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A B S T R A C T   

A conversion from mechanical energy into direct current (DC) is of great interest to realize the next-generation 
self-sustained Internet of Things (IoT) and real-time virtual reality (VR) control. Inspired by ancient waterwheel 
transport water and P–N junction theory, a continuous DC nanogenerator was developed using charges unidi-
rectional transportation and dual-intersection triboelectric nanogenerators (TENGs). By employing tribo-polarity 
reversal porous material as charges transportation carrier sliding among the ultra-negative and ultra-positive 
materials, the charges were unidirectionally transported by the discharge of repulsion via line electrodes, 
forming a stability DC output. Due to the charge transport and repulsive discharge, a much higher DC output 
voltage was easily obtained than the air breakdown mechanism. Moving forward the realistic application, the 
capability of the dual-intersection TENGs as a DC power source for the actuator and sensor was well demon-
strated, and it further expanded all kinds of wireless networks for next-generation IoT to directly power sensor 
nodes. To get across the discontinuous characteristic identification from triboelectric (e.g. frequency, number of 
peaks, pulse absolute value) as status stimulation in software, we first time successfully realized a continuous 
motion control in virtual space for next-generation real-time VR application in triboelectric.   

1. Introduction 

As a fast technology development of the fifth-generation cellular 
network technology (5G), everything is connecting in a much easier way 
by the Internet of Things (IoT) [1–4] and virtual reality (VR). In a typical 
IoT framework, the battery-charged solution enables remote ubiquitous 
sensor nodes could be low cost and massively deployed. Therefore, 
direct current (DC) plays an increasingly important role in the realiza-
tion of such IoT sensor networks and VR scenarios, where electronic 
devices provide an extremely convenience for human beings living 
qualities [5–12]. To solve the energy crisis issue and achieve sustainable 
environment-friendly development, intensive works by researchers have 
been dedicated to converting environmental mechanical energy into 
electricity to meet the demand for a clean and sustainable power source 
[13–16]. However, almost all the vibration-based power generators in 

renewable energy are producing the alternating current (AC), which is 
inconvenient for direct use in the IoT and linear motion control in VR 
applications. While the IoT sensor nodes are still relying on 
battery-based DC power source, the associated issue of using battery 
including potential environmental contamination and required labor of 
battery exchange, etc. All those issues become the drawbacks to be 
resolved. Besides, the DC output without any extra electronic units gives 
a straightforward and energy-efficient design of control interface for 
further VR scenario applications. 

Triboelectric nanogenerator (TENG) was first proposed in 2012 
[17–19,76–80], and it has been demonstrated as a cost-effective, clean, 
and sustainable strategy to convert mechanical energy into electricity 
with its comprehensive advantages including small size and a wide 
choice of materials [20–28,81–85]. By leveraging the tribo-
electrification effect and electrostatic induction in two dissimilar 
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materials with opposite tribo-polarity, the TENG enables a simple but 
effective mechanical-to-electrical energy conversion by 
contact-separation or sliding with a wide range of material selection [29, 
30]. To reach a DC output from TENG, TENG needs a combination of a 
bridge rectifier (AC-DC transformation) [31–36] and auxiliary man-
agement electronic units to obtain a stable DC output [37–40], which 
takes away its portability advantage and its energy usage efficiency due 
to extra power consumption. Many attempts to achieve charge direc-
tionally flow for direct DC output using 2D material [41] or a unique 
mechanical structure [42–44] in TENG. However, those trials “DC” 
output from their nanogenerators came from a step charge increasing 
(Inappropriate to directly claim DC output) or presented in a low output 
voltage (maximum 1.37 V) due to the air breakdown in conventional 
TENG [43]. On the other hand, the triboelectric materials (lose electrons 
or obtain electrons during their friction) in the energy harvesting were 
widely investigated recently [19,45–59]. However, no group yet has 
carried out the research regarding multi-materials for charges unidi-
rectional flow, such as using ultra-positive (easily lose electrons), 

ultra-negative (easily obtain electrons), and tribo-polarity reversal 
porous material. 

