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Deep learning-enabled triboelectric smart socks for IoT-based
gait analysis and VR applications
Zixuan Zhang1,2,3,4,8, Tianyiyi He1,2,3,5,8, Minglu Zhu1,2,3,5, Zhongda Sun 1,2,3, Qiongfeng Shi 1,2,3,5, Jianxiong Zhu1,2,3,5,
Bowei Dong1,2,3,5, Mehmet Rasit Yuce6 and Chengkuo Lee 1,2,3,4,5,7✉

The era of artificial intelligence and internet of things is rapidly developed by recent advances in wearable electronics. Gait reveals
sensory information in daily life containing personal information, regarding identification and healthcare. Current wearable
electronics of gait analysis are mainly limited by high fabrication cost, operation energy consumption, or inferior analysis methods,
which barely involve machine learning or implement nonoptimal models that require massive datasets for training. Herein, we
developed low-cost triboelectric intelligent socks for harvesting waste energy from low-frequency body motions to transmit
wireless sensory data. The sock equipped with self-powered functionality also can be used as wearable sensors to deliver
information, regarding the identity, health status, and activity of the users. To further address the issue of ineffective analysis
methods, an optimized deep learning model with an end-to-end structure on the socks signals for the gait analysis is proposed,
which produces a 93.54% identification accuracy of 13 participants and detects five different human activities with 96.67%
accuracy. Toward practical application, we map the physical signals collected through the socks in the virtual space to establish a
digital human system for sports monitoring, healthcare, identification, and future smart home applications.
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INTRODUCTION
Wearable electronics experienced enormous development and
advancement in the past decades benefiting from its intrinsically
superior flexibility and portability1–3. To further improve the
quality of life, the invention of various wearable sensors based on
electrocardiograph4, electromyogram5, body temperature6, heart
rate7, strain sensors8, etc., offers opportunities in both fitness
service and medical diagnostics by the long-term monitoring of
physiological signals. In particular, the detection of the human
motions is significantly valuable in creating insights into the user’s
health status, activity quantifying, and the establishment of an
effective channel between humans and machines9,10. When it
comes to the continuous and convenient monitoring of diversified
human motion states, cameras and inertial measurement unit
(IMU) sensors are the widely adopted devices for smart home
applications11,12. However, vision recognition by cameras may
cause privacy issues, and the utilization of IMUs are not
intrinsically flexible and comfortable enough as the preferable
wearable solution. In addition, wearing a few bulky IMUs on
human body could cause inevitable interferences to the motions.
With the aid of recent advances in the fifth generation wireless

networks and internet of things (IoT), immense widely allocated
wearable devices are expected to be wirelessly interconnected at
rapid data exchange rates to provide concurrent communication
of information about the human body13–17. Among them, wireless
sensor networks (WSNs) have become a key technology to analyze
information related to identification, healthcare, human–machine
interface (HMI), and human activity monitoring. However, a major
bottleneck of the WSNs is the overall power consumption for

long-term connectivity of the whole system. To solve this
foreseeing energy crisis issue, energy harvesting technologies
and advanced storage devices have emerged to make the waste
energy in our surrounding environment valuable. Motivated by
that, substantial efforts have been made for the development of
wearable systems equipped with the abovementioned advanced
technologies and potential self-sustainability18–21.
In the past few decades, several of flexible devices have been

reported with different device structures and materials22–24.
Textile as a fundamental part of normal garments has been
extensively investigated as a great flexible and stretchable
electronics platform25–28. There are a few research developments
of smart textiles based on various mechanisms, aimed to be not
only more flexible for an improved comfortability but also
multifunctional, i.e., sensation, perception, or integration29–34.
Triboelectric nanogenerator (TENG) gradually becomes an optimal
option for scavenging waste energy, and sensing of both physical
and chemical parameters based on the textile platform due to the
particular advantages, including various choices of materials, easy
fabrication, low-power consumption, and low cost35–39. In this
regard, textile-based TENGs (T-TENG) exhibit the superb ability of
structural retention and fatigue resistance, during wearing and
washing40–43. Most of the T-TENGs are working under the vertical
contact-separation mode, lateral sliding mode, freestanding
mode, and single-electrode mode44. He et al. developed a
narrow-gap T-TENG, which can harvest mechanical energy from
various body parts to power Bluetooth sensors45. Though the
narrow-gap textile is in a form most similar to the normal clothes,
hence it can be seamlessly integrated with garments, such kind of
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structure is not suitable for pressure sensing, especially on foot
due to its limited sensing range. The devices designed for foot
become extremely important because the activities of foot are one
of the major sources for collecting kinetic energy from human
body46. Besides, gait contains useful information for the applica-
tion of healthcare and personal identification as well47–49. A great
amount of effort has been devoted to developing insoles with
energy harvesting and gait sensing functions, because the
demand for the flexibility and wear comfortability of the insoles
is very low50–52. Thus, the socks can be an optimal option for gait
analysis in terms of suitability. In addition, compared with the
insoles, the socks can be more widely used in indoor scenarios,
such as wearing sock at home where shoes are not applicable. Zhu
et al. reported a self-powered sock, which provides the simple
walking pattern recognition and motion-tracking information for
smart home applications, but the reported sock can only
distinguish gait patterns with large differences and the recogni-
tion accuracy is highly affectable by the environmental
variations46.
Artificial intelligence (AI) techniques will highly amplify the

