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Deep learning enabled smart mats as a scalable
floor monitoring system
Qiongfeng Shi 1,2,3,4, Zixuan Zhang1,3,4, Tianyiyi He1,3,4, Zhongda Sun 1,2,3,4, Bingjie Wang1,3, Yuqin Feng1,3,

Xuechuan Shan 2,5, Budiman Salam2,5 & Chengkuo Lee 1,2,3,4,6✉

Toward smart building and smart home, floor as one of our most frequently interactive

interfaces can be implemented with embedded sensors to extract abundant sensory infor-

mation without the video-taken concerns. Yet the previously developed floor sensors are

normally of small scale, high implementation cost, large power consumption, and complicated

device configuration. Here we show a smart floor monitoring system through the integration

of self-powered triboelectric floor mats and deep learning-based data analytics. The floor

mats are fabricated with unique “identity” electrode patterns using a low-cost and highly

scalable screen printing technique, enabling a parallel connection to reduce the system

complexity and the deep-learning computational cost. The stepping position, activity status,

and identity information can be determined according to the instant sensory data analytics.

This developed smart floor technology can establish the foundation using floor as the

functional interface for diverse applications in smart building/home, e.g., intelligent auto-

mation, healthcare, and security.
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Under the scope of ultrafast data transmission rate pro-
mised by the new communication technologies in the era
of internet of things (IoT) and fifth-generation wireless

networks, numerous electronic devices with wireless inter-
connections with each other as well as the network cloud can be
deployed within a building, enabling the realization of intelligent
monitoring and response systems in the smart building/home
applications1–6. In general, camera-based surveillance for mon-
itoring and recognition are commonly adopted in the office and
home areas, but it raises severe privacy concerns in the present
society. To better protect people from the video-taken privacy
issue, optical approaches such as laser beam scanning have been
proposed as a potential solution7,8. Yet the acquired sensory
information is rather limited and the laser beam is easy to be
blocked by other objects, resulting in information loss and inac-
curate sensing. Furthermore, the implementation and operation
of such a system are highly costly and power consuming,
incompatible with the sustainable development of smart building/
home. Floor, on the other hand, as one of our most frequently
interactive interfaces, can be implemented with embedded sen-
sors to acquire the abundant sensory information from human
walking, including indoor position, activity status, individual
identity, etc. The detected sensory information is of great
importance in the aspect of elderly people nursing (e.g., fall
detection by monitoring the irregular output signals in the time
domain—abnormal outputs in a short period followed by no
outputs), home automation of air conditioning/lighting, and
security monitoring.

In terms of floor sensors, the commonly adopted transducing
mechanisms include resistive, capacitive, piezoelectric, and tri-
boelectric mechanism9–15. With the self-generated electrical sig-
nals in response to the mechanical stimuli, the piezoelectric and
triboelectric mechanisms exhibit extra advantages such as the
reduction of system-level power consumption and the potential
realization of self-sustainability. However, most of the previously
reported floor sensors are only demonstrated on a small scale and
show low scalability in the large-area floor sensing. To cover a
large area, the number of sensing pixels and signal collecting
electrodes/channels needs to be dramatically increased, introdu-
cing extreme complications in the electrode layout, interconnec-
tion, and signal readout/process/analysis. Besides, large-area
manufacturing and deployment cost of conventional resistive,
capacitive, and piezoelectric sensors is also another major concern
in the practical implementation. Hence, a low-cost and large-scale
floor sensing technology with optimized design to reduce sys-
temic complexity is highly desired to enable diverse smart
building applications.

Combining the low-cost triboelectric sensing mechanism with
the large-scale printing technique offers a promising solution. On
one hand, triboelectric sensors can produce self-generated elec-
trical signals based on the coupling effect of contact electrification
and electrostatic induction16–21, showing superior merits of
simple configuration, great manufacturing compatibility, high
scalability, no material limitation, and low cost22–27. On the other
hand, printing techniques such as roll-to-roll printing, inkjet
printing, and screen printing have been extensively adopted in
large-scale device fabrication28–31. Thus the combination of the
triboelectric mechanism and the printing technique provides a
good potential to achieve low-cost, large-scale, and self-powered
floor sensing technology. Subsequently, another issue to be
addressed is to minimize the systemic complexity and the number
of signal collecting electrodes/channels. One possible approach is
arranging four electrodes at the edges of a sensing area and taking
the output ratios of opposite electrodes to determine the contact
position with induced triboelectric charges32–34. However, with a
large sensing area, the induced outputs will be extremely small

due to the large coupling distance and thus not applicable in the
floor sensing situation. Meanwhile, another possible approach is
connecting different electrodes with distinct patterns in parallel to
reduce the total electrode number and still maintain good sensing
performance35–38, based on the unique fingerprint-like signal
from each electrode pattern. This sensing methodology can be
considered as a potential solution to minimize the systemic
complexity, yet no large-area application such as floor sensing has
been demonstrated.