To reach a DC output for a directly powering versatile electronic 
elements in typical IoT framework and further its application [60–70, 
86–90] in real-time VR motion control, inspired by ancient waterwheel 
to transport water from a low site to a relatively high location by me-
chanic power for stable water flow and P–N junction theory. By 
leveraging off the rotation-structure [20,71,72] TENG in a direction 
sliding, to get across conventional AC output, we proposed a novel 
mechanism continuous DC dual intersection TENGs (DC-DTENG). The 
charges generated by friction was transported by a tribo-polarity 
reversal porous material from a low potential to a high potential, and 
then it was released by the discharge of repulsion with easily ~5 times 
higher output voltage than the conventional TENG. Moving forward the 
practical application, the performance of the DC-DTENG was demon-
strated by a soft switch, an ultraviolet (UV) radiation sensing and a 
wireless module with a smartphone for next-generation IoT to directly 
power sensor nodes. Furthermore, to overcome the discontinuous 

Fig. 1. Schematic illustration and working principle of DC-DTENG. (a) Conventional triboelectric generator using external electric units for DC output, and (b) 
inspired by a waterwheel system, a continuous DC output with an all-structure design. (c) Schematic diagram of DC-DTENG and its various applications. (d) The 
working process of the DC-DTENG during a period in charge generation, charges transportation, and charges releasing by repulsive force. 
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characteristic information identification (e.g. frequency, number of 
peaks or absolute value range is always defined as a status stimulation in 
software) in the triboelectric, we the first time successfully realized 
continuous motion control in virtual space for the next-generation 
real-time VR scenario applications. 

2. Results and discussion 

2.1. Design and working mechanism of DC-DTENG 

To obtain DC from conventional TENG or vibration-based power 
source, a combination of a bridge rectifier (AC-DC transformation) and 
auxiliary management electronic are needed as shown in Fig. 1a. 
However, the extra electronic elements with their power consumption 
would decrease their energy usage efficiency. Waterwheel with ancient 
wisdom was created for water transportation from a low site to a 
comparatively high location. Inspired by the water transportation phe-
nomenon from a waterwheel and the idea from Van De Graaff generator 
[73–75] with a belt as a transportation carrier, a continuous DC output 
with in-plane structure was produced by a similar mechanism from a low 
voltage potential to a comparative high potential as shown in Fig. 1b and 
Fig. S1 Supplementary Information. To achieve a unidirectional current 
flow for a continuous DC output, a TENG mechanism of dual intersection 
power sources was proposed, involving charges transportation by the 
carrier and its repulsive discharge to electrodes. Moreover, the advan-
tage of this mechanism provides a practical solution to obtain the me-
chanical activity information which is directly related to the output 
signal (almost not any information loss due to without any extra elec-
tronic units) It was observed a straightforward and energy-efficient 
design of control interface for further scenario applications. Here, 
tribo-polarity reversal porous material (sliding layer) as charges trans-
portation carrier was sliding among the ultra-negative and ultra-positive 
dielectric materials (fixed layer), generating triboelectric charges on the 
disk-carrier and fixed layers. By rotating the sliding layer, the charges on 
the carrier were continuously unidirectional transported from a location 
(a fixed layer left-hand, low potential) to another (fixed layer 
right-hand, high potential), and it easily discharged to electrodes by the 
repulsive force due to the same triboelectric charges on the fixed layer 
behind. Finally, the repulsive force released the transportation charges 
to the closest electrode in a continuous DC output. Based on this 
mechanism, a simplified prototype was designed as shown in Fig. 1c, 
which contained a rotator and two stators with a sandwich structure. 
With the DC output from the DC-DTENG, it depicts a potential wide 
range of applications, such as for actuator, an ultraviolet (UV) radiation 
sensing, energy storage, and a wireless module with a smartphone for 
IoT, and real-time control for next-generation VR. To further investigate 
its mechanism, the charges and potential simulation by the finite 
element analysis (FEA) in COMSOL software were carried out in Fig. S2. 
It observed that the output current, referring to the charge generation, 
transportation and discharging, was determined by rotational speeds of 
a disk. 

