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Triboelectric nanogenerator sensors for soft
robotics aiming at digital twin applications
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Designing efficient sensors for soft robotics aiming at human machine interaction remains a
challenge. Here, we report a smart soft-robotic gripper system based on triboelectric
nanogenerator sensors to capture the continuous motion and tactile information for soft
gripper. With the special distributed electrodes, the tactile sensor can perceive the contact
position and area of external stimuli. The gear-based length sensor with a stretchable strip
allows the continuous detection of elongation via the sequential contact of each tooth. The
triboelectric sensory information collected during the operation of soft gripper is further
trained by support vector machine algorithm to identify diverse objects with an accuracy of
98.1%. Demonstration of digital twin applications, which show the object identification and
duplicate robotic manipulation in virtual environment according to the real-time operation of
the soft-robotic gripper system, is successfully created for virtual assembly lines and
unmanned warehouse applications.
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ith the establishment of 5 G technology in the next few

years, the cost of massive data transmission via wire-

less network will be much cheaper. Such infrastructure
will enable the smart homes and lean/smart manufacturing by
deploying huge amounts of sensors under the internet of things
(IoTs) framework to realize real-time sensory information col-
lection, data management and analysis!. In the future, the com-
bination of artificial intelligence (AI) technology with the IoT
technology will lead to AI of things (AloT)-based living, working,
and manufacturing environment, which provides efficient IoT
operations, improved human-machine interactions and better
capability of decision-making with respect to a complicated and
dynamic system?3. With the aid of AloT, computation capacity,
and ubiquitous sensory information, digital twin is proposed to
be a digital copy of the physical system, ie., a cyber-physical
system, to perform real-time control and optimization of pro-
ducts and production lines, because the required time of getting
an optimized solution from cloud server reduces to an ignorable
level®. One of the digital twin applications is the components
sorting and complex product assembly at the shop floor. How-
ever, due to the complexity of building a digital equivalent in
cyberspace to its physical counterpart, very limited progress has
been achieved. So far, the visual (or image) recognition is the
main approach to collect information for creation of real-time
twin information in the digital space, i.e., the digital twin. We
need to have sensors built-in® in the robotic manipulators, to
recognize shape and size (or even type) of objects (or compo-
nents) for sorting-assembly lines in an unmanned factory,
because visual recognition® does not work in dark space, which is
the trend for the realization of unmanned factory for the sake of
energy saving.

Robotic manipulators have been developed for years, owing to
their great assistance in various industries, and, hence, different
designs of the robotic wrists were developed to enable those
robots to accomplish the specific tasks’. In the meantime, the
corresponding sensors were applied to monitor their motions and
the external stimulus as well, especially for those surgical or
micro-nano manipulation fields, the accurate motion detection
and tactile sensing become quite important3-12. As for soft
robotics, featuring high compliance and dexterity with muscle-
like actuators, soft materials including silicone rubber and ther-
moplastic polyurethanes (TPUs) have been widely used in the
fabrication!3-16. Hence, the high nonlinear deformation and no-
joint structure hinder the application of the traditional sensors
such as potentiometer and encoder, causing the necessity of
sensors compatible for soft robots!”. For instance of sensor
topology, the embedded soft resistive sensors were utilized to
capture the deformations of soft grippers together with vision-
based motion capture system!8. Zhao et al.l® have proposed a
stretchable optical waveguide strain sensor, which was directly
integrated into a soft prosthetic hand that can sense the shape and
stiffness of contacted objects. Based on triboelectric mechanism,
Lai et al.20 have developed a self-powered stretchable robotic skin
to help soft robot sense and interact with environment via self-
generated signals, indicating another solution that has high
compatibility with soft robots. Till now, the proposed solutions to
achieve perception for soft robotics include photo detection!®-21,
triboelectricity?223, piezoelectricity?4, electromagnetic effect?>,
and conductive nanocomposites!®26. However, some of the above
methods are restrained by several drawbacks, e.g., the electro-
magnetic field is required for Hall sensor2> and nonlinearity or
creep is a material concern in the nanocomposites!8. The cap-
ability of detecting the continuous motion and external stimuli of
the soft robot remains as grand challenges in soft robotics.

