in Fig. 4G, the module 
of collision reactor in Unity allowed us to deliver the virtual col-
lision events back into the microcontroller through the serial 
communication and to activate the mechanical stimulation by 
programmed PWM input. As a result, the contacting and releasing 
events can then be fed back to the user immediately with tunable 
intensity to distinguish them.

Integrated demonstration in baseball game program
For all of those data glove–based HMIs, the ultimate goal is to create 
an intuitive and immersed interaction for either controlling the real 
robots or the virtual characters. Hence, the multidimensional detec-
tions of human actions incorporated with well-defined haptic feed-
back are the key to the research of HMIs. In this work, to verify 
the practical use of the proposed glove, an integrated demonstration 
was prepared through the baseball game program to perform the 
manipulation of the baseball bat and the haptic stimulation from 
the strike event (Fig. 4, H to J, and movie S3). In Fig. 4K, the logic 
loop of conducting the game program includes several main steps. 
First, the program entered into the preparation mode for operational 
check of triboelectric sensor. Next, the grabbing action was detected 
by both the finger sensors and the palm sensor once the real bat was 
grabbed and the program was switched into the play mode in which 
the autopitching machine started the pitching loop. The triboelectric 
outputs from the palm sensor were detected with the same ampli-
tude for all four electrodes, which indicated only the normal force 
applied during the grabbing. Noticeably, except the negative peaks 
used as sensing signals, there were also unnecessary positive peaks 
that were mainly caused by the first contact between the bat and 
the glove and would not be obvious after grabbing the bat. Then, at 
the autopitching stage, the user could swing the bat with different 
speeds to have a strike, and the reactive force exerted on the palm 
sensor induces different triboelectric outputs accordingly. Figure 4 
(I, iv, and J, iv) illustrates that the swinging actions of bat lead to 
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Fig. 4. Triboelectric palm sensor and piezoelectric haptic stimulator. (A) Design and photo of as-fabricated palm sensor. (B) Characterization of the output against the 
loading force from a single electrode at 2 Hz. (C) Measured triboelectric outputs from four electrodes for sliding in eight directions: (i) up, down, forward, and backward 
and (ii) down + forward, up + backward, down + backward, and up + forward. The activated signals are in dashed boxes. (D) Control of virtual hand 793 by interacting 
with external objects in eight directions. (E) Design and photo of PZT haptic stimulator. (F) Measured stimulation using second PZT chip for tunable input AC power 
(6, 8, and 10 V) at 270 Hz. (G) Demonstration of real-time haptic feedback in response to the interactive event in Unity, with the measured mechanical stimulation. 
(H to K) Integrated demonstration in baseball gaming program. The illustrations of (H) grabbing bat, (I) light strike, and (J) heavy strike with (i) screenshots of real-time 
demonstration in Unity, (ii) measured haptic stimulation induced by the piezoelectric stimulator, (iii) measured triboelectric outputs from the palm sensor, and (iv) 
the intensity of interactive force exerted on each electrode and the shear force direction. (K) Flow chart for the operation of baseball program. Photo credit: Minglu Zhu, 
National University of Singapore.
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nonuniform distribution of contact triboelectric output on four 
electrodes due to the existence of the shear force. As an example 
of heavy strike (Fig. 4J), both forward and upward electrodes show 
the larger triboelectric output compared to downward and backward 
electrodes. From the schematic of pressure mapping in Fig. 4Jiv, 
by inspecting the trend of output variations, the directions of shear 
force caused by relative motions between bat and hand are defined 
because the top dome of the palm sensor is pushed toward forward + 
upward direction and leads to the membrane deflecting more toward 
the contact of electrodes of forward and upward. The resulting shear 
force direction is presented as the arrow mark. As a result, the 
corresponding notable outcomes were performed in the training 
program, i.e., ground ball or fly ball. Meanwhile, the collision event 
between ball and bat was fed back into the microprocessor and 
activated the mechanical stimulation via PZT chips with the aid of 
collision reactor module. To differentiate the various strikes, the input 
voltage for actuating the stimulators can be tuned depending on the 
measured triboelectric output of the palm sensor during swinging.

Unlike the current data gloves that are mainly equipped with the 
finger bending sensors and the corresponding vibrational haptic 
motors, the proposed glove with the sliding sensor and haptic stim-
ulation enriches the available sensing dimensions for the human-
machine interactions so that the projection of our activities become 
more realistic in the diversified scenarios that require more ad-
vanced and dexterous manipulations.