Currently, the functionality of most sensors is based on the
time-domain data analytics of the acquired sensing signals, nor-
mally by the signal magnitude and frequency. But this pre-
liminary analytics approach may lose some important features in
the sensing signals, such as the identity information. To extract
the full sensory information from sensors, advanced artificial
intelligence (AI) technology using machine learning (ML)-assis-
ted data analytics can be applied in a monitoring system. The
recent technology fusion of AI and IoT has promoted the rapid
development of artificial intelligence of things (AIoT) systems
that can acquire, analyze, and respond to the external stimuli
more intelligently, with the applied ML analytics on the sensory
dataset to realize personalized authentication and object/intention
identification39–43. It can thus be expected that, with the intro-
duction of AI in a floor sensing system, a higher level of
intelligence-enabled position monitoring, home automation,
personalized healthcare, and authentication can be achieved
toward the actual “smart” building/home.

Herein, deep learning-enabled smart mats (DLES-mats, i.e.,
floor mats) based on the triboelectric mechanism are developed to
realize an intelligent, low-cost, and highly scalable floor mon-
itoring system. The smart floor monitoring system is achieved
through the integration of a minimal-electrode-output tribo-
electric floor mat array with advanced deep learning (DL)-based
data analytics. The DLES-mats are fabricated by screen printing,
exhibiting the merits of cost-effectiveness, high scalability, and
self-sustainability in large-area applications. A distinct electrode
pattern with varying coverage rate is designed for each DLES-
mat, mimicking the unique identification of the QR (quick
response) code system. Thus, after the parallel connection in an
interval scheme, minimal two-electrode outputs with distin-
guishable and stable characteristics for the whole DLES-mat array
can be achieved. The differentiation of the parallel-connected
DLES-mats is based on the relative magnitude of output signals,
enabling indoor positioning and activity monitoring. Further-
more, with the integrated DL-based data analytics, identity
information associated with walking gait patterns can be extrac-
ted from the output signals using the convolutional neural
network (CNN) model. Meanwhile, benefited from the minimal
two-electrode outputs, huge computing resources can be saved
compared to the traditional image or massive channel-based
process, enabling faster data analytics for real-time applications in
smart building/home.

Results
Minimal-electrode design and operation mechanism. A
potential application scenario of the smart floor monitoring
system is shown in Fig. 1a, where the DLES-mat array is attached
onto the corridor floor. When a person is walking on the DLES-
mat array, the generated electrical signals from the
contact–separation motion of each stepping can be acquired and
then used for position sensing of the person. Accordingly, the
corridor light above the corresponding position can be switched
on by the system for lighting purpose. When no signal is detected
for a certain period of time, the system will then switch off the
lights for energy-saving purpose. With the integrated DL-based
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data analytics, individual recognition can also be achieved
according to different walking gaits. The realized individual
recognition can be adopted in the automatic access by opening
the door for recognized valid users. Therefore, the smart floor
monitoring system with the superior capability of position sen-
sing, activity monitoring, and individual recognition exhibits
great potential toward realizing the smart building/home

applications in the aspects of automation, healthcare, security,
and AIoT.

Through the parallel connection of multiple sensors, the
number of required electrodes in the system can be effectively
reduced. But to differentiate the output signals, each sensor
should possess a distinct characteristic, like the identity of a QR
code. According to the triboelectric theory, under the same