The detail working mechanism of the DC-DTENG is shown in Fig. 1d. 
Initially, no charges were on the disk. As the clockwise rotation starts, 
the friction between the disk and the fixed layer generated both positive 
(right-hand quarter) and negative (left-hand quarter) charges on the disk 
itself as shown in Fig. 1d(I). It was noted that a quarter area of ultra- 
positive material was located on the left-hand above disk with a pink 
color, whereas the right-hand ultra-negative material was with a light 
blue. Fig. 1d(II to III) depicted that the disk motioned clockwise until 
90�. The charges on the left-hand of the disk transported along with 
carrier itself, and the more charges on the left-hand quarter generated on 
the surface of the disk due to the triboelectric effect. It was the same to 
the right-hand quarter but with opposite charges due to the ultra- 
negative material versus (vs) disk. The disk here presents positive sur-
face charges when it is friction against ultra-negative material, and it 
appears negative surface charges when it contacts an ultra-positive 

material. As the disk goes further in Fig. 1d(IV), the charges on the 
disk arrived at the position of another fixed layer carrying the charges 
with the same polarity. Therefore, the transportation charges along with 
the disk-carrier were repelled by the charges on the fixed layer and were 
discharged to an electrode which was very close to the disk. Due to the 
three different tribo-polarity materials in order and the charges trans-
portation, the charges on the disk would repel away by the same 
charges, instead of neutralization. Coupling with triboelectric effect, the 
tribo-polarity reversal porous material facing against an ultra-positive 
and an ultra-negative material, charges transportation mechanism 
along with a disk, and electron pair repulsion theory, the continuous DC 
output produced from two electrodes. Finally, the continuous rotation of 
the disk formed a stable continuous DC output as shown in Fig. 1d(V). 
Theoretically, the DC-DTENG could generate more power than con-
ventional TENG due to the continuous charge transportation and dis-
charges, which would dramatically save the rest time (Conventional 
TENG) during the operation. 

2.2. Tribo-polarity reversal porous material and its wave curve regulation 

The “median material” is defined as a material among an ultra- 
positive material and ultra-negative material as shown in Fig. 2a. The 
logic of this selected “median material” is a tradeoff of triboelectric 
electrons in losing or obtaining. For example, the “median material” 
porous cloth (Polyester) presents positive surface charges when it is 
friction against ultra-negative material (PVC, polyvinyl chloride), and it 
appears negative surface charges when it contacts an ultra-positive 
material (PMMA, Poly(methyl methacrylate)) as shown in Fig. 2b. It 
notes that plenty of materials could be as median materials with the 
logic of three tribo-polarity materials in order, such as natural rubber, 
paper, etc. Fig. S3 was a systematic measurement for the chosen ultra- 
positive material and the ultra-negative material in our experiments. 
Facing against the PVC and PMMA, it found that the tribo-polarity 
reversal porous cloth was as an ideal “median material” due to its me-
chanic robust and flexibility as a friction layer. The “median material” 
porous material was measured as shown in Fig. S4 to demonstrate the 
triboelectric electrical performance with different contact areas. It 
concluded that with a larger contact area, a higher Voc and more 
transferred charges were obtained. To further investigate the electrical 
property of the tribo-polarity reversal porous cloth between the PMMA 
and PVC, the transferred charges and open-circuit voltage (Voc) were 
measured as shown in Fig. 2c–d and Fig. S5. It demonstrated the charges 
generation and charges transportation between the cloth vs PMMA and 
PVC, respectively. It was also observed that the output wave curve from 
the tribo-polarity reversal porous material could be regulated by the 
mechanical-structure design, where the charges on the porous surface 
presented in a suspending state as shown in Fig. 2d. Furthermore, the 
materials tribo-polarity provided a potential wave modulation solution 
using “1, 0, and � 100 in the view of electrical point as shown Figs. S6–S7. 