Application of machine learning on object recognition
Recent advances in the HMI lead to the study on different types 
of object recognition techniques for developing a more intelligent 
system. There are a considerable number of research studies that 
emphasize on the optical or ultrasound-based 3D object recognition. 
In terms of wearable tactile sensors, several designs have also been 
reported to achieve the recognition function, and most of them fea-
ture the dense array of microsensors on the glove to scan the surface 
structure and stiffness. As a tradeoff, these devices usually require 
high computing power and complex processing circuit while they 
can offer more accurate recognition for different objects. As an 
alternative solution for the proposed glove with much fewer sensors, 
machine learning provides a promising method for deeply analyzing 
the detected triboelectric outputs and extracts the useful patterns 
from different events (28, 37).

As a primary test on machine learning–based object recognition 
using triboelectric outputs, there were 16 sensors from the glove that 
were monitored simultaneously. Considering the finger usage for 
the most cases, the 16 sensors include thumb (DD and DU), index 
finger (DD, MD, PD, and DU), middle finger (DD, MD, and PD), 
ring finger (DD, MD, and PD), pinky finger (DD, MD, and PD), 
and palm (single electrode), as the thumb and the index finger are 
the most frequently used fingers. Six objects with various shapes were 
chosen to be grabbed, and the triboelectric outputs from the grabbing 
of the rod, cube, disk, curved structure/moon, pyramid, and small 
cube, were recorded. Unlike the other recognition strategies for tri-
boelectric outputs (38–39), which analyzed the detailed features in 
a single waveform, such as frequency, holding time, latency, and 
gaps of peaks, in our work, the combined dataset from 16 channels 
can form a spectrum to provide enough features to be extracted auto-
matically using machine learning; hence, the raw data that contain 
various important information in a dynamic grabbing process, e.g., 
finger bending speed, contacting force between fingers and sensor 

arrays, sensors’ triggering sequence, and the operation manners 
for a specific user, can be fed into the training model directly 
without the preprocessing step, i.e., normalization and segmenta-
tion. That is, the general features of signal patterns across the entire 
16 sensors were more important.

Deep learning is becoming a very popular subset of machine 
learning due to its high level of performance across many types of 
data. The reported study has successfully used multiple deep belief 
networks to extract features adaptively from the raw signals of 
triboelectric keyboard and realized keystroke dynamic identification 
(28). Another great way to use deep learning to extract features 
automatically and reduce data complexity simultaneously is to build 
a convolutional neural network (CNN). A 1D CNN is a very effective 
method to derive interesting features from shorter (fixed length) 
segments of the overall dataset in which the positions of the features 
within the segment are not of high relevance and, hence, applies well 
to the analysis of time sequences of sensor data. As illustrated in 
Fig. 5A, the parameters used to construct the CNN model are labeled, 
and the detailed information can be seen in table S1. For the train-
ing sample collection, each of the 16 sensors had 200 data points 
recorded per sample to train the model for recognition. For each 
object, 500 samples were collected for training (80%) and testing 
(20%). In Fig. 5B, the typical triboelectric outputs for grabbing all 
six objects are shown, with the featured patterns marked in black 
dashed boxes. Compared to the reported glove (40) with dense 
arrays of resistive sensors using CNN to evaluate the mapping of the 
static pressure during the grabbing activities of different objects, the 
proposed glove with triboelectric sensors focuses on the investigation 
of the dynamic changes along with the complete cycle of grabbing. 
As the number of sensors is limited, the basic working mechanism 
of object recognition is not defined by the detection of shape, and 
the human hand usually cannot cover the whole object. That is, the 
outputs from the glove actually indicate the grabbing habits on a 
specific object for a specific user, i.e., the participant uses five 
fingers to grab cube and uses three fingers to grab small cube, which 
result in additional outputs from the sensors of ring and pinky 
fingers for cube grabbing. As another example, although all five 
fingers were used for grabbing both rod and cube, the shape of 
object led to the different bending states of each finger, which 
generated the dissimilar waveforms to distinguish two objects. More 
specifically, the variations of signal waveforms, such as the activated 
channels, sequences of peaks, and amplitudes, are affected by several 
elements that are mentioned before. As another commonly used 
machine learning method, support vector machine (SVM) has been 
widely used as classifiers in various applications of pattern recognition. 
Because of the large dimensions of acquired data samples, which was 
3200 for each sample (200 data points from each of 16 sensors), the 
principal components analysis (PCA) method was used to extract 
the features and reduce the dimensions of data, and the kernel 
function was applied as the linear function. More specifically, two 
parameters are important for obtaining the suitable model, data 
dimensions and the penalty parameter C, which is used to determine 
the possibilities of misclassification. According to the trials of opti-
mization using linear kernel and radial basis kernel for classification 
(see table S2) and the concern of computing power, the dimensions of 
data were set to be 300 for achieving enough accuracy of recognition. 
The confusion map of models in Fig. 5C shows that both of the two 
methods can assist the glove to achieve above 96% accuracy of 
object recognition (single run) with 400 training samples for each 
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Fig. 5. Triboelectric output–based object recognition using machine learning technique. (A) Schematics of the process and parameters for constructing the CNN. 
(B) Corresponding triboelectric outputs from 16 sensors: thumb (DD and DU), index finger (DD, MD, PD, and DU), middle finger (DD, MD, and PD), ring finger (DD, MD, and 
PD), pinky finger (DD, MD, and PD), and palm (single electrode), during the grabbing of six objects, including rod, cube, disk, curved, pyramid, and small cube. The solid 
boxes indicate the featured pattern for the training of recognition. (C) Confusion maps of object recognition derived from two models made by (i) CNN and (ii) SVM, with 
100 tests for each object and 40 tests for the baseline; output class refers to the recognized results, and target class refers to the true objects. Photo credit: Minglu Zhu, 
National University of Singapore.
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object. Among them, there are few groups showing the relative lower 
accuracy, such as 94% of rod and pyramid from the CNN model 
(Fig. 5Ci), with the four outputs falling into the cube and the three 
outputs falling into the curved structure, respectively. By observing 
the triboelectric output patterns in Fig. 5B, some similarities can be 
found among them. For rod and cube, the main difference is 
the signal from the palm sensor, and there will be a false judgment 
if it is too small during one grabbing. Similarly, for the curved and 
pyramid structure, the signals from ring and pinky fingers are 
the main features, and the abnormal amplitude of signals from the 
grabbing of pyramid will lead to false judgment. Meanwhile, in the 
SVM model, a 91% accuracy is obtained for pyramid recognition as 
well, as six samples are identified as curved due to the same reason. 
Hence, to ensure the stability of performance for irregular human 
motions, except increasing the sample population and tuning the 
grabbing force, it is also important to change the positions of the 
signals in time domain to cover the whole segment of collection 
window. The comparable results indicate that, for a small amount 
of sample data with enough distinguishable features, SVM can also 
offer a good accuracy of recognition. Meanwhile, the CNN model 
usually has better performance for the large amount of data with 
similar patterns, as CNN can automatically extract the features rather 
than the manual selection. Generally, both of the trained recognition 
models developed from CNN and SVM methods performed well in 
our experiments. Through the manual extraction of features using 
PCA, the classification of the SVM-based model is already good 
enough. Meanwhile, for the CNN method with more advanced func-
tion of automatic extraction, the proposed glove only requires a 
relatively simple network to realize the high performance. As a 
primary demonstration, the SVM-based model was selected for 
conducting real-time object recognition (movie S2).