Noticeably, triboelectric nanogenerator (TENG)%7-30-based
sensors are more compatible with soft robotics, because the

Young’s modulus of soft materials typically used in triboelectric
sensors is in the same level as the silicone rubber and TPU. More
importantly, self-generated sensor output in response to the
strains and deformation of TENG makes the design of signal
processing circuits more straightforward. Besides, TENG has been
investigated as promising solutions to harvest energy from body
motion and save collected energy in capacitors for wireless sensor
signal transmission3!, or to perform direct wireless sensory
information transmission for IoT applications32. Therefore, using
TENG approaches to realize tactile sensing skins integrated with
soft or rigid actuators have been reported by Professor Wang’s
group frequently?%-33,

However, these studies only address contact-separation detec-
tion, without the capability of detecting the sliding and con-
tinuous motions, which requires further study. Recently, glove-
like human-machine interfaces (HMIs) based on the stretchable
and flexible sensors using resistive, capacitive, piezoelectric, or
triboelectric mechanisms have been investigated frequently>4-37.
For instance, a bending sensor for continuous finger motion
measurement can be achieved by TENG with grid patterns.
Meanwhile, there is also a trend of analyzing the massive data
collected from a large amount of distributed sensors. Sundaram
et al.3? reported a glove with a dense matrix of 548 resistive
sensors, to obtain the grasping signatures. In contrast, another
approach is to leverage the minimalistic design, i.e., the minimum
number of sensors, to provide just enough sensory information as
a low-cost solution requiring less computation capacity32. To
provide a human-like perception for robots, Boutry et al.4% pro-
posed a multi-dimensional capacitive sensor deployed on robotic
finger, to identify both normal and shear forces with high sen-
sitivity, and this kind of researches illustrate accurate dexterity of
hand information, which may benefit the design for the sensory
system of soft robotics. In addition, to further explore the
potentials of these facile designed TENG sensors, the machine
learning (ML) technique can be utilized to enhance the data
interpretation for better manipulation or detection, i.e., accurate
gesture recognition, which is equivalent to the continuous motion
sensors*l. However, there is little research reporting the TENG
sensor-integrated soft pneumatic finger with ML-assisted recog-
nition in details, while the significance of relevant technique is
already addressed in the reported works, such as self-powered
stretchable soft-robotic skin as mentioned previously20.

Herein, TENG sensors composed of patterned-electrode tactile
sensors and gear-structured length sensors are proposed for
enhancing the intelligence of the soft manipulator (ie., soft
gripper), as shown in Fig. 1. The developed sensing system with
patterned-electrode tactile TENG (T-TENG) sensor can detect
sliding, contact position, and gripping mode of the soft gripper
(see comparison to other methods in Supplementary Table 1).
The measurement of bending angle of the soft actuators by length
TENG (L-TENG) sensor generates signals by the contact
separation between the electropositive gear teeth and the elec-
tronegative materials. Therefore, both of the motion caused by
self-actuation and external stimuli can be sensed. A glove-based
HMI composed of a single-electrode tactile sensor and an L-
TENG sensor is used to perform the real-time control of the
robotic hand to verify the real-time signal processing system.
Next, to realize the feedback function, a tri-actuator soft gripper is
fabricated by three-dimensional (3D) printing with integrated
TENG sensors. By leveraging the ML technology for data analysis,
the gripper is successfully demonstrated to perceive the gripping
status and realize object identification, and a demonstration of
digital twin is then established to create duplicate digital infor-
mation of the above manipulation in virtual reality (VR) envir-
onment, ie., the cyberspace. In general, the proposed devices
together with soft gripper illustrated a great potential for digital
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Fig. 1 Construction drawing of the low-cost triboelectric nanogenerator (TENG) for soft gripper and its digital twin applications. a The as-fabricated
TENG sensors and their basic structures. (i) The length TENG (L-TENG) sensor and (ii) the tactile TENG (T-TENG) sensor. b The soft gripper integrated
with TENG sensors. ¢ The intelligent sensory data processing strategies. E; to E4, and E| represent the electrodes in the T-TENG sensor. d The digital twin

applications based on artificial intelligence of things (AloT) sensory system.

twin applications, e.g., production management and prediction of
situation in smart factory.

Results

Configuration and working mechanism of the L-TENG and T-
TENG sensors. Both of the L-TENG sensor and T-TENG sensor
work in single-electrode mode. As depicted in Fig. 1a(i), the gear
coated with Nickel-fabric conductive textile (i.e., Ni-fabric) serves
as the positive triboelectric component in L-TENG sensor,
and the polytetrafluoroethylene (PTFE) film (10 mm x 10 mm)
serves as the negative triboelectric layer with Cu electrode on
the back side connected to the external output. The gear will be
driven to rotate when the soft strip is stretched, resulting in the
intermittent contact between PTFE layer and gear’s teeth, thus
generating the triboelectric output. Meanwhile, the spring
mounted on the rotation shaft deforms during stretching, then
releases and provides the pull-back force when the strip is going
to contract. This self-recovery ability enables the strip to remain
tensed and avoids the deviation caused by the buckling of the thin
strip. The structure of T-TENG sensor is shown in Fig. 1a(ii), five
electrodes made of Ni-fabric are patterned on the polyethylene
terephthalate (PET) substrate where all the electrodes are 5 mm
wide and the short electrodes are equidistantly arranged with
20 mm intervals. Moreover, the long electrode is located along the
length direction of the T-TENG sensor patch. With a layer of
silicone rubber, a kind of flexible and stretchable negative tribo-
electric material, coated on the surface of the patch, triboelectric
signals can be generated by the stimuli on the T-TENG sensor’s
surface and collected in these five electrodes. The detailed
methods for the fabrication of T-TENG sensor can be found in