2.3. Performance and optimization of DC-DTENG 

A continuous DC output, Voc, and transferred accumulative charges 
(Qtac) from DC-DTENG in the measurement are as shown in Fig. 2e–g. 
The continuous DC and Voc from electrode “A” were obtained of 45 nA 
and 149 V at a constant rotation of 60 rpm, and the Qtac during a rotation 
cycle reached up to 47 nC. These electrical output curves demonstrated 
that the DC-DTENG presented a good DC output electrical characteristic. 
It is noted that the transition state light pink in the diagram meant the 
starting of rotation until the dynamic stability (light green) during the 
operation. It was also observed that a clockwise rotation and an anti-
clockwise rotation did not affect the electrical output performance as 
shown in Fig. 2h–j (electrode “A” left-hand vs ground) and Fig. S8 
(electrode “B” right-hand vs ground), respectively. The reason to explain 
this phenomenon is that the fixed positive and negative materials on 
both sides of the disk result in the transportation charges discharging 
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onto line electrodes. The detail operation information of the DC output 
and those rotations were as shown in Video S1 Supplementary Infor-
mation. Faster rotations to the rotator of DC-DTENG, a higher output DC 
was along with a higher Voc and a steeper charges curve. To further 
investigate the theory of the DC-DTENG, a simplified electrical- 
mechanical system and its calculation analysis were as shown in 
Fig. 3. The momentary DC output was obtained by the derivative of the 
electrical charges with time. The current came from dual semi- 
independent TENG power sources, thus we had the following equation 
to electrode “A’” or electrode “B”, respectively. 

Supplementary video related to this article can be found at https 

://doi.org/10.1016/j.nanoen.2020.104760 

I1¼
ΔQ1

Δt
(1)  

I2¼
ΔQ2

Δt
(2)  

Here I1 and I2 were from the electrode “A” and electrode “B”, respec-
tively. Q1 and Q2 were from the accumulated charges from electrode “A” 
and electrode “B”, respectively. Based on the test curve from Fig. 3b, DC 
Iout from electrode “A” and “B” was simplified as following, 

Fig. 2. Tribo-polarity materials and the output performance of DC-DTENG. (a) Induced charges distribution of three tribo-polarity materials: positive material 
PMMA, negative material PVC, and “median material” porous cloth. (b) The charges response phenomenon on the tribo-polarity reversal porous cloth “median 
material” between positive material and negative material. (c) Schematic graph of a sliding mode with an air gap between PMMA and PVC, and (d) transferred 
charges. (e) Continuous DC output, (f) Voc, (g) transferred charges. (h–j) DC, Voc, and Qtac from the electrode “A” with different motion states. 
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Iout ¼ I1 þ I2 (3) 

The output current from DC-DTENG was also from the coupling of 
the mechanical transportation charges on the disk, the charge releasing 
to both line electrodes and the charges generation from the PMMA and 
PVC. Thus, the output currents from both line electrodes were written as 
follows, respectively. 

I1¼
αQlWL

t
¼ αQlWvr (4)  

I2¼
βQrWL

t
¼ βQrWvr (5)  

where α and β were the correction factors for line electrode “A” and “B”, 
respectively. Ql and Qr were the generated charges from left-hand 
quarter PMMA and right-hand quarter PVC, respectively. W and L 
were the equivalent length and width of the triboelectric contact area, 
respectively. νr was a rotational speed of a disk in DC-DTENG. Based on 
the test Voc from Fig. 3c, the voltage from electrode “A” V1 and “B” V2 
were simplified as following, 

Vout ¼ðV1þV2Þ=2 (6) 

It concluded that the dual TENG worked independently as a DC 
power source. It was also found that the overall current from electrode 
“A” to electrode “B” was assumed a simplified sum of both currents 

(electrode “A” vs ground, electrode “B” vs ground), whereas the voltage 
was calculated using the average value of the dual independent power 
sources in DC-DTENG. The test result confirmed this conclusion: the 
total output of 125 nA was the sum of the independent current output of 
two terminals “A” and “B”, which were 50 nA and 75 nA. 