Integrated demonstration in VR surgical training using 
object recognition
The promotion of VR/AR technologies also paves a new way for the 
diversified training program that can benefit the medical, industrial, 
and educational fields by saving the cost markedly. Hence, the func-
tionalities of HMIs play an important role to satisfy the requirements 
of achieving various operations. In addition to the previous demon-
stration of baseball game, the proposed glove can be further enriched 
via the introduction of machine learning technique and other 
programmable functions. As depicted in Fig. 6 (A and B), a pair 
of gloves were fabricated for conducting the demonstration of VR 
surgical training program and AR-based human-humanoid inter-
actions (movies S4 and S5). In this case (Fig. 6C), the left glove is 
assigned to enable the motions of the entire arm and hand and the 
switching of the operation modes, whereas the right glove is applied 
for object recognition and surgical operation. By switching into the 
recognition mode using the left index finger, the left glove is then 
disabled, and the right glove enters into the recognition mode for 
recording the signals of grabbing gestures. In terms of recognitions 
of three selected tools, the specific triboelectric signals from the 
grabbing actions are shown in Fig. 6Dii. For example, thumb and 
index finger were applied for operating the scissors, which led to 
the signals from the sensors of thumb and index finger only, but for 
grabbing the gauze, the additional signals from the middle finger 
were detected as three fingers were used. After the specific tool is 
successfully recognized, the gloves are then switched back into 
the control mode, in which the left thumb and middle fingers can 

relocate the virtual arm to the operation area, and the right glove 
will conduct the surgical operation accordingly. The corresponding 
triboelectric outputs are shown in Fig. 6D, with the photos of func-
tioning fingers of the glove. For an example of knife operation 
demonstrated in movie S4, the left ring finger was bent and returned 
to display and hide the left hand by triggering the positive triboelectric 
signals of the ring finger (DD and DU) [Fig. 6, C (IV) and Di (IV)]. 
The left index finger then bent to trigger the recognition mode via 
index (DD) [Fig. 6, C (I) and Di (I)]. During the recognition data 
collection from the right glove, the right hand mimicked the grab-
bing actions of knife, and the surgical knife was successfully recog-
nized and presented in the VR space [Fig. 6, C (VI) and Dii (VI)]. 
Next, the left index finger returned back to trigger the control mode 
via index (DU) (Fig. 6, CI and 6DiI). Next, the left thumb and 
middle finger were used to move and rotate the right hand to the 
operation zone [Fig. 6, C (II and III) and Di (II and III)]. Last, the 
right middle finger triggered the cutting operation of knife [Fig. 6, 
C (IX) and DI (IX)].