the “Methods” section and Supplementary Fig. 1. In addition, the
proposed sensors can be directly applied to various types of
robots, including those rigid materials. Leveraging ML technol-
ogy, the soft gripper (Fig. 1b) composed of these two TENG
sensors is successfully demonstrated to perceive the gripping
status and realize object identification, and a demonstration of
digital twin is then established to create duplicate digital infor-
mation of the above manipulation in virtual environment. The
signal readout strategies (Fig. 1c), including peak counting and
voltage ratio, eliminate the issues of absolute amplitude fluctua-
tion caused by the variations of environmental factors, such as
humidity and temperature. The further improvement of sensing
resolution can be achieved via precise fabrication process such as
metallurgy and machining. Hence, the proposed digital twin
system shows its great potential in the area of unmanned ware-
house, smart factory, intelligent assembly line, and IoT as shown
in Fig. 1d.

The working mechanism of the T-TENG sensor is illustrated in
Fig. 2a, b. The short electrodes in T-TENG sensor are marked as
E; to E4 and the long electrode is marked as E;. When external
stimuli occur, due to triboelectrification and electrostatic induc-
tion effect, the electric potential between electrodes and ground
changes, driving electrons to flow through external resistance to
electrodes, thus generating a positive peak shown in Fig. 2a(i).
Similarly, when stimuli are released, the electric potential will
change back to its original state and the induced negative charges
in electrodes will also flow back to ground and generate a negative
peak. Due to the distribution of four short electrodes along the T-
TENG sensor patch, the amount of induced charges in different
electrodes differs according to the distances between electrodes
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Fig. 2 Working mechanism and characterization of the tactile TENG (T-TENG) sensor. a Operation mechanism of the T-TENG sensor used for various
functions including (i) contact position detection, (ii) sliding detection, and (iii) contact mode recognition. b Schematic diagram of the distribution of the
electrodes. The short electrodes are marked as E; to £, and the long electrode is marked as E,. € Output signals of E; to E4 by tapping different positions
across the T-TENG sensor patch in point-contact mode. d Voltage ratio analysis of the result in ¢, where V; means the voltage of the ith electrode. Sliding

test at the speed of e 40 and f 65 mm-s—'. g Output signals of E, when tapped with different contact areas.

and the contact point. The correspondence between contact
position and the actual output can be seen from Fig. 2a(i), ¢
(marked as 1, 2, 3). Based on this phenomenon, the output
differences can be utilized to determine the specific position of the
contact point by calculating the voltage ratio of these four short
electrodes (Supplementary Fig. 2 and Supplementary Note 1). As
for the sliding mode, the whole process can be seen as a
combination of multiple stimuli shown in Fig. 2a(ii). Peaks are
generated in sequence along the finger sliding direction and
telling the continuous contact position in time domain. In
addition, the long electrode E; is designed for detecting the total
contact area, as well as perceiving gripper’s gripping mode (point
contact or surface contact) for the applications shown in Fig. 1d.
As plotted in Fig. 2a(iii), as the contact area increases, the output
will also be increased. Benefitting from the soft, flexible, and thin
features of this silicone-based TENG sensor, the multifunctional
T-TENG sensor can be quite compatible with the soft
gripper serving as the touch sensing unit as illustrated in Fig. 1b.

To verify the output of the T-TENG sensor, a thin TENG patch
(25mm x 110 mm) is fabricated with three layers as shown
in Fig. 2b. The load voltage generated by the finger tapping on
different positions of this T-TENG sensor is shown in Fig. 2¢. In
this process, the finger taps both the positions above the four
short electrodes and the middle area of two adjacent electrodes.

When tapping right above the electrode, most of the charges will
be induced in the corresponding electrode comparing with other
three electrodes. However, when tapping the middle area of two
adjacent electrodes, both electrodes will have output, where the
amplitudes are related to the distances between the finger tapping
position and electrodes (Supplementary Fig. 2 and Supplementary
Note 1). To further analyze the capability of discrimination, the
output ratio of these four short electrodes, which can be listed as

Ratio = V;/S°+,V; is calculated as shown in Fig. 2d, where V;
means the output of ith electrode. It can be observed that the ratio
remains high (over 93%) when tapping directly above
the electrode (E; to E,). While for tapping the middle positions,
the voltage ratio fluctuates between 30% and 70%, which should
be considered as a reasonable result considering its minimum
detecting resolution of 10 mm with electrodes arranged in 20 mm
intervals. In general, this approach bypasses the environmental
noises, which may affect the output amplitude. Figure 2e, f show
the output voltage with finger sliding across four electrodes in
normal speed and fast speed, respectively. In this mode, the
sliding speed can be calculated according to the time intervals
between adjacent peaks, where a shorter time interval means
faster sliding speed. The long electrode (E;) located along the
length direction of the T-TENG sensor is to detect the contact
area between the soft-robotic finger and gripped objects (Fig. 2g).
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Fig. 3 Working mechanism of the length TENG (L-TENG) sensor and the

real-time verification in HMIs. a Working mechanism of L-TENG sensor.