DC output from DC-DTENG strongly relied on the relative rotation 
between the rotator and two stators. To reveal the physical relationship 
of the rotational rate and its output electrical performance, the value of 
Qtac was used to identify different rotational speeds. Fig. 4a depicts a 
schematic diagram of the measurement points (electrode “A” vs ground 
and electrode “B” vs ground) in DC-DTENG, and the Qtac with different 
rotations under two measurement points were obtained in Fig. 4b and c. 
It was found that faster rotations, the more accumulative charges were 
obtained within a limit time period. It was also found that 1.2 times 
more charges were obtained from electrode “A” compared to electrode 
“B”. The reason was from materials PVC and PMMA. The porous “me-
dian material” cloth obtained more charges from PVC than a loss of 
charges from PMMA. To figure out the influence of the electrode loca-
tion, Fig. 4d and e depicted the Qtac with an asymmetric electrode (30�

difference). It was observed that the electrode location decreased Qtac. 
Meanwhile, with a smaller dimension of DC-DTENG (0.6 time’s 
dimension), almost 0.6 times electrical output was obtained in our 
observation as shown in Fig. 4f and g. Fig. 4h–i and Fig. S9 described a 
DC, Voc, and Qtac of those schematic diagrams, respectively. The different 
values of the curves meant different rotations and with good recovery 

Fig. 3. Simplified structure and theory analysis of the DC-DTENG. (a) It was observed that the DC-DTENG contained dual semi-independent TENG power sources. 
(b–c) Test output voltage and currents on electrodes vs ground, and DC output in all. 
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performance. In general, we observed that faster rotations, higher 
output current and Voc were generated as shown in Fig. 4j and k. We also 
found that the voltage increased along with the faster rotations, while 
the response decreased. Applying different external loads to the DC- 
DTENG, the continuous output DC and Voc were shown in Fig. 4m. 
Correspondingly, the load voltage vs different loads was in Fig. S10 
which provided a reference for engineering applications. In addition, to 
demonstrate the durability as shown in Fig. S11, it observed that the 
output of DC-DTENG had almost no decreases after a long time (~12 
min) operation in charge transportation. 

2.4. Application for next-generation IoT in directly power in actuator and 
sensor 

Electrical elements including actuators and sensors are playing a 
more and more important role in IoT. Switch “on” and “off” was one of 
the most critical devices in an electrical system. It was commonly used to 
improve the outcome of electrical performance and to drive a control 
electrical system. Fig. 5a–c demonstrated a soft switch application with 
a tip-plate configuration (~2 mm gap) driven by the DC-DTENG. It was 
demonstrated that the “on” and “off” behavior did not need any extra 
circuit and power to drive. As shown in Fig. 5a, when the DC flowed into 
the copper plate, the copper tip did a quick mechanical movement due to 
the electrostatic force. The “on” and “off” of the vibration soft switch 

was characterized by the measurement data as shown in Fig. 5b–c and 
Fig. S12. Furthermore, Video S2 Supplementary Information demon-
strated the evidence of the contact and separation between soft tip and 
plate. The peaks in the curve meant that the soft tip instantaneous 
contacted with the copper plate “on”. As to the sensing application using 
DC-DTENG, a UV light radiation sensing application was shown in 
Fig. 5d–f. The mechanism of UV light activation electrons was as shown 
in Fig. 5d. When UV light radiations onto a metal film, the electrons on 
the metal film became more active. A UV light source (10–400 nm, 4 W 
power source) was as shown in Fig. S13a. When UV radiation lights were 
shining onto the DC-DTENG (Fig. 5e), a comparative higher current was 
observed. The explanation was that the UV radiation light resulted in 
more active electrons on the bottom electrode, which increased the DC 
output 12.3% more than without any UV light radiation (Fig. S13b 
Supplementary Information). 