Although there are only finger sensors and palm sensor, this 
demonstration still verifies the potential of applying this facile 
designed glove to realize the advanced multipurpose manipulations 
in addition to the vision-based motion tracking in the 3D space. 
In addition, the object recognition technique can greatly simplify 
the entire process.

DISCUSSION
Smart gloves, as a frequently studied HMI, act as a bridge that 
connects humans with the virtual world and machines. How 
seamless we can perform the interaction highly depends on the 
available functions of the glove. Although the proposed gloves 
consist of only three units including triboelectric finger sensors, 
palm sensor, and piezoelectric haptic stimulators, the devices can 
still be capable of performing the jobs in a great variety without 
integrating the conventional inertial or resistive sensors, such as the 
VR surgical training. Moreover, by leveraging the AR techniques, 
more intuitive interaction regarding the communication with the 
virtual characters can be accomplished using this glove, such as 
handshaking and cheers (Fig. 6B and movie S5). As a result, except 
the usage on training, the proposed glove can eventually turn into a 
terminal for initiating the virtual social network. Especially for the 
elderly, more interactive communication will definitely enhance 
the emotional comfort during the remote home care from doctors 
or family. In addition, for a long-term operation, it is also possible 
to realize the complete self-powered system by implementing the 
TENG modules or hybrid energy-harvesting modules on the major 
motional positions of the human body to collect the kinetic energy 
and develop the proper power management unit.

Overall, a smart glove with facile designed triboelectric sensors 
and piezoelectric haptic mechanical stimulator indicates the potential 
of constructing a low-cost and low–power consumption HMI that 
is capable of achieving multidimensional and multipurpose manip-
ulations in VR/AR. The high customizability of the glove ensures 
user-friendliness and signal stability regarding the variety of human 
hands. Compared to the commercialized HMI of vision recognition, 
the glove can act as a complimentary solution to offer the haptic-
feedback functions. In addition, although finger motion can also be 
detected via camera using machine learning, the sensing of sliding 
interaction between the two objects still requires the glove-based 
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Fig. 6. Integrated demonstration in VR/AR applications. (A) Illustration of functions for the as-fabricated gloves under control mode and recognition mode. (B) Uni-
versal applications on diversified scenarios. Augmented interactions for various VR training programs and social activities using the glove-based HMI. (C) Surgical training 
program: Photos and screenshots of the finger motions for realizing (I) mode switching, (II and III) motions of right hand, (IV) display of left hand, (V) recognition of scissors, 
(VI) recognition of knife, (VII) recognition of gauze, (VIII) operation of scissors (cutting), (IX) operation of knife (cutting), and (X) operation of gauze (swiping). (D) Measured 
triboelectric outputs from eight sensors: thumb (DD and DU), index finger (DD and DU), middle finger (DD and DU), and ring finger (DD and DU) under (i) control mode, 
and triboelectric outputs from 16 sensors: thumb (DD and DU), index finger (DD, MD, PD and DU), middle finger (DD, MD, and PD), ring finger (DD, MD, and PD), pinky 
finger (DD, MD, and PD), and palm (single electrode), under (ii) recognition mode for the motions of grabbing scissors, knife, and gauze. Photo credit: Minglu Zhu, Nation-
al University of Singapore.
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wearable devices. Meanwhile, even with the minimal number of 
sensors, the machine learning approach expands the capabilities of 
realizing advanced functions in human-machine interaction, i.e., 
realization of object recognition with an accuracy of about 96% 
under three layers of CNN. In the future of 5G communication 
and IoT (Internet of Things) applications under human-machine 
interaction will drastically affect the lifestyle of human in the social 
networking aspect, and this kind of device can improve the intelli-
gence of machines based on the big data acquired from AI techniques. 
In terms of VR training programs, the augmented dual-way inter-
action can be achieved through the proposed glove for improving 
the training effectiveness. In general, this glove reveals a new possibility 
of being an HMI solution that is comparable to the current inertial 
and resistive-based gloves for the applications on VR training, 
entertainment, social networking, and robotic control.