a

b c

d

e f

Fig. 1 The smart floor monitoring system based on the deep learning-enabled smart mats (DLES-mats). a The conceptual diagram of the smart floor
monitoring system and its potential applications of position sensing, activity monitoring, and individual recognition in the smart building/home scenarios.
b The assembled triboelectric DLES-mat array with a 3 × 4 arrangement, where the inset shows the three device layers fabricated by a low-cost and large-
scale screen printing technique. c The digital photographs of the floor mat array and an individual floor mat with a 40% electrode coverage rate, where the
scale bars are both 20 cm. d The detailed electrode layout of the floor mats with different electrode coverage rates from 0 to 100% to achieve
distinguishable signal patterns after parallel connection. e, f The operation mechanism of the parallel-connected floor mat array when a person walks on/
off a floor mat with e smaller electrode coverage rate and f larger electrode coverage rate, where the output signals with relatively smaller and higher
magnitude are generated, respectively.
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contact conditions (e.g., contact area, pressure, etc.), the same
amount of triboelectric charges should be generated on a
dielectric friction surface, and a larger electrode area beneath
the dielectric surface can collect more charges through the
electrostatic induction. Normally, the triboelectric sensor can be
analyzed by a variable capacitor model, with its generated open-
circuit voltage given by VOC=Q/C, where Q is the effective
induced charges on the electrode (positively related to the
electrode area) and C is the equivalent capacitance of the
triboelectric sensor. For parallel-connected triboelectric sensors,
they share the same equivalent capacitance in the output
generation. In this regard, triboelectric sensors with different
electrode areas will generate outputs of different magnitudes,
proportional to the effective induced charges on the electrode,
making them distinguishable in a parallel connection. Therefore,
in the smart floor monitoring system, DLES-mats with different
electrode coverage rates are designed and fabricated through
screen printing the designated electrode patterns on a poly-
ethylene terephthalate (PET) film and further packaging with
another polyvinyl chloride (PVC) film. The schematic diagram of
the as-designed DLES-mat array is shown in Fig. 1b, where the
enlarged image depicts the three stacking device layers, i.e., PET
friction layer, silver (Ag) electrode layer, and PVC substrate layer.
Figure 1c illustrates the photographs of the assembled floor mat
array as well as the flexibility of a floor mat (40% electrode
coverage rate). The detailed electrode patterns of the floor mats
are presented in Fig. 1d, where six electrode coverage rates (from
0 to 100%) with 20% difference are designed to achieve a rational
balance between the clear distinction and the number of floor
mats. The black color represents the printed Ag electrode, with
the uniform grid lines as the electrode interconnection through-
out the floor mat and the filled squares to obtain different
coverage rates. The vertical and horizontal grid electrode lines
form a 20 × 20 array of empty squares (20 mm × 20mm), that can
be further selected to be filled with Ag to achieve different and
uniformly distributed electrode coverage rates. It is worth to
mention that all the electrode patterns of 20, 40, 60, and 80% can
be obtained from the same printing mask of 20%. First, with the
mask oriented upward, the printing results in the 20% DLES-mat.
Afterward, a further printing on the 20% DLES-mat with the
mask oriented downward leads to the 40% DLES-mat. Similarly,
subsequent printing with the mask oriented right and left will
result in the 60% and the 80% DLES-mats, respectively. The
gradual printing results of these four DLES-mats with different
mask orientations are shown in Supplementary Fig. 1. Thus, with
this design, only one printing mask is required for these four
DLES-mats, contributing to the cost reduction in the DLES-mat
fabrication. The cost estimation of the fabricated DLES-mats can
be found in Supplementary Note 1.

To elucidate the operation mechanism of the assembled DLES-
mat array in a straightforward manner, the configuration with
two DLES-mats in parallel connection is used as an example.
Since the PET friction layer adopted here is relatively positive,
most common materials (e.g., socks and shoe soles) become
negatively charged after contacting with it, leaving its surface
positively charged. After that, when a person steps on the DLES-
mat with less electrode coverage rate as shown in Fig. 1e, a certain
amount of electrons will be repelled to flow through the external
circuit to the ground until new electrostatic equilibrium is
achieved. According to the above theoretical model, the amount
of flowing electrons is proportional to the electrode coverage area.
Thus stepping on the DLES-mat with less electrode coverage rate
generates a smaller output current/voltage pulse. When the
person steps off the DLES-mat, the same amount of electrons
flow back to the electrode from the ground, generating a reverse
current/voltage pulse in the external circuit. On the other hand,

when the person steps on and off the DLES-mat with higher
electrode coverage rate (Fig. 1f), a larger amount of electrons will
flow in the external circuit, thus producing a larger output
current/voltage pulse. A more comprehensive illustration of the
operation mechanism with detailed charge transfer processes
corresponding to different walking stages is shown in Supple-
mentary Fig. 2. Through the design of varying electrode coverage
rates, the generated triboelectric signals with different relative
magnitudes can thus be adopted to distinguish the outputs from
different DLES-mats and determine the corresponding walking
positions as well.