intelligence of wearable electronics, and provide more reliable yet
simpler solutions to more problems and resonating tasks. The
conventional method of analyzing sensory information was
limited in the ability of handling natural data, which relies on
the manual extraction of shallow features from the raw data53–56.
For decades, as a subfield of machine learning, deep learning has
shown its great potential in image processing, speech recognition,
human activity recognition, and so on, which provides an efficient
way to learn higher-level features of the raw input from various
sensing signals57–60. Hence, deep learning methods provide a
promising and feasible solution to achieve high accuracy with a
low computational cost for wearable sensors. Sundaram et al.
developed a low-cost, scalable tactile glove using deep residual
networks for recognition of different grasping objects61. The
combination of AI technology with the IoT technology will lead to
the Artificial Intelligence of Things (AIoT) for supporting more
reliable communication between wearable devices and the cloud,
which will improve the capability of prediction in the more
complicated and dynamic system62–65. With the advent of the
AIoT, the digital twin enables real-time monitoring of systems and
processes, seasonable analysis of data to prevent fault diagnosis,
and future upgrades and development66,67. The concept and
application of the digital twin can be further broadened beyond
our imaginations by endowing the same concept with the
wearable electronics, i.e., to create digital replicas of the humans
in the virtual space. The digital human now becomes a viable
future technology with great opportunities for various applica-
tions, ranging from personalized medicine and healthcare
treatment, social media, and individual AI brain68–70.
In this work, we developed the triboelectric smart socks

equipped with sensing capabilities that can provide a more
comprehensive long-term monitoring of the user’s physical status.
In addition, this intelligent sock would be a feasible option for
scavenging low-frequency energy from natural human body
motions to power a Bluetooth module, and transmit the body
temperature value detected by the embedded temperature
sensor under IoT framework. The textile-based triboelectric
pressure sensors are designed and developed to be embedded
on the commercial sock for gait monitoring. The self-generated
output voltage spares the triboelectric sensors from external
power sources for operation compared to other sensing mechan-
isms, such as capacitive sensors and resistive sensors71,72. Besides,
by leveraging the deep learning technology for data analysis, the
intelligent socks are successfully demonstrated to realize the gait
identification of group users with the accuracy of 93.54%. The
application of the virtual reality (VR) fitness game by using the
proposed sock offers the possibility of a complementary control
interface besides the common vision and voice control terminal

for augmented interactions, which shows good potential on smart
home. Hence, this deep learning-enabled triboelectric smart sock
provides more comprehensive information to us, which would be
advantageous for sports monitoring, healthcare, future smart
home applications, etc. More importantly, the privacy issue is not
comprised when we use the socks for such purposes. In the future,
the entire system could be flexible integrating the flexible print
circuit boards (PCBs) with our sock, which would further improve
the wearing comfortability of the system73–76. In short, with the
integrated information collected from this sock, and additional
wearable sensors and neural electrodes, this platform paves the
way to the realization of the digital human technology in near
future (Fig. 1).