MATERIALS AND METHODS
Fabrication of glove cases
Cases of fingers and palm were 3D-printed with Anycubic 4Max 
Pro using polylactic acid filament. The printed cases were then 
polished for the bonding of sensors and connected with alloy wires.

Fabrication of the elastomer-based finger sensor
A 3D-printed mold (Anycubic 4Max Pro) was prepared with three 
different sizes (radius: 3, 3.5, and 4 mm) of hemispheres (fig. S1). 
The mixture of solution A and B of Eco-flex (ratio: 1:1, model: 
00-20) was poured into the mold and cured at room temperature 
for 90 min. Aluminum foil is diced into circles that fit the sizes 
of each hemisphere and bonded with wires to make the embedded 
electrode. The electrodes are then attached to the cured Eco-flex 
hemispheres and covered with additional mixture of Eco-flex. After 
the second curing, the fabricated elastomer sensors are released 
from the mold and bonded onto the inner surface of finger case 
by adhesive epoxy. The wires of electrodes were collected and con-
nected to the jumper wires fixed inside the glove for routing to the 
microprocessor. Same approaches were applied for the sensor using 
PDMS (Sylgard 184, Dow Corning), with a ratio of 10:1 for the mix-
ture of substrate and curing agent and a curing temperature at 70°C 
for 60 min.

Fabrication of the elastomer-based palm sensor
In fig. S2, two 3D-printed molds (Anycubic 4Max Pro) were pre-
pared for the top dome–shaped button and the four triboelectric 
contact points at the bottom. The mixture of solutions A and B 
of Eco-flex (ratio: 1:1, model: 00-20) was poured into the mold of 
four contact points, and the mixture of PDMS (ratio: 10:1, Sylgard 
184, Dow Corning) was poured into the mold of the top dome. 
After curing, the top dome–shaped button was released and placed 
on the top of the cured four contact points. The additional mixture 
of PDMS was then poured on the two parts to bond them together. 
After the second curing, the entire unit was released from the mold.

A holder of four bottom electrode pads was 3D-printed (Anycubic 
4Max Pro). A round-shaped aluminum foil was diced into four 
quadrants and bonded with wires and attached to the holder.

Fabrication of the PZT chip
In fig. S3, the 1.5 cm–by–1.5 cm PZT ceramic (Fuji Ceramics 
Incorporation, C-6) and the 50-m beryllium copper foil were 

polished at first. After sputtering of Cr/Au (Cr: 20 nm, 100 W, 2 min; 
Au: 200 nm, 100 W, 5 min) as the bottom electrode on one side 
(bottom surface) of PZT, it is bonded with copper foil by conductive 
silver paste and baked in vacuum oven (3.5 hours at 175°C). Then, 
the bonded PZT chip was thinned down to 20 m by chemical 
mechanical polishing. The top Au electrode was then sputtered with 
the same approach. After that, the as-fabricated thin PZT chip was 
further diced into the size of 8 mm by 5 mm by laser cutting. The 
wires were then connected to both top and bottom electrodes using 
silver paste and followed by the encapsulation of PZT chip using 
polyimide tape (3M).

Characterization of triboelectric and piezoelectric output
For both triboelectric sensors (finger and palm) and PZT chip, 
the output voltages were measured with an oscilloscope (Agilent, 
InfiniiVision, DSO-X 3034A). Calibrations of output voltage against 
force for triboelectric sensors were conducted by force gauge 
(Mecmesin, MultiTest 2.5-i) with a speed of 900 mm/min.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/19/eaaz8693/DC1

REFERENCES AND NOTES
	 1.	 Y. Liu, J. J. S. Norton, R. Qazi, Z. Zou, K. R. Ammann, H. Liu, L. Yan, P. L. Tran, K.-I. Jang, 

J. W. Lee, D. Zhang, K. A. Kilian, S. H. Jung, T. Bretl, J. Xiao, M. J. Slepian, Y. Huang, 
J.-W. Jeong, J. A. Rogers, Epidermal mechano-acoustic sensing electronics 
for cardiovascular diagnostics and human-machine interfaces. Sci. Adv. 2, e1601185 (2016).

	 2.	 I. Volosyak, O. Kouzmitcheva, D. Ristić, A. Gräser, Improvement of visual perceptual 
capabilities by feedback structures for robotic system FRIEND. IEEE Trans. Syst. Man 
Cybern. Part C Appl. Rev. 35, 66–74 (2005).

	 3.	 C. Wong, Z.-Q. Zhang, B. Lo, G.-Z. Yang, Wearable sensing for solid biomechanics: 
A review. IEEE Sens. J. 15, 2747–2760 (2015).