Characteristics of DLES-mat output and connection scheme.
With the parallel connection of the six fabricated DLES-mats
(0–100%), the output from each floor mat is first characterized
with repeated stepping motions by both the right foot and the left
foot wearing shoes with polytetrafluoroethylene (PTFE) sole in
four directions (i.e., N, north; E, east; S, south; W, west). The
generated output voltages on a 1MΩ external load from the six
DLES-mats are shown in Fig. 2a–f, respectively. Figure 2g sum-
marizes the average output trends of the maximum voltage,
minimum voltage, and peak-to-peak voltage. It can be clearly
observed that, as expected, the absolute magnitudes of all these
three output voltages show a positive relationship with the elec-
trode coverage rate. To maximize the distinction between the
outputs of different DLES-mats, the peak-to-peak voltages are
used for signal analysis and later characterization. Next, the effect
of different users wearing PTFE shoes on the output performance
is investigated, as depicted in Fig. 2h. Although the output
magnitudes of different users are different, the increment trend of
relative output magnitudes of each user is similar, suggesting the
suitability of the DLES-mat design in individual position sensing.
The position of a user on the DLES-mats can be determined by
the relative output magnitudes with respect to that from the 0%
DLES-mat. In addition, the effect of different contact materials is
also investigated through the same user wearing different mate-
rials, i.e., cotton sock, ethylene vinyl acetate shoe, and PTFE shoe.
As indicated in Fig. 2i, similar increment trends of relative output
magnitudes can be observed from all the materials, once again
showing the applicability of the floor mat design in the scenario of
position monitoring. When the generated output voltages are
measured on a 100MΩ load, similar results can be achieved, as
presented in Supplementary Fig. 3. It is worth noting that higher
absolute magnitude is achieved with the 100MΩ load due to its
higher resistance, but the relative output magnitudes exhibit
similar trends. On the other hand, because of the higher mea-
suring resistance, the generated output pulses on the 100MΩ load
take longer time to discharge (RC discharge), causing the overall
signals to shift upward in each repeating period of stepping. The
detailed output waveforms on the 1 and 100MΩ load with dif-
ferent discharge time can be found in Supplementary Fig. 4.

With the unique electrode pattern associated with each DLES-
mat, they can be connected in parallel to effectively reduce the
number of output electrodes. Although clear differentiation can
be achieved when stepping on the individual DLES-mat, the
performance of the DLES-mat array under subsequent walking
motions still needs further investigation. Thus a parallel
connection of 12 DLES-mats (2 sets of 0–100%) in one-
dimensional arrangement is constructed, as depicted in Fig. 3a.
When a person subsequently walks on the 12 DLES-mats, the
generated voltages on a 1MΩ load and a 100MΩ load are
illustrated in Fig. 3b, d, respectively. PTFE is adopted as the
contact material here and hereafter unless otherwise specified.
Two rounds of forward–backward walking are repeated with left
foot stepping first for the first round and right foot stepping first
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for the second round. It can be seen that the output voltage on the
100MΩ load has a wider pulse width due to its much slower
discharge time, leading to the overlapping of adjacent voltage
pulses and the distortions of output signals. The corresponding
peak-to-peak voltages extracted from Fig. 3b, d are plotted in
Fig. 3c, e, respectively. A more stable increment–decrement trend
of relative magnitudes can be observed for the 1MΩ load due to
its rapid discharge time compared to the 100MΩ load. Yet the
resultant voltage trend is still unsatisfactory, with a clear deviation
from the ideal increment–decrement trend. This deviation is
caused by the overlapping of two opposite voltage pulses from
two simultaneous stepping motions, i.e., a negative pulse from
stepping on the next DLES-mat and a positive pulse from
stepping off (leaving) the previous DLES-mat. Therefore, to
improve the signal stability of the detected output voltages, an
interval parallel connection is implemented and investigated
(Fig. 3f). From the measurement results shown in Fig. 3g–j, the

corresponding output voltages exhibit a much more stable
increment–decrement trend for both the 1MΩ load and the
100MΩ load, since the interference from the walking motions on
adjacent DLES-mats is eliminated. That is to say, one walking
motion (stepping on and stepping off) can be fully completed on
one DLES-mat before entering the next DLES-mat connected
with the same output electrode. Thus no overlapping of voltage
pulses is introduced in the generated signal waveforms and a
more ideal increment–decrement trend can be realized. Similarly,
the connection scheme for one set of DLES-mats with the parallel
and interval parallel connection, is also investigated in Supple-
mentary Fig. 5. The same conclusion can be drawn that the
interval parallel connection produces a more stable and ideal
increment–decrement trend for signal detection and analysis.
Hence, the interval parallel connection scheme with two output
electrodes is adopted in the DLES-mat array configuration to
effectively reduce the number of required sensing electrodes and