To broaden its applications in IoT using sensor nodes networks, a 
Bluetooth module powering by DC-DTENG for temperature and hu-
midity sensing application was carried out as shown in Video S3 Sup-
plementary Information. The electrical circuit of the connection with the 
module for the next-generation IoT was as shown in Fig. 5g. The 
charging and discharging curve were as shown in Fig. 5h, where each 
voltage drops from ~8 V to ~2.7 V representing a discharging to the 
Bluetooth module. It is noted that the first discharging was used to 
power the Bluetooth module, whereas the second discharging sent the 

Fig. 4. Performance analysis and optimization of DC-DTENG. (a–c) Measurement points of the schematic diagram, and Qtac under different rotational speeds. (d–e) 
Line electrode location schematic diagram and its Qtac with different rotational speeds. (f–g) Schematic diagram of a smaller dimensional structure, and its Qtac with 
different rotational speeds. (h–i) DC output and Voc for those designed structures. (j–i) DC, Voc, and response time in different rotations. (m) DC output current and Voc 
with various external loads. 
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temperature of 26 �C and humidity of 65% to a smartphone to record. 
Supplementary video related to this article can be found at https 

://doi.org/10.1016/j.nanoen.2020.104760 

2.5. Application for energy storage 

Beyond the demonstration of the actuator and sensor, energy storage 
is vitally important to power electronic devices. As shown in Fig. 6a–c 
and Fig. S14, we observed that the electrode “A” vs electrode “B” 
increased the charging rate dramatically. The reason for this phenom-
enon was the dual semi-independent TENG power source operation in 
the same period. Meanwhile, the charging ability of the “B” electrodes 
presented a 1.5 time’s charging rate than the “A” electrode. The cloth 
presented more positive charges when separated with PVC film (top 
fixed layer, right-hand), whereas it obtained fewer negative charges 
when separated with PMMA film (top fixed layer, left-hand). We 
observed that the electrode “A” vs electrode “B” dramatically increased 
the charging rate (almost 2 times) than a single electrode connection. 
The reason for this phenomenon was the dual semi-independent TENG 
power source in operation at the same time. Meanwhile, the charging 
ability of the “B” electrode presented a 1.5 time’s charging rate than the 
“A” electrode. We assumed that the cloth presented more positive 
charges when separated with PVC film (top fixed layer, right-hand), 
whereas it obtained fewer negative charges when separated with 
PMMA film (top fixed layer, left-hand). The ability of the continuous DC 

output enables the DC-DTENG to charge energy storage devices directly 
without any rectifier unit as shown in Fig. 6d. The charge rate with 
different rotations was as shown in Fig. 6e. It was observed that the 
faster rotations increased the charge rate into the capacitor. It was also 
observed that the DC-DTENG charged up to 4 V to 1 μF within 75 s by a 
DC-DTENG as shown in Fig. 6f. For a higher DC output, the array pairs of 
dielectrics were designed to demonstrate the enhancement of DC output. 
As shown in Fig. 6g–h and Fig. S15, it was observed a mathematical 
relationship between the pairs of arrays vs the DC output, such as two 
pairs of 1.8 times DC output, three pairs of 2.8 times, and four pairs 
dielectrics (PMMA and PVC) of 3.6 time’s DC output. Moreover, we 
observed a consistent current polarity output (the same for both clock-
wise and anti-clockwise rotation in random direction wind) from the DC- 
DTENG, which is a big advantage for a realistic application than any 
other existing mechanisms for power generation. With those demon-
strations on array pairs dielectrics (n number on a plane) and multi- 
layers (m layers on volume) of DC-DTENG installation into an inde-
pendent smart home system, the DC-DTENGs with a certain number (p) 
could be driven by natural wind flow as shown in Fig. 6j. In addition, it 
could easily obtain enough power, and even drive all kinds of actuators 
and sensor units in a potential smart home application using the DC- 
DTENGs. 