	 4.	 J. del R. Millán, F. Renkens, J. Mouriño, W. Gerstner, Noninvasive brain-actuated control 
of a mobile robot by human EEG. IEEE Trans. Biomed. Eng. 51, 1026–1033 (2004).

	 5.	 M. Hori, H. Takahashi, A. Nakai, K. Matsumoto, I. Shimoyama, Regional 3-axis plantar 
forces during stair ascent, in 2013 IEEE 26th International Conference on Micro Electro 
Mechanical Systems (MEMS) (IEEE, 2013), pp. 1033–1036.

	 6.	 J. Connolly, J. Condell, B. O’Flynn, J. T. Sanchez, P. Gardiner, IMU sensor-based electronic 
goniometric glove for clinical finger movement analysis. IEEE Sens. J. 18, 1273–1281 (2017).

	 7.	 F. L. Hammond, Y. Menguc, R. J. Wood, Toward a modular soft sensor-embedded glove 
for human hand motion and tactile pressure measurement, in 2014 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IEEE, 2014), pp. 4000–4007.

	 8.	 Y. Gao, H. Ota, E. W. Schaler, K. Chen, A. Zhao, W. Gao, H. M. Fahad, Y. Leng, A. Zheng, 
F. Xiong, C. Zhang, L. C. Tai, P. Zhao, R. S. Fearing, A. Javey, Wearable microfluidic 
diaphragm pressure sensor for health and tactile touch monitoring. Adv. Mater. 29, 
1701985 (2017).

	 9.	 E. Fujiwara, M. F. M. dos Santos, C. K. Suzuki, Flexible optical fiber bending transducer 
for application in glove-based sensors. IEEE Sens. J. 14, 3631–3636 (2014).

	 10.	 R. Di Giacomo, L. Bonanomi, V. Costanza, B. Maresca, C. Daraio, Biomimetic temperature-
sensing layer for artificial skins. Sci. Robot. 2, eaai9251 (2017).

	 11.	 N. Yogeswaran, W. Dang, W. T. Navaraj, D. Shakthivel, S. Khan, E. O. Polat, S. Gupta, 
H. Heidari, M. Kaboli, L. Lorenzelli, G. Cheng, R. Dahiya, New materials and advances 
in making electronic skin for interactive robots. Adv. Robot. 29, 1359–1373 (2015).

	 12.	 S. Lee, A. Reuveny, J. Reeder, S. Lee, H. Jin, Q. Liu, T. Yokota, T. Sekitani, T. Isoyama, Y. Abe, 
Z. Suo, T. Someya, A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 
11, 472–478 (2016).

	 13.	 D. J. Lipomi, M. Vosgueritchian, B. C.-K. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, Z. Bao, 
Skin-like pressure and strain sensors based on transparent elastic films of carbon 
nanotubes. Nat. Nanotechnol. 6, 788–792 (2011).

	 14.	 B. C.-K. Tee, A. Chortos, R. R. Dunn, G. Schwartz, E. Eason, Z. Bao, Tunable flexible 
pressure sensors using microstructured elastomer geometries for intuitive electronics. 
Adv. Funct. Mater. 24, 5427–5434 (2014).

	 15.	 C. M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos, O. Khatib, Z. Bao,  
A hierarchically patterned, bioinspired e-skin able to detect the direction of applied 
pressure for robotics. Sci. Robot. 3, eaau6914 (2018).

 on M
ay 8, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/cgi/content/full/6/19/eaaz8693/DC1
http://advances.sciencemag.org/cgi/content/full/6/19/eaaz8693/DC1
http://advances.sciencemag.org/


Zhu et al., Sci. Adv. 2020; 6 : eaaz8693     8 May 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

14 of 14

	 16.	 W. Xu, L.-s. B. Huang, M.-s. C. Wong, L. Chen, G. Bai, J. Hao, Environmentally friendly 
hydrogel-based triboelectric nanogenerators for versatile energy harvesting 
and self-powered sensors. Adv. Energy Mater. 7, 1601529 (2017).

	 17.	 M. Zhu, Q. Shi, T. He, Z. Yi, Y. Ma, B. Yang, T. Chen, C. Lee, Self-powered and self-functional 
cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare 
and sports monitoring. ACS Nano 13, 1940–1952 (2019).

	 18.	 K.-Y. Chun, Y. J. Son, E.-S. Jeon, S. Lee, C.-S. Han, A self-powered sensor mimicking 
slow- and fast-adapting cutaneous mechanoreceptors. Adv. Mater. 30, 1706299  
(2018).