a b c

d e f

g h i

Fig. 2 Characteristics of the output performance of the individual DLES-mat on a 1MΩ external load. a–f The generated voltages by repeated stepping
motions with polytetrafluoroethylene (PTFE) shoes (four directions toward the north, east, south, and west for both the right foot and the left foot) on
DLES-mats with an electrode coverage rate of a 0%, b 20%, c 40%, d 60%, e 80%, and f 100%. g The corresponding maximum voltage, minimum voltage,
and peak-to-peak voltage from Fig. 2a–f with respect to different electrode coverage rates, showing clear increment trends with the increased electrode
coverage rate. The error bars indicate the standard deviation. h The effect of different users wearing PTFE shoes on the output peak-to-peak voltage.
Similar increment trends of relative magnitudes can be observed from different users, indicating the suitability of the DLES-mat design for individual
position sensing. i The effect of different contact materials worn by the same user on the output peak-to-peak voltage, where similar increment trends can
also be observed.
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a

b c

d e

f

g h

i j

Fig. 3 Investigation of the electrode connection scheme. a The schematic diagram of the parallel connection of 12 DLES-mats into one output electrode.
b–e The generated output voltages and corresponding peak-to-peak voltage magnitudes on b, c a 1MΩ and d, e a 100MΩ external load with two rounds of
forward–backward walking. Large signal distortions and magnitude deviations from the ideal situations are found due to the overlapping of two opposite
voltage pulses caused by simultaneous walking on the next DLES-mat and walking off the previous DLES-mat. f The schematic diagram of the interval
parallel connection of all the DLES-mats into two output electrodes to address the above issue. g–j The generated output voltages and the corresponding
peak-to-peak voltage magnitudes on g, h a 1MΩ and i, j a 100MΩ external load with two rounds of forward–backward walking. More ideal signal patterns
and relative magnitudes can be achieved with the interval parallel connection scheme.
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simultaneously achieve the desired differentiation between
different DLES-mats.

DLES-mat array for position sensing and activity monitoring.
Based on the above characterizations, the interval parallel con-
nection scheme is adopted to implement the two-dimensional
DLES-mat array for actual position sensing application, as illu-
strated in Fig. 4a. Each set of the six floor mats is connected to
one electrode, resulting in only two output electrodes required for
the whole 3 × 4 array. The 12 digits (1–12) in the schematic
indicate the numbering for easy references of the DLES-mats in
the corresponding positions. Walking tests with two repeated
forward–backward cycles (left foot stepping first in the first cycle

and right foot stepping first in the second cycle) along different
trajectories are conducted to verify the position sensing capability
of the DLES-mat array, as shown in Fig. 4b–f. According to the
relative magnitude trend obtained in the previous study, voltage
pulse with higher peak-to-peak magnitude is generated from the
DLES-mat with a higher electrode coverage rate. For example, in
Fig. 4b, the person is walking on the first row of the DLES-mat
array, with Mat 1 (0%) and Mat 3 (60%) connected to electrode 2
(E2) and Mat 2 (100%) and Mat 4 (40%) connected to electrode 1
(E1). From the output voltages in both cycles, a clear trend can be
observed in the voltage magnitudes on both electrodes. For
walking forward from Mat 1 to 4, an output voltage pulse with the
lowest magnitude is first generated on E2 (0%), and then an

a b c

d e f

g

Fig. 4 DLES-mat array for position/trajectory detection and activity monitoring. a The schematic diagram of the constructed 3 × 4 DLES-mat array with
two output electrodes. The 12 digits (1–12) indicate the numbering for each DLES-mat in the corresponding position. b–f The corresponding generated
voltages by the indicated two cycles of forward–backward walking trajectories on the DLES-mat array. Based on the relative signal magnitudes on the two
electrodes, walking patterns on the DLES-mat array can be determined for walking trajectory detection. g Activity monitoring for slow walking, normal
walking, fast walking, running, and jumping, according to the output signal magnitudes and frequencies.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18471-z ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4609 | https://doi.org/10.1038/s41467-020-18471-z | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


output voltage pulse with the highest magnitude is generated on
E1 (100%). Next, an output voltage pulse with a relatively smaller
magnitude is generated on E2 (60%). Last, an output voltage pulse
with an even smaller magnitude but still larger than the first pulse
is generated on E1 (40%), until the person walks out of the DLES-
mat array and no output voltage is generated. A reverse sequence
of output voltages can be observed for walking backward from
Mat 4 to Mat 1. The same output voltage trends can be observed
in both cycles, indicating the stability of the DLES-mat array for
position sensing. Similarly, for the other walking trajectories
shown in Fig. 4c–f, position sensing and walking trajectory
detection can also be achieved based on the generated voltage
signals on both the output electrodes and their relative magni-
tudes. This real-time position sensing capability enables the
DLES-mat array in the application scenarios of automation
control (such as lighting and air conditioning) and fall detection
(by detecting the abnormal signal patterns of multiple peaks in a
short period due to the falling-induced rapid contacts and no
outputs in the following). The typical signal patterns for the
normal walking process and the walking–falling process are
shown in Supplementary Fig. 6.