b Stretching output of the L-TENG sensor at various speeds. € The photograph of the HMIs with L-TENG sensor and tactile TENG (T-TENG) sensor
integrated on a nitrile glove. d The real-time signals when the robotic hand is controlled to bend to 30° and return to its original position. e The real-time

signals of controlling the robotic finger to bend to different angles in one-step

mode and step-by-step mode. f The photographs of the actual hand gestures

and their corresponding robotic hand motions. (i) The nitrile glove with sensors. (ii-v) The robotic hand deforms to 30° and returns to 0°. (vi, vii) The

robotic hand with 60°, 90° bending.

Here, we tap on the Ep at the position of E;, E,, and E; in the
length direction with the same force by finger. The outputs of
these three taps generated in Ej are almost the same due to the
nearly equal contact areas. However, when the contact area
increases from point area to a larger area, which can cover E; to
E, (20 mm) or even E; to E; (60 mm), the output increases to be
twice or four times larger than that of the point-contact
condition. This output variation shows the possibility of
perceiving the gripping mode (ie., point contact or surface
contact) of the soft gripper.

The working mechanism of the L-TENG sensor is shown in
Fig. 3a where a four teeth gear is used. The L-TENG sensor is
made of a PTFE layer with a copper electrode and a gear covered
with Ni-fabric, which can induce the pulse signals as the gear
rotates. First, when the teeth start contacting the PTFE layer, the
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PTFE layer tends to attract electrons that can be retained on its
surface due to the difference of electron affinity, while the Ni-
fabric layer tends to lose the electrons, thus producing tribo-
electric static charges on the contact surface. Then, as the gear is
driven to rotate by the stretching soft strip, the intermittent
contacts between PTFE layer and gear’s teeth will result in the
continuous alternating of electrical potential between Cu
electrode and the ground, driving electron flow and generating
the cyclic output peaks. To explore the performance of L-TENG
sensor in various stretching situations, a programmable linear
stepper motor as shown in Supplementary Fig. 3 is applied to
control strip’s motion and the open-circuit tests can be seen in
Supplementary Movie 1. The maximum stretchable length of the
strip is 60 mm, which is limited by the disc spring mounted on
the rotation shaft that provides recovery force, so the L-TENG
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sensor here is tested with a 55 mm stroke. The strip is controlled
to be stretched and released by the stepper motor at a speed of 10,
30, and 50 mm-s~1, respectively, and the signals generated during
stretching process can be seen in Fig. 3b. For a lower threshold of
0.5V, the corresponding output peak numbers of the stretching
processes are 11, 11, and 12, respectively, showing the stability of
length detection with acceptable small error, whereas the peak
numbers for recovery process are 10, 10, and 11, respectively
(Supplementary Fig. 4). Although the movement distances are the
same, the shortage of one peak for recovery process mainly comes
from the reverse motion, which results in corresponding inverse
waveform and the number of negative peaks in recovery process
is the same as the positive peaks in stretching process. This
phenomenon could be used to distinguish the motion direction of
the strip in different operation process. In brief, this L-TENG
sensor can detect the displacement with the minimum resolution
of 5 mm with an acceptable error rate of 8.3% when the external
load is small (Supplementary Fig. 5). In addition, the resolution
can still be further improved by decreasing the diameter of the
shaft connected with the driven strip, increasing the number of
the gear teeth, etc.

For verifying the real-time output of this L-TENG sensor and
its compatibility with soft robotics, the L-TENG sensor is
mounted on a nitrile glove with three TPU-based rings fixed on
the index finger to guide the soft strip. A 100 MQ external
resistance is connected with the sensor to match the internal
impedance of triboelectric material. As depicted in Supplemen-
tary Fig. 4 and Supplementary Movie 2, when finger bends and
stretches the soft strip, the real-time signals generated from the
rotating gear can be directly detected by the oscilloscope. The
signals for both the stretching and recovery process under
different bending degrees are collected and the result shows that
the bending angles can be clearly and easily recognized according
to the peak numbers of the triboelectric output. In general, the L-
TENG sensor illustrates a promising sensing capability that can
be applied to continuous motions’ real-time monitoring by
counting the output peak numbers, showing its great potential in
various motion perceiving applications such as gait monitoring
and limb bending detecting, etc.