	 19.	 X. Wang, Y. Zhang, X. Zhang, Z. Huo, X. Li, M. Que, Z. Peng, H. Wang, C. Pan, A highly 
stretchable transparent self-powered triboelectric tactile sensor with metallized 
nanofibers for wearable electronics. Adv. Mater. 30, 1706738 (2018).

	 20.	 Z. W. Yang, Y. Pang, L. Zhang, C. Lu, J. Chen, T. Zhou, C. Zhang, Z. L. Wang, Tribotronic 
transistor array as an active tactile sensing system. ACS Nano 10, 10912–10920  
(2016).

	 21.	 Q. Shi, C. Lee, Self-powered bio-inspired spider-net-coding interface using single-
electrode triboelectric nanogenerator. Adv. Sci. 6, 1900617 (2019).

	 22.	 T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, A. V.-Y. Thean, C. Lee, 
Self-powered glove-based intuitive interface for diversified control applications in real/
cyber space. Nano Energy 58, 641–651 (2019).

	 23.	 X. Pu, H. Guo, Q. Tang, J. Chen, L. Feng, G. Liu, X. Wang, Y. Xi, C. Hu, Z. L. Wang,  
Rotation sensing and gesture control of a robot joint via triboelectric quantization 
sensor. Nano Energy 54, 453–460 (2018).

	 24.	 Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu, J. Zhai, C. Pan, Z. L. Wang, Skin-inspired highly 
stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 
9, 244 (2018).

	 25.	 G. Cheng, E. Dean-Leon, F. Bergner, J. R. G. Olvera, Q. Leboutet, P. Mittendorfer,  
A comprehensive realization of robot skin: Sensors, sensing, control, and applications. 
Proc. IEEE 107, 2034–2051 (2019).

	 26.	 C. Yeom, K. Chen, D. Kiriya, Z. Yu, G. Cho, A. Javey, Large-area compliant tactile sensors 
using printed carbon nanotube active-matrix backplanes. Adv. Mater. 27, 1561–1566 
(2015).

	 27.	 W. W. Lee, Y. J. Tan, H. Yao, S. Li, H. H. See, M. Hon, K. A. Ng, B. Xiong, J. S. Ho, B. C. K. Tee, 
A neuro-inspired artificial peripheral nervous system for scalable electronic skins.  
Sci. Robot. 4, eaax2198 (2019).

	 28.	 G. Zhao, J. Yang, J. Chen, G. Zhu, Z. Jiang, X. Liu, G. Niu, Z. L. Wang, B. Zhang, Keystroke 
dynamics identification based on triboelectric nanogenerator for intelligent keyboard 
using deep learning method. Adv. Mater. Technol. 4, 1800167 (2019).

	 29.	 K. Kiguchi, K. Iwami, M. Yasuda, K. Watanabe, T. Fukuda, An exoskeletal robot for human 
shoulder joint motion assist. IEEE/ASME Trans. Mechatron. 8, 125–135 (2003).

	 30.	 T. G. Thuruthel, B. Shih, C. Laschi, M. T. Tolley, Soft robot perception using embedded soft 
sensors and recurrent neural networks. Sci. Robot. 4, eaav1488 (2019).

	 31.	 G. Cheng, K. Ramirez-Amaro, M. Beetz, Y. Kuniyoshi, Purposive learning: Robot reasoning 
about the meanings of human activities. Sci. Robot. 4, eaav1530 (2019).

	 32.	 X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado, H. Luan, J. Ruban, X. Ning, A. Akhtar, D. Li, 
B. Ji, Y. Liu, R. Sun, J. Cao, Q. Huo, Y. Zhong, C. Lee, S. Kim, P. Gutruf, C. Zhang, Y. Xue, 
Q. Guo, A. Chempakasseril, P. Tian, W. Lu, J. Jeong, Y. Yu, J. Cornman, C. Tan, B. Kim, 
K. Lee, X. Feng, Y. Huang, J. A. Rogers, Skin-integrated wireless haptic interfaces for virtual 
and augmented reality. Nature 575, 473–479 (2019).

	 33.	 J. W. Booth, D. Shah, J. C. Case, E. L. White, M. C. Yuen, O. Cyr-Choiniere, R. Kramer-Bottiglio, 
OmniSkins: Robotic skins that turn inanimate objects into multifunctional robots. Sci. Robot. 
3, eaat1853 (2018).

	 34.	 H. In, B. B. Kang, M. K. Sin, K.-J. Cho, Exo-Glove: A wearable robot for the hand with a soft 
tendon routing system. IEEE Robot. Autom. Mag. 22, 97–105 (2015).

	 35.	 Y. Wu, J. K. Yim, J. Liang, Z. Shao, M. Qi, J. Zhong, Z. Luo, X. Yan, M. Zhang, X. Wang, 
R. S. Fearing, R. J. Full, L. Lin, Insect-scale fast moving and ultrarobust soft robot. Sci. Robot. 
4, eaax1594 (2019).