In addition to position sensing, the DLES-mat array can also be
adopted for activity monitoring and potential energy harvesting
from our daily activities. Figure 4g depicts the output signals of a
person performing five different types of activities, i.e., slow
walking, normal walking, fast walking, running, and jumping, on
the middle row of the DLES-mat array in a forward–backward
manner. Different types of activities can be easily distinguished
based on the overall magnitude and time period (frequency) of
the output signals, indicating the activity monitoring capability.
In this regard, the DLES-mat array can be applied for potential
healthcare applications in exercise monitoring, including the type
of exercises, the time period of the exercise, and the burned
calories based on the type and period of the exercise. Next, the
output voltage and power of the DLES-mat array with respect to
different external resistances are measured (Supplementary
Fig. 7a–c) under normal walking. A maximum output power of
8.57 μW can be obtained at 1.96 MΩ. Due to the large capacitance
of the DLES-mat array, the saturated output voltage (close to the
open-circuit voltage) for the same stepping motion is relatively
low according to VOC=Q/C. With a smaller DLES-mat area/
capacitance, the saturated voltage can be improved for more
effective energy harvesting. Thus the outputs from individual
DLES-mat (100%) of 40 cm × 40 cm and 30 cm × 12 cm are also
measured (Supplementary Fig. 7d–i). The saturated voltage is
greatly improved with a smaller area, but the matched resistance
also increases. For the 40 cm × 40 cm and the 30 cm × 12 cm
DLES-mat, the maximum output voltage is 55.0 and 144.0 V at
100MΩ, respectively, while the maximum output power is
169.46 μW (at 9.10 MΩ) and 800.84 μW (at 13.79MΩ). In
practical applications, the rectified output voltages can be applied
to charge up capacitors as sustainable power sources for other IoT
devices in smart buildings. The capacitor charging and wireless
sensor powering by the three devices are depicted in Supple-
mentary Fig. 8. After charging up a 27 μF capacitor to 8 V, the
stored energy is sufficient to support one operation cycle of the
sensor. These results demonstrate that the operation of IoT
devices with intermittent functionalities can be supported by the
developed DLES-mats.

DL-based data analytics and smart building demonstration.
Alongside with the rapid advancement of AI technology, an
increasing number of AI integrated smart systems have also been
developed to achieve intelligent decision-making and control
automation. DL as a sub-field of ML can provide an efficient way

to automatically learn the representative features from collected
raw signals by training an end-to-end neural network, which has
made great achievements in analyzing the image, video, speech,
and audio. When integrating the DLES-mat array with DL-
assisted signal analytics, a smart floor monitoring system for not
only position/activity sensing but also individual recognition can
be realized. Since the walking gait pattern of a person is different
from others, it can generate a unique output signal for individual
recognition. The overall structure of the smart floor monitoring
system is shown in Fig. 5a. When a person is walking through the
DLES-mat array, triboelectric output signals are generated by the
periodic contact–separation motions of human steps. These
generated signals are then acquired by the signal acquisition
module in an Arduino MEGA 2560 microcontroller. In terms of
the training data for individual recognition, the signal data from
each channel is recorded with 1600 data points (2 channels in
total) and 100 samples are collected for each user (80% for
training and 20% for testing). A whole dataset is built from 10
different users, with a total number of 1000 samples. The typical
output voltages from each user walking through the middle row
of the DLES-mat array are shown in Supplementary Fig. 9. In this
study, the DL model is created based on CNN in order to provide
high recognition performance, where the parameters used to
construct the CNN model are labeled in Fig. 5b and Supple-
mentary Table 1. After the training process in the CNN model
with 50 training epochs, the maximum accuracy can be achieved,
and the CNN model is able to generalize enough to avoid over-
fitting as shown in Supplementary Fig. 10. The average recogni-
tion accuracy is 96.00% (Fig. 5c), providing great potential for
high-accuracy control based on the DL prediction. In addition,
recognition testing of the same user in different passing statuses
(i.e., normal walking, fast walking, and running) is also conducted
to demonstrate the applicability of the smart floor monitoring
system in various situations. The corresponding signal patterns of
four different users and the predicted results are shown in Sup-
plementary Figs. 11 and 12, respectively. It can be observed that
the trained DL model is able to distinguish the different passing
statuses of the 4 users (12 classes) with an accuracy of 89.17%.
Besides, if all the passing statuses from the same user are set as
one individual label (just distinguish the user without knowing
his passing status), the accuracy of the testing set after training
reaches 91.47%. These results indicate that, even when the user
passes through the DLES-mat array in different ways, the smart
floor monitoring system can still recognize and identify the user
with a high accuracy of 91.47%.