Real-time control verification and robotic applications. To
demonstrate the real-time control capability of the T-TENG and
L-TENG-sensing system, a glove-based HMI integrated with this
sensing system is developed to control a robotic hand. As
depicted in Fig. 3¢, the L-TENG sensor is mounted on the index
finger to control robotic finger’s bending motion, and another
tactile sensor located on the thumb is a small segment diced from
the original T-TENG sensor to switch the bending direction of
robotic finger by tapping. The schematic diagram of robotic
control is shown in Supplementary Fig. 4, where an analog-to-
digital chip (ADC) connected with a signal processing circuit
receives data from the sensors and transmits the signal to control
the robotic hand. As illustrated in Fig. 3d, the signal of L-TENG
sensor is tested with a small bending degree where one peak
(marked in black) of the L-TENG sensor’s output here can be
used to control the robotic finger to bend 30° and the tapping
signal (marked in red) generated by T-TENG sensor can change
the bending direction of the robotic finger. The real-time signals
in the left half of the Fig. 3e show a continuous one-step process
of robot cooperative control, where the integrated sensing system
captures real finger’s bending motion and reflects to the robotic
finger simultaneously. For a 30° bending of the robotic finger as
trigger the downward bending of robotic finger. To switch the
bending direction of robotic finger, a peak (marked in red) is then

generated by making the thumb tap on the index finger, as
depicted in Fig. 3f(iv). Hence, the second black peak appears as
the human finger bends up 30° to return the robotic finger to its
original position (0°) (Fig. 3f(v)). Similarly, the bending of 60°
and 90° is also demonstrated with the peak number of tribo-
electric outputs from L-TENG sensor for defining the bending
degree of one-step bending motion (two peaks for 60° and three
peaks for 90°). Moreover, the robotic finger is also demonstrated
with the sequential bending (30° for each step) from the original
position (0°) to 90° as the signals in the right half of Fig. 3e. The
hand gestures and motions of the robotic hand according to the
real-time signals in Fig. 3e are shown in Fig. 3f (also see Sup-
plementary Movie 3). This self-powered HMI integrated with our
well-designed L-TENG and T-TENG sensor show its great ability
in continuous human motion monitoring and robot control, and
thus have the potential to be used in the real-time perception of
the soft gripper.

Soft actuator with one degree of freedom (DOF) plays an
important role in the soft-robotic area. Crawling robots can be
formed by a single soft actuator, while the tri-actuator can be
further designed as a soft gripper or a soft-robotic arm. Here, the
working mechanism of the soft actuator with a hollow-bellows
structure is shown in Fig. 4a. The upper surface of the actuator is
formed in a corrugated structure with lower stiffness and higher
stretchability. Meanwhile, the lower surface consists of the same
material without corrugated structure, which is relatively harder
to deform. Hence, when the soft actuator is inflated, the upper
surface tends to perform larger deformation, resulting in the
bending down motion of the soft actuator driven by the air
pressure difference between the chamber and the external
environment, as shown in Fig. 4a. Besides, the increasing air
pressure enlarges the bulge of the soft material and the sidewalls
of the corrugated surface contact to enhance the output force as
plotted in Fig. 4a. Consequently, the bending degree is related to
the length difference between the lower length L; and the upper
length L,. Referring to related previous works!>2!, L, can be
considered as a constant value and the bending degree is able to
be calculated based on the constant-curvature theory where the
shape of the deformed actuator can be seen as an arc of a circle.
Therefore, the calculation equation can be listed as
6= (L, —L;)w!, where w is the distance between the upper
and lower surface curve, and the parameter L, here can be used
for closed-loop control of the soft actuators.

To explore the compatibility of the L-TENG sensor in soft-
robotic applications, a soft actuator integrated with the L-TNEG
sensor is prepared with a pre-bending degree of 40° to enhance
the recovery ability and enlarge the maximum bendable angle.
The main structure of the soft actuator and the fabrication
method are shown in Supplementary Figs. 6 and 7. As shown in
Fig. 4b, the soft strip of L-TENG sensor is guided by rings on the
actuator surface and fixed at the end point. For verifying the
relationship between input air pressure and the bending angle,
the soft actuator is driven by varied air pressures and the real-
time signals of the L-TENG sensor are recorded (discussed in
Supplementary Fig. 8, Fig. 9, and Supplementary Note 2). The air
pressure starts from 50 kPa and increased by 10 kPa each step
during the experiment. The result shows that the deforming angle
of the soft actuator increases with the incremental air pressure,
resulting in more output peaks generated by L-TENG sensor in
one single actuation motion (Fig. 4c). Under the relative fast
bending speed, the bending motion can still be clearly recognized
by the details of generated output peaks as shown in
Supplementary Fig. 8 (also see Supplementary Movie 4). The
nearly linear relationship between the bending degree and peak
number with increasing air pressure in Fig. 4c proves the
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feasibility of measuring soft actuator’s bending angle with L-
TENG sensor’s output signals. Moreover, the bending degree
variations for soft actuator caused by L-TENG sensor can be
ignored (discussed in Supplementary Figs. 10, 11, and Supple-
mentary Note 3).