RESULTS
Design, sensing mechanism, and characterization
Though a narrow-gap T-TENG is thin and more resemble to the
normal clothes, the sensitivity and sensing range of it as a pressure
sensor is quite limited. To build up a T-TENG pressure sensor for
gait detection which should have a large sensing range up to
200 kPa, a surface-structured T-TENG sensor is proposed and
fabricated. Here, we adopted the mm-scale frustum structure to
be patterned on the silicone rubber surface with the aid of the 3D-
printed mold, which is low cost and highly scalable for mass
production in future. The T-TENG sensor which contains four
functional layers, including a nitrile thin film, a silicone rubber film
with patterned frustum structures (the detailed dimensions of the
frustum with a square base as shown in Fig. 2a on the contact
surface), and two conductive textiles attached to the back of the
two aforementioned contact electrification layers for charge
collection. Moreover, two nonconductive textile layers are used
to seal the device on the outer surface. The pressure stimulus will
induce charges due to the contact-separation mode based on the
working mechanism of the T-TENG sensor (Fig. 2b), and further
flow in the external circuit to transform the mechanical energy
into electricity. To clearly demonstrate the necessity of the
patterned surface structure, a small piece of 3 cm × 3 cm of the
textile sensor with no surface structure is fabricated and
characterized. It can be observed that its output voltage saturates
quickly at 72 kPa with a sensitivity of 0.4 V kPa−1 in the first linear
range (Fig. 2c). It is advocated that the pressure on foot is in a
large range up to 200–300 kPa, hence a large sensing range at
least up to 200 kPa is desired to capture the pressure information
of foot motions. Correspondingly, the open-circuit voltage of the
T-TENG sensor with the designed surface structures under
ascending applied pressures is measured and shown in Fig. 2c.
Benefiting from the mm-scale frustum structure to be patterned
on the silicone rubber surface, a threefold higher sensitivity over
the flat-structured textile sensor (first linear range from 10 to
70 kPa) can be observed, and the sensing range is successfully
extended to >200 kPa, making it much suitable for gait sensing.
The open-circuit voltage waveforms under the high pressure of
244 kPa of the textile sensors with/without frustum structures are
provided in Fig. 2d, e. Notably, the absolute voltage value of the
frustum-patterned sensor is also increased by three times for
the enlarged contact areas and the heightened spacing. The
characterizations of the transferred charge (Q) and the short-
circuit current (ISC) of the T-TENG sensor are tested and sketched
in Fig. 2f, h. The transferred charge of the T-TENG was measured
under the load of 13, 38, and 244 kPa with the pressing and
releasing speed of 15mm s−1 (Fig. 2f). It can be observed that the
value of the transferred charge increases with the applied pressure
as well due to the increased contact areas. Similarly, the short-
circuit current of the T-TENG was measured, and the same trend is
observed when the load pressure increases (Fig. 2g). Unlike open-
circuit voltage and transferred charge, the amplitude of the
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short-circuit current also depends on the pressing and releasing
speed. As characterized in Fig. 2h, fewer peaks are observed when
the pressing/releasing speed decreases from 15 to 5mm s−1, and
the amplitude of the peak current is also lowered due to the
reduced charge transfer speed. Without the specific illustration,
the frustum-patterned sensor is used for all the following testing
and demonstrations. The durability and washability tests can be
seen in Supplementary Figs. 3 and 4.
A T-TENG sensor with a size similar to the foot of the user is

fabricated and attached to the bottom of a cotton sock, to make
an intelligent sock for gait analysis. By wearing the single-sensor
sock on the right foot, the user’s gait can be detected and
analyzed through the triboelectric output voltages. In general, a
gait cycle includes four events as indicated in Fig. 3a, i.e., “heel
contact”, “toe contact”, “heel leave”, and “toe leave”. Based on the
working mechanism of the triboelectric textile sensor, there will be
positive peaks generated as the pressure is applied on it, and
reversed charge flow can be detected when the pressure is
released. Accordingly, when the user walks forward, two positive
peaks representing the heal contact and toe contact are observed
during the half cycle of gait, and two negative peaks representing
heal leave and toe leave are detected thereafter (Fig. 3b). Thus,
some preliminary features can be extracted from the output
voltages, i.e., frequency of gait cycles, positive/negative peak
amplitudes, and the time interval of every event in a gait cycle
(more detail can be found in Supplementary Fig. 6). Through the
detection of these characteristics, the types of human activities
can be preliminarily monitored. Parkinson’s disease (PD), as a
progressive and neurodegenerative movement disorder, usually
presents with symptoms of gait disturbance and even falls. To
show the possible application of healthcare monitoring of our
proposed sock, mimetic motions of the PD that are frequently
measured among the patients were performed, and the corre-
sponding detected signals are shown in Fig. 3c. Three conditions

including the normal walking, loss of stride, and the freezing of
gait (FOG) are detected in sequence, resembling the eliciting of
the PD. The patient normally experiences the loss of stride ahead
of the FOG, which is characterized by the shortened intervals
between spikes. During the FOG, the patient couldn’t move the
feet even with the intention to do so, which can be reflected by
the small and irregular oscillating signals from the sensors. In
addition, the smart sock was used to detect fall-down event from
the recorded gait signals as shown in Fig. 3d. An abnormal
negative peak with an extremely high amplitude against previous
normal data can be detected as the falling happens, and there is
no positive peak generated thereafter, indicating the feet of the
user are still off the ground. Furthermore, there is a real-time
remote healthcare monitoring system is illustrated, as a demon-
stration of the intelligent sock shown in Supplementary Fig. 7. The
gait signals will be collected by a microcontroller unit (MCU) and
transmitted to a PC via wireless communication. If the gaits from
users appear the irregular signal compared with recorded normal
walking signals, the emergency medical alert system will display
the corresponding warning, such as loss of stride or falling and
inform the caregivers (Supplementary Video 1). Hence, the
demonstrated real-time system for health condition monitoring
and medical emergency alert presents a great prospect of the
intelligent sock in multiple healthcare applications to assist both
the elderly and patients, which can be further used for smart
home, hospitals, and healthcare centers. Meanwhile, this sock
could be very useful in studying walking patterns in people
affected by illnesses, such as diabetes, musculoskeletal abnorm-
ality, and rehabilitation from different injuries.
Besides of gait sensing, as intelligent sock works under the self-

powered triboelectric mechanism, it can also be used as an energy
harvester to scavenge waste energy from foot motions. The
output power of the single sock on the right foot is measured on
different external loads from 0.1 to 100 MΩ. As shown in Fig. 3e,