To demonstrate the practical usage scenarios, a virtual corridor
environment mimicking the real corridor is built to reflect the
real-time status of a person on the DLES-mat array, including
position sensing through the peak detection and individual
recognition through the DL prediction. Unlike the camera-based
monitoring that normally involves the video-taken concerns, this
smart floor monitoring system using a digital twin of the person
in the virtual environment only shows the position information
and the recognized identity, which are basic parameters required
for automation, healthcare, and security applications. The overall
flow of the signal acquisition and analysis process is shown in
Fig. 5a. When a person first steps on the DLES-mat array on
Position 1, a small negative peak is generated from E1 (20% mat),
which can be adopted as the trigger signal to move the digital
twin to the first DLES-mat and turn on the corresponding Light
1, as indicated in Fig. 5d. When the person continues walking, a
large negative peak from E2 (80% mat, as the trigger signal to
move the digital twin to the second DLES-mat) and a small
positive peak from E1 (20% mat) are generated. Then upon
stepping on Position 2, a negative peak with relatively smaller
magnitude than the 80% mat is generated from E1 (60% mat),
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which is used as the trigger signal to move the digital twin to the
third DLES-mat and turn on the corresponding Light 2, as
indicated in Fig. 5e. After walking through the whole DLES-mat
array and reaching Position 3, a full cycle of the output signal is
generated from both electrodes as illustrated in Fig. 5f, reflecting
the unique walking gait of the person. The full-cycle output signal
is then analyzed by the trained DL model to predict whether the
person is a valid user of the room. If the person is a valid user,
then access to the room is granted and the door will be open.
Otherwise, access is denied and the door will remain closed. A

video demo with three persons (two valid users and one invalid
user) walking through the DLES-mat array can be seen in
Supplementary Movie 1. There is a small delay between the
motions in the real and virtual space due to the time taken for
signal processing and analysis. As in this scenario the personal
identity is still revealed with certain privacy concerns, another
approach can be implanted to better protect privacy where only
the recognition of valid and invalid users is required. At the
training stage for the DL model, labels with privacy information
like the name of the person will not be included but only a label of

a c

b

d e f

25
,6
00

Fig. 5 Smart floor monitoring system with integrated deep learning-assisted data analytics. a The overall structure and data flow of the smart floor
monitoring system for real-time position sensing and individual recognition in smart building/home applications. b The detailed structure of the
convolutional neural network (CNN) training model. c The confusion matrix for individual recognition of 10 different users, showing a high accuracy of
96%. d–f Demonstration of the different stages in real-time position sensing and individual recognition, where a person is walking in the real space while
his digital twin is controlled to walk in the virtual space correspondingly: d At Position 1, the first negative peak is detected and used to turn on Light 1; e At
Position 2, the third negative peak is detected and used to turn on Light 2; f At Position 3, the full walking signal is detected and analyzed in CNN model for
individual prediction (“valid/invalid user”) and door access control (“granted/denied”).
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“valid user” for all the users with valid access. Thus, when a
person walks on the DLES-mat array with a recognized walking
pattern, a message of “valid user” will be displayed without
revealing any of his privacy information and the door will be
automatically opened. Then if his walking pattern is not
recognized, the message of “invalid user” will be displayed and
the door will remain closed. In this way, the recognition of valid
and invalid users can be achieved without revealing the identity
and the privacy information of the person. Overall, in this
demonstration, real-time position and individual recognition of a
person walking on the DLES-mat array can be successfully
achieved, showing the great potential of the smart floor
monitoring system in smart building relative automatic control
and security access.

Discussion
In summary, a smart floor monitoring system is developed for
indoor positioning, activity monitoring, and individual recogni-
tion toward the smart building/home applications. It is realized
through the system integration of self-powered triboelectric
DLES-mats and advanced DL-based data analytics. Benefited by
the screen printing manufacturing and triboelectric sensing
mechanism, the DLES-mats possess the grand advantages of low
cost, high scalability, and self-sustainability that are ideally sui-
table for large-area floor monitoring. In addition, the design of a
distinct electrode pattern enables the interval parallel connection
of different DLES-mats, resulting in minimal two-electrode out-
puts with clear and stable differentiation for a 3 × 4 DLES-mat
array. Furthermore, after data analytics in the developed CNN
model, a smart floor monitoring system can be achieved for real-
time position sensing and identity recognition. The position
sensing information from each step is adopted to control the
lights in corresponding positions, while the full walking signal is
analyzed by the CNN model to predict whether the person is a
valid user of the room so as to auto-control the door access.
Comparing with camera and smart tag-based individual recog-
nition, the smart floor monitoring system based on the dynamic
gait-induced output signals provides a video-privacy-protected,
highly convenient, and highly secure recognition approach. For a
10-person CNN model with 1000 data samples, the average
prediction accuracy can reach up to 96.00% based on their spe-
cific walking gaits, offering a high accuracy in the practical real-
time scenarios. Therefore, the developed smart floor monitoring
system with the excellent capability of position sensing, activity
monitoring, and identity recognition exhibits promising potential
in the applications of automation, healthcare, security, and AIoT
toward smart building/home.