As mentioned above, the T-TENG sensor capable of sensing
contact position has a good potential to be applied in the soft
gripper. Here, a soft gripper composed of three soft actuators is
shown in Fig. 4d. The T-TENG sensor patch is attached onto the
inner surface of gripper’s finger and contact with objects’ surface
directly during gripping. Here, considering the symmetrical
structure of the soft gripper, only one finger is attached with the
T-TENG sensor to reduce the sensory information complexity
without losing important information. This T-TENG sensor-
integrated gripper is successfully demonstrated to grasp objects of
various dimensions including orange, green apple, egg, and turnip
under the same input air pressure (160 kPa), as shown in Fig. 4d.

The output of the corresponding electrodes (E;, E,, Es, and Ey)
for the same object also varies due to different contact positions
along the length direction of T-TENG sensor patch (Fig. 4e and
Supplementary Fig. 12). When the apple is gripped at the tip
position of the patch, the sensor signal in E; is higher than the
others. Although when the apple is gripped at the middle position
of the soft actuator, the output of E, and E; increases compared
with the tip-contact situation, with the highest output still in E;
and the lowest output in E,. The reason is that the outputs of
these four distributed short electrodes are inversely proportional
to the distance between the contact position and the correspond-
ing electrode. The closer the distance, the more charge will be
induced in the electrode, thus generating a higher output. As for
gripping the apple at a higher position, E, is the nearest electrode
to the contact position and the tips of actuator fingers start to
contact each other, in which case E; and E, have a higher output.
The output ratio of these four short electrodes can then be
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calculated as mentioned in Fig. 2d to better reflect the contact
position of the soft actuator without environmental influences
(Supplementary Fig. 12). In addition, the T-TENG sensor can
also distinguish the contact and separation motions of the gripper
by positive peaks and negative peaks respectively (Supplementary
Fig. 12). By comparing the signals generated in E; when gripping
objects with different dimensions in the tip-gripping mode, the
difference in contact area can also be identified as shown in
Fig. 4f, where a larger curvature can generate a higher output in
E;, due to a larger contact area. Therefore, this T-TENG sensor
patch has a great potential to be integrated with soft grippers to
help perceive the contact position, contact area, as well as
distinguish the contact and separation motions when gripping
objects. Signals generated by the soft gripper-embedded sensors
vary with gripped objects’ scale and contact position, verifying the
feasibility of TENG-based sensor for soft-robotic applications.

Data processing via ML technology. The above work demon-
strates that the proposed T-TENG and L-TENG sensors are capable
of perceiving the bending degree, gripping position, and contact
area as the sensing units for soft grippers. ML technology is an
effective approach for dealing with classification problems*>#3 with
complicated input signals and extracting features from data set
automatically with certain algorithms (e.g., principal component
analysis (PCA), t-distributed stochastic neighbor embedding, etc.)
for further gripped objects recognition. Among the ML approaches,
support vector machine (SVM) is a quite effective supervised
learning model used for classification and has been proposed to be
applied in analyzing triboelectric output signals with high perfor-
mance*. Therefore, a customized SVM-based analytic platform is
developed and then used in our TENG sensor-integrated smart soft
gripper. The T-TENG sensor is attached directly onto the soft
actuator surface without a PET substrate to ensure its stretchability.
The detailed fabrication method and results are shown in Supple-
mentary Fig. 13. Analog voltage signals generated in L-TENG and
T-TENG sensor are first collected and processed by the hardware
circuit consisting of an ADC and a micro control unit (MCU).
Subsequently, the signals of both the T-TENG and L-TENG sensor
are tested and recorded with corresponding object labels during the
data collection process.

Because of the symmetrical structure of this soft gripper, a pair
of single T-TENG sensor and L-TENG sensor are arranged on
two different soft actuators as shown in Fig. 4g to reduce the
information complexity and keep the important sensory informa-
tion for classification. The detailed collected 6-channel (1 for L-
TENG sensor and 5 for T-TENG sensor) signals for diverse
objects are visualized in Fig. 4h and the data length for each
channel is 100. In this process, the data of six objects with
different shapes including apple, cube, long can (L-Can), orange,
short can (S-Can), and tape is collected accordingly by repeating
gripping and releasing motions. Here we directly use the raw
voltage data in time domain of 6 channel as the feature of
samples, so there are 100 x 6 = 600 features for each sample and
each feature represents one data point at time series during
grasping motion, which means the data includes the information
of the contact force, speed, sequences, contact positions, latency,
and the contact durations, etc. Those multi-dimensional features,
rather than the individual grasping position, will then define the
identity of the grasped object. Each object is gripped for 200 times
to ensure the reliability of the data set in the data collection
process. The 200 samples of each category are randomly split
into two groups at the ratio of 8:2 (training: 160 samples, testing:
40 samples). Following the feature extraction process by PCA, the
multi-class SVM classifier extended from classical two-class SVM
classifier through the one-against-all principle is used to classify

these gripped objects based on the hundreds of data points
extracted from the 600 data points of 6 channels for each sample.
The verification results indicate the trained model has a high
positive predictive value and a true positive rate for object
recognition, and as shown in Fig. 4i, total recognition accuracy
reaches 97.1%.