Fig. 5. Application of DC-DTENG for sensor, actuator, and next-generation IoT. (a) Schematic electrical-mechanical diagram of a soft switch application driven by 
DC-DTENG, (b) “on” and “off” verification by output voltage from an oscilloscope, and (c) zoom-in of a voltage curve to show the contact and separation of the “on” 
and “off” to the tip-plate configuration. (d) Mechanism of photoelectric effect by UV light radiation, (e) a UV light source was shining onto DC-DTENG, and (f) a UV 
sense is driven by the DC-DTENG. (g) Simplified circuit diagram of the DC-DTENG for powering next-generation IoT. (h) Charging and discharging curves with 
Bluetooth module driven by DC-DTENG for IoT application. 
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2.6. Application for next-generation VR in real-time monitoring and 
continuous control 

The human-machine interface using triboelectric normally defines 
“0” and “1” states with discontinuous characteristic information iden-
tifications stimulations (e.g. frequency, number of peaks, absolute value 
range). With those definitions in the virtual space, it is almost impossible 
to reach continuous motion control in conventional TENG due to the 
superfast charges in a generation. However, almost all the things in the 
real space and virtual space are relating to the time-continuous, such as 
human motion behavior, games, and sports activities, etc. Thus, to 
achieve continuous motion control and real-time monitoring, we first 
time successfully realized scenario applications by DC-DTENG for the 
next-generation continuous VR motion control using triboelectric in 
both real space and virtual space. The reason for the real-time motion 
control of DC-DTENG was from the rotational speed during the process 
of charge transportation. With higher rotational speed, the higher 

output voltage and current would be generated resulting in a numerical 
relationship of them. More detail in VR application, DC-DTENG proto-
type in real space was directly connected with the pre-processing circuit 
and micro control unit (MCU) to control the virtual activities in virtual 
space as shown in Fig. 7a and b. The pre-processing circuit was used to 
collect the continuous DC output signal which contained mechanical 
activities information from DC-DTENG, such as the rotational speed, 
frequency, and motion behaviors. The sampling frequency of the A/D 
converter is enough to capture the real-time motion status in real space 
and the precision of acquisition voltage reached up to 0.01 V. The MCU 
is connected to the USB port of a computer. Together with “Unity3D00 by 
Unity Technologies and Cþþ programming language, the virtual space 
was built for a rotation disk monitoring and racing game experiments. 
The real-time mechanical activity information of the DC-DTENG in real 
space can be well monitored in the virtual space with the real-time 
display as shown in Fig. 7c and d and Video S4 Supplementary Infor-
mation. It notes that we used the MCU (Arduino) to acquire the data 

Fig. 6. DC-DTENG as energy storage and its potential as a higher output. (a) Schematic charging electrical diagram using electrode “A” and “B”, (b) schematic 
charging electrical diagram using electrode “A”, and (c) measurement voltage vs time on capacitor for two connection methods. (d) System diagram of DC-DTENG to 
directly power an electronic device. (e) The charge rates of 1 μF capacitor with different rotations, and (f) the charges vs time to demonstrate the charging capability 
for a commercial device. (g) A way to increase DC output using array pairs “n” (plane) and multi-layers dielectrics “m” (volume). The DC output of DC-DTENG 
increased using the more array pairs in-plane and the multi-layers in stacks. (h) Test DC outputs from an array DC-DTENG and (i) A potential smart home sys-
tem application of DC outputs driven by random wind rotation on its roof. It was noted that the wind rotation direction did not affect the DC output performance of 
DC-DTENGs. (j) The potential electrical diagram of the potential smart home system for sensor and actuator driven by DC-DTENG. 
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point with the baud rate 9600 Baud/s. Here, the sampling rate in our 
measurement are about 100 Point/s. To demonstrate the continuous VR 
motion control using DC-DTENG, a racing game in virtual space was 
further successfully conducted as shown in Fig. 7e and f and Video S5 
Supplementary Information. It can clearly identify that the continuous 
control in speed up, constant speed, speed further up, and speed down is 
presenting in a real-time connection with the real space and the virtual 
space. It is also noted that the racing car in virtual space is totally 
controlled by the corresponding continuous output signals from the real 
DC-DTENG with mechanical activities. 