Methods
Fabrication and implementation of the DLES-mats. A thin layer of PET with
relatively high triboelectric positivity is utilized as the friction surface for common
foot stepping. The PET is a semi-crystalline polymer film with a high optical
transparency, a thin thickness of 125 μm, and a glass transition temperature of
81.5 °C. First, to achieve individual floor mat, the large-area PET thin film is cut
into a square shape with a dimension of 42 cm × 42 cm. The PET thin film is then
pretreated on one side with a primer treatment for promoting the adhesion with
the later printed electrode layer. After that, a layer of silver paste as the charge
collection electrode is printed on the pretreated PET surface by screen printing,
followed by a thermal curing at 130 °C for 30 min using a thermal oven. The
printed thickness of the silver electrode is about 15 μm. Next, the PET film with the
printed silver electrode is cold-laminated with a layer of 80-μm-thick PVC. The
PVC layer serves as the supporting substrate with a square opening of 2 cm × 2 cm
on the connector pad for wiring purpose. Following that, a copper wire is con-
nected to the electrode by conductive paste through the opening, which is then
sealed with thin Kapton tape. Last, different fabricated floor mats are pasted on a
woolen floor, and the wires from each floor mat are connected based on the
investigated connection scheme for later characterizations.

Electrical characterization of the DLES-mats. The output voltages of the tribo-
electric DLES-mats are measured by an oscilloscope (Agilent DSO-X3034A) with a
recording impedance of 1MΩ as well as 100MΩ for waveform comparison. In
terms of the voltage and power characteristics versus varying resistor loads, the
output voltages on different loads are measured by a Keithley 6514 Electrometer
connected in parallel. Then the peak power on the corresponding resistor load is
calculated using the formula P= V2/R, where P, V, and R are the peak power,
measured output voltage, and resistance of the resistor load, respectively. As for the
capacitor charging, the voltages on different capacitors are also measured using the
Keithley 6514 Electrometer in parallel connection with the capacitors.

Data collection and DL training model. The generated triboelectric signals from
the DLES-mat array are acquired by the signal acquisition module in an Arduino
MEGA 2560 microcontroller in a real-time manner. In terms of the training data
for individual recognition, the signal data from each channel is recorded with 1600
data points (2 channels in total) and 100 samples are collected for each user’s
walking pattern, where 80 samples are used for training (80%) and 20 samples are
used for testing (20%). A whole dataset is built from 10 different users, with a total
number of 1000 samples. The CNN models used in the system are configured as
follows: the categorical cross-entropy function is applied as the loss function,
adaptive moment estimation (Adam) is used as the update rule due to its opti-
mization convergence rate, and prediction accuracy is used to evaluate the model
training. The CNN models are developed in Python with a Keras and TensorFlow
backend. The feature-based models are trained on a standard consumer-grade
computer. The learning rate can be adjusted during training using a Keras callback.

Demonstration of the smart building application. For the real-time demon-
stration, the two-channel triboelectric signals from the DLES-mat array are first
connected to the analog input ports of an Arduino MEGA 2560 microcontroller.
The acquired electrical signals are sent to a laptop by USB cable communication
instantly. Following that, the received signals are processed in Python for peak
detection and pattern recognition. When the first negative peak is detected, a
control command is sent to Unity 3D through TCP/IP communication to move the
digital twin to the first DLES-mat position and turn on Light 1 in the virtual scene.
Subsequently, for the following detected negative peaks, the digital twin is con-
trolled to move to the corresponding positions. Light 2 is turned on when the third
negative peak is detected. After detecting the full cycle of the walking patterns, the
trained CNN model in Python will predict the identity information and send a
corresponding command to Unity 3D for the control of door access (“granted/
denied”) based on the recognized results whether the person is a valid user or not.
All the performed experiments in this work complied with a protocol approved by
the National University of Singapore Institutional Review Board (N-18-069). All
participated subjects were volunteers, and informed consent was obtained prior to
participation in the experiments.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The codes that support the findings of this study are available from the corresponding
author upon reasonable request.
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