However, for a gripper with six sensing channels, there are only
two-dimensional information regarding the contacted surface can
be collected for gripped objects, through single T-TENG sensor
and L-TENG sensor. Hence, this is more suitable to be used for
symmetrical objects and the recognition ability is limited for
more objects with different geometries. To enhance the
performance, all of three fingers are then equipped with T-
TENG sensors and L-TENG sensors, which can provide 15
channels of sensor output as shown in Fig. 5a. In Fig. 5b, 16
objects with different dimensions and curvatures are selected and
tested in the ML process. Each object is gripped for 100 times to
ensure the reliability of the data set. The 100 samples of each
data set are randomly split into two groups at the ratio of 8:2
(training: 80 samples, testing: 20 samples). Figure 5c and
Supplementary Fig. 14 present the outputs of sensors generated
from the gripping of different objects. Supplementary Fig. 15 and
Supplementary Note 4 illustrate the finger contact position for
explaining the feasibility of identifying more objects. The data
length for each channel is increased to 200 to capture more
information during one grasping motion, so there are 200 x 15 =
3000 features for each sample. Although the types of objects
increase, the confusion map in Fig. 5d shows that the trained
model has a higher recognition accuracy of 98.1% compared to
the previous six-channel model owing to the activation of more
sensors when the penalty parameter C of the SVM is 1 x 10~2 and
the dimensionality of the data feature is reduced to 200 by PCA.
The detailed parameter optimization of PCA and SVM can be
found in Supplementary Table 2. As further verification, the data
of similar objects (apple, orange, cube and small box, L-Can, and
S-Can) are extracted from the data set of a 6-channel mode and
compared with the corresponding data of 15-channel mode. After
the training of the model based on the corresponding data
(100 samples for each object) from these two modes, the
comparison result is shown in Supplementary Fig. 16. It is
obvious that the trained model with 15-channel has a higher
prediction accuracy of 98.0% compared to that of the 6-channel
model (94.0%), indicating that more sensor channels or useful
data features play an important role in improving the recognition
performance of the system. However, the increasing of sensor
channels also brings higher cost and information complexity,
which is a trade-off needed to be considered for practical
applications. Then, based on the 15-channel model, the
recognition results in Supplementary Table 3, Table 4, and
Supplementary Note 5 validate the stability of our triboelectric
sensory system under changing temperature and long-term use.

In terms of smart farms or factories, the sorting machines are
frequently engaging with the objects which have similar shapes.
To this concern, the data of sphere-shaped objects with various
curvatures (baseball, tennis ball, apple, orange, and tangerine) is
then selected for further discussion. Similarly, for understanding
the influence of sensing channels on prediction accuracy, there
are three modes applied for training, including pure L-TENG
sensors of 3 fingers (3 channels), pure T-TENG sensors of 3
fingers (12 channels), as well as all of L-TENG and T-TENG
sensors of 3 fingers (15 channels). According to the confusion
maps in Fig. 5e-g, the accuracy of the ML model trained by 15
channels has the best accuracy of 95.0%, which is higher than that
of the model with pure L-TENG sensors (77.0%) or T-TENG
sensors (92.0%). It is obvious that the more sensor channels, the
more useful sensory information can be collected and, thus, the
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generated model is more powerful. For the model trained from
pure L-TENG sensors, which mainly collect information of finger
bending angle during grasping, the similar curvatures of baseball,
tennis ball, apple, and tangerine may confuse the model. Hence,
the result shows relative low accuracy. Besides, the three-channel
information collected by pure L-TENG sensors also limits its
recognition capability. Meanwhile, for T-TENG sensors that have
12 channels, the collected sensory information contains not only
the gripping position but also the contact area. More useful
features can be extracted and used to distinguish these similar
objects, to achieve higher accuracy. The trained result in
Supplementary Fig. 17 also verifies that the recognition accuracy
is optimized with all of the 15 channels (T-TENG sensor +
L-TENG sensor) and a relative higher accuracy is achieved by
pure T-TENG sensors compared with pure L-TENG sensors.