Supplementary video related to this article can be found at https 
://doi.org/10.1016/j.nanoen.2020.104760 

3. Conclusions 

In summary, we proposed a novel triboelectric mechanism using 
dual intersection TENGs and charge transportation for DC output to 
directly power the next-generation self-sustained IoT and its real-time 
control in VR. Just like the water transported by a waterwheel or P–N 
junction diode, we employed tribo-polarity reversal porous material as 
charges transportation carrier sliding among the ultra-negative and 
ultra-positive dielectric materials, and the charges were continuous 
unidirectional transported and repelled discharge onto electrodes for DC 

output without a rectifier bridge. Due to charges transportation and 
discharge of repulsion, the DC output voltage of DC-DTENG was ob-
tained up to ~5 times higher than the air breakdown in conventional 
TENG, and the charging rate reached up to 2 times higher than that of a 
TENG with the same materials, respectively. More interesting, the 
consistent current polarity (the same for both clockwise and anti- 
clockwise rotation) of the DC-DTENG provided room for a realistic 
application, such as wind flow in a random direction. Moving forward 
the real applications by DC-DTENG, we demonstrated the realistic ap-
plications of a soft switch actuator, UV radiation sensing, and energy 
storage for an electronic device. We also successfully carried out a 
wireless Bluetooth module directly transmitting sensor nodes signals to 
a smartphone for next-generation IoT to directly power sensor nodes 
applications. Furthermore, to overcome the discontinuous characteristic 
identification (e.g. frequency, number of peaks, absolute value range) in 
the triboelectric, we first time successfully provided a practical solution 
for next-generation VR in real-time monitoring and continuous motion 
control between the real space and the virtual space. 

4. Experimental section 

Fabrication of the DC-DTENG: The rotator disk was made of porous 
cloth. The “median material” cloth (sliding layer) was assembled with an 

Fig. 7. Application of DC-DTENG in real-time monitoring and continuous motion control for next-generation VR. (a) Flow diagram for next-generation real-time VR. 
(b) Schematic diagram using DC-DTENG for VR applications. (c) Real-time status of the voltage curve by DC-DTENG for display monitoring, and (d) the rotational 
disk in virtual space. (e) Voltage curve in a racing game to demonstrate continuous motion control, and (f) the racing game in virtual space in constant speed, high 
speed, and speed slow down. 
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acrylic ring (2 cm width, 22 cm outer and 20 cm inner diameter). The 
dimension of the porous cloth disk was designed with a 20 cm diameter. 
A pair of dielectrics was attached to the top layer stator. The materials of 
pair dielectrics were PMMA and PVC, respectively. The PMMA dielectric 
presented positive surface charges contacting with cloth (negative 
charges), whereas the PVC dielectric exhibited negative surface charges 
to cloth (positive charges) in operation. The PMMA film was located on 
the left-hand side with a quarter area of the disk, and the PVC was 
located on the right-hand side with another quarter area of the disk. The 
bottom electrode “A" and “B" were line electrodes placed at the bottom 
stator. The line electrodes were made of cloth which coated with nickel 
metal. The length dimension was 4 cm in our device. The reason for 
choosing this electrode was its mechanical property with enough flexi-
bility and easy integration to our device. The substrate of the device was 
made of an acrylic plate which was cut by a laser cutting machine. The 
small dimension of DC-DTENG was with a scale of 0.6 times its original 
one. 

COMSOL simulation: The potential and charges distribution on the 
rotational disk had been obtained from a Finite Element Analysis (FEA) 
simulation with COMSOL Multiphysics 4.2. The models were built with 
approximately 1296 2D solid elements with a step size 0.94. The rota-
tional disk was surrounded by air, which was the same as the usual case 
in the experiment. The potential at infinity was chosen as the reference 
point for the electric potential, which was 0. The disk material cloth 
(polyester) property was assigned in the COMSOL software. The 
instantaneous changes density in the space on the disk surface was 
chosen as 50e-6 C/m3 at the bottom and � 50e-6 C/m3 at a top for our 
FEA calculation, respectively. 

Characterization: A programmable electrometer (Keithley model 
6514) was used to obtain the Voc, DC output, and Qtac, respectively. The 
rotational speed of DC-DTENG was calculated using a stopwatch. The 
output voltage of the measurement for the soft switch was tested by an 
oscilloscope (Keysight, DSOX3034T) with an internal resistance 50 Ω, 
and the high precision current equipment (Stanford Research System, 
Model SR570) was used for the measurement of the DC output. 
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