	 36.	 T. He, Q. Shi, H. Wang, F. Wen, T. Chen, J. Ouyang, C. Lee, Beyond energy harvesting—
Multi-functional triboelectric nanosensors on a textile. Nano Energy 57, 338–352 
(2019).

	 37.	 W. Zhang, P. Wang, K. Sun, C. Wang, D. Diao, Intelligently detecting and identifying 
liquids leakage combining triboelectric nanogenerator based self-powered sensor 
with machine learning. Nano Energy 56, 277–285 (2019).

	 38.	 C. Wu, W. Ding, R. Liu, J. Wang, A. C. Wang, J. Wang, S. Li, Y. Zi, Z. L. Wang, Keystroke 
dynamics enabled authentication and identification using triboelectric nanogenerator 
array. Mater. Today 21, 216–222 (2018).

	 39.	 Q. He, Y. Wu, Z. Feng, C. Sun, W. Fan, Z. Zhou, K. Meng, E. Fan, J. Yang, Triboelectric 
vibration sensor for a human-machine interface built on ubiquitous surfaces. Nano Energy 
59, 689–696 (2019).

	 40.	 S. Sundaram, P. Kellnhofer, Y. Li, J.-Y. Zhu, A. Torralba, W. Matusik, Learning the signatures 
of the human grasp using a scalable tactile glove. Nature 569, 698–702 (2019).

Acknowledgments: We thank Z. Yi and B. Yang at Shanghai Jiao Tong University for fabrication 
assistance of piezoelectric chips. Funding: C.L. acknowledges the support from the HIFES Seed 
Funding-2017-01 grant (R-263-501-012-133) at the National University of Singapore; Agency for 
Science, Technology and Research (A*STAR); Singapore and Narodowe Centrum Badańi 
Rozwoju (NCBR); Poland Joint Grant (R-263-000-C91-305); and National Research Funding–
Competitive Research Programme (NRF-CRP) (R-719-000-001-281). Author contributions: M.Z., 
T.C., and C.L. conceived the idea. M.Z. and C.L. planned the experiments. M.Z. designed and 
completed the hardware and performed the experiments. M.Z. took all the photos shown in the 
figures. M.Z., Z.S., and Z.Z. wrote the control programs and algorithms for demonstration. M.Z. 
and Q.S. developed the printed circuit board for the readout of signals. M.Z., Z.S., Z.Z., and C.L. 
contributed to the data analysis and drafted the manuscript. M.Z. and C.L. edited the 
manuscript. Q.S., T.H., and H.L. reviewed and revised the manuscript. Competing interests: 
M.Z. and C.L. are inventors on a patent application related to this work filed by the National 
University of Singapore (no. 10202000096S, filed on 6 January 2020). The authors declare no 
other competing interests. Data and materials availability: All data needed to evaluate the 
conclusions in the paper are present in the paper and/or the Supplementary Materials. 
Additional data related to this paper may be requested from the authors.

Submitted 16 October 2019
Accepted 26 February 2020
Published 8 May 2020
10.1126/sciadv.aaz8693

Citation: M. Zhu, Z. Sun, Z. Zhang, Q. Shi, T. He, H. Liu, T. Chen, C. Lee, Haptic-feedback smart 
glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. 
Sci. Adv. 6, eaaz8693 (2020).

 on M
ay 8, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


virtual/augmented reality applications
Haptic-feedback smart glove as a creative human-machine interface (HMI) for

Minglu Zhu, Zhongda Sun, Zixuan Zhang, Qiongfeng Shi, Tianyiyi He, Huicong Liu, Tao Chen and Chengkuo Lee

DOI: 10.1126/sciadv.aaz8693
 (19), eaaz8693.6Sci Adv 

ARTICLE TOOLS http://advances.sciencemag.org/content/6/19/eaaz8693

MATERIALS
SUPPLEMENTARY http://advances.sciencemag.org/content/suppl/2020/05/04/6.19.eaaz8693.DC1

REFERENCES

http://advances.sciencemag.org/content/6/19/eaaz8693#BIBL
This article cites 38 articles, 1 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science AdvancesYork Avenue NW, Washington, DC 20005. The title 
(ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 NewScience Advances 

License 4.0 (CC BY-NC).
Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial 
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

 on M
ay 8, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/content/6/19/eaaz8693
http://advances.sciencemag.org/content/suppl/2020/05/04/6.19.eaaz8693.DC1
http://advances.sciencemag.org/content/6/19/eaaz8693#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://advances.sciencemag.org/