Digital twin demonstration with soft-robotic sensory gripper
system. To show the potential of using our soft-robotic sensory
gripper system in future digital twin applications, a digital twin-
based unmanned warehouse system is conceptualized, which can
realize the automatic sorting and the real-time monitoring in a
no-camera environment, where the recognition results in the real
space can be real-time projected to a virtual space. Hence, this
kind of soft-robotic sensory gripper system becomes an essential
capability of implementing the mentioned applications*>. The
process flow of establishing and using the digital twin-based
unmanned warehouse system is depicted in Fig. 6a. After trained
with the SVM ML algorithm, the real-time object recognition
system is achieved as shown in Fig. 6b (also see Supplementary
Movie 5), where the screen displays both the real-time signals and

the corresponding predicted object’s picture. Then, connect the
real-time recognition system with a virtual space, the digital twin
virtual projection application is also successfully implemented as
shown in Fig. 6c (also see Supplementary Movie 6). When the
system is running, the objects are randomly arranged to be
gripped by the soft gripper, then the gripped objects will be
recognized by the trained SVM model according to the input
signals collected by L-TENG and T-TENG sensors. Both the
signal waveform and the corresponding recognized result for each
gripped object are shown on the top-left corner of the laptop
screen, as shown in Fig. 6c. Then, the virtual objects deposited on
the ground are gripped and placed in the corresponding boxes as
the same objects gripped by the soft gripper and recognized by
the prediction system in the real space.

Discussion

In summary, a soft-robotic sensory gripper system integrated
with two TENG sensors is proposed and investigated in this
paper. Besides the contact-separation detection, the T-TENG
sensor with patterned electrodes is able to sense the sliding,
contact position, as well as the contact area of external stimuli via
the triboelectric output of grating electrodes and Ej electrode.
Second, the L-TENG sensor offers the scalable measurement of
bending motion and the integration of disc spring shows good
recovery property, endowing the good sensing repeatability. By
adopting the readout strategy of peak counting and output ratio,
the influences of environmental fluctuation on the amplitude of
signals can be effectively minimized, such as humidity, tem-
perature, etc. The real-time signal processing ability of the sen-
sory system also indicates the potential of realizing the
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human-machine interactions. By leveraging the constant-
curvature theory, we can estimate the bending degree of the
pneumatic actuator when gripping the objects and, hence, to
achieve the preliminary recognition. With the aid of the ML to
deal with multi-parameter inputs, for fingers attached with single
T-TENG and L-TENG sensor, the smart gripper successfully
perceives and recognizes various objects with 97.1% accuracy, and
can be further enhanced to 98.1% by increasing sensor channels
from 6 to 15. Based on the improved intelligence of the soft
gripper, the digital twin model simulates the robotic manipulation
and the real-time object recognition in a duplicate virtual envir-
onment, and can be further applied to an assembly line for
production control management in next-generation smart fac-
tories and shop floor management at unmanned warehouses.
Besides, this TENG sensor-enabled soft-robotic gripper also
shows promising application in other robots such as clawing
robot, robotic arm, human-like hand, etc., for more effective and
seamless human-machine interactions.

Methods

Fabrication of the TENG-based sensors. The conductive textile (Ni-fabric) tape
was cut into 5mm X 25 mm and 5 mm x 120 mm to form the short and long
electrodes before the electrodes were arranged on the PET film substrate

(0.1 mm x 23 mm x 108 mm) by its own adhesive (acrylic pressure sensitive
adhesive). Then, the substrate with the electrodes was fixed on the bottom of the
mold with a 25 mm x 110 mm groove by double-sided tape as shown in Supple-
mentary Fig. 1. After dispensing required amounts of Parts A and B of the EcoFlex
00-30 (Smooth-On), the mixed solution was poured to fill the groove on the mold
as the negative triboelectric layer. The T-TENG sensor can peel off from the mold
followed by a 60 min baking at 50 °C for curing. The main structure of L-TENG
sensor was fabricated by a commercial 3D printer (4max pro, Anycubic). The
positively triboelectric material (Ni-fabric) was coated on the gear by its own
adhesive.

Fabrication of the soft gripper. The soft gripper with a bellows-structured
actuator was designed by software (Solidworks 2016, Dassault Systémes). To ensure
elastic property and output force, TPU filament (NinjaFlex, NinjaTek) with a
hardness of shore 85 A was used to fabricate the soft actuator. The filament was
extruded by Titan Extruder and the printing temperature is 210 °C with corre-
sponding low printing speed 30 m ms~1. The flow filament diameter was decreased
to 1.50 mm to enhance the amount of the extruded material and the layer thickness
was changed to 0.15 mm, to guarantee the printing precision.

Experiment measurement and characterization. The signal outputs in the
characterization of the T-TENG sensor were measured by an oscilloscope (DSO-
X3034A, Agilent) using a high impedance probe of 100 MQ. The open-circuit
voltages were conducted by an electrometer (Model 6514, Keithley) and the signals
were displayed and recorded by the oscilloscope. Analog voltage signals generated
in L-TENG and T-TENG sensor were collected and processed by the hardware
circuit consisting of an ADC and a MCU (Arduino Mega 2560). In the experiment
concerned with the soft actuator, the air pressure was controlled by a reducing
valve connected to a digital air pressure sensor (ISE30A, SMC) and the motion of
the soft actuator was controlled by the solenoid valve.

Data availability
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authors upon reasonable request.
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