Fig. 1 The schematics and future prospects of the deep learning-enabled socks. The intelligent socks would assist wearable electronics to
move toward digital human for diversified applications: energy harvesting for IoT application, human activity monitoring for VR fitness game,
and gait identification for smart home application.
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the output power of 0.32 mW is generated from 1 Hz walking on a
44.4 MΩ load. In the case of running with the frequency of 2 Hz,
owing to the larger force and frequency that the foot applied on
the sock, a maximum power of 3.18 mW was measured on a
21.3 MΩ (Fig. 3f). Hence, the proposed sock is capable of energy
harvesting from the gait cycles under various motions. The
rectified output voltages from the sock charged different
capacitors of 1, 4.7, 10, and 27 μF to be 5 V (Fig. 3g),
demonstrating the good charging capability of it as a reliable
power source. Within ~300 times of steps in normal walking, the
output from the sock can charge a 27 μF capacitor up to 8 V to
power up a Bluetooth module, after which the voltage on the
capacitor drops to 2 V as shown in Fig. 3h. This discharged power
from sock can activate the Bluetooth module to send the humidity
and temperature data to the smartphone, which can be used for
monitoring the temperature on human body under various
exercise intensities. As known, the body temperature is suscep-
tible to exercise intensities, hence it should be taken into account
when assessing the body temperature of a subject. The body
temperature under armpit of a subject was recorded under
different activities states (normal walking, light exercise, moderate
exercise, vigorous exercise, and rest after exercise) at five different
moments, as shown in Fig. 3i. It can be observed that the armpit
temperature increased gradually when the subject was exercising

continuously, which was dropped at rest. As a result, the
monitored body temperature will provide an insight into the
physical state of a person, and the elevated body temperature will
be an indication of fever or vigorous exercise. Meanwhile, a TENG
device connected in parallel with a high-voltage diode and a
switch can effectively create instantaneous discharging output,
with an enhanced amplitude. Hence, an approach to create an
instantaneous discharging for the socks with the integration of a
high-voltage diode is feasible to speed up the charging time
(more details can be found in Supplementary Note 1 and
Supplementary Figs. 8–10). Through the incorporation of the
proposed sock with external circuit design and other low-power
consumption sensors of different functionalities, a more compre-
hensive IoT platform could be feasible in near future.

Development of deep learning-enabled socks
Considering the privacy concern of the face recognition,
fingerprint recognition, and acoustics recognition, gait as a
personal characteristic has many advantages for identification,
i.e., individual gait recognition has fewer environmental limitations
for data collection, it is relatively easy and quick to collect data in
daily life49,77. Differ from the widely used IMU sensors that require
high computing power and high computing power for precise

Fig. 2 The basic characterization of T-TENG sensors. a The detailed dimensions of the frustum with a square base. b The working
mechanism of the T-TENG sensor which works in the contact-separation mode. c The open-circuit voltage versus pressure curve of T-TENG
sensors with no structure and frustum structure. d, e The schematics of T-TENG sensor and its open-circuit voltage waveforms at 244 kPa
without frustum structures and with frustum structures. f The transferred charge of the T-TENG under the load of 13, 38, and 244 kPa with the
pressing and releasing speed of 15mm s−1. g The short-circuit current of the T-TENG under the load of 13, 78, and 244 kPa with the pressing
and releasing speed of 15mm s−1. h The short-circuit current of the T-TENG with the pressing and releasing speed of 5, 10, and 15mm s−1

under the load of 244 kPa.
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body movement monitoring50, our deep learning-enabled sock
with the minimal number of triboelectric sensors offers an
alternative solution for the detection and analysis of the individual
gait. Previously, analysis strategies for triboelectric outputs are to
manually extract the shallow features from a single waveform,
such as frequency, amplitude, interval of peaks, and holding time,
which cannot achieve recognition of complicated features with
subtle differences among them and is very susceptible to
environmental variations, resulting in reduced recognition accu-
racy37,49,78. The technology fusion of the emerging AI with
wearable electronics promoted enormous advances to form a
whole intelligent system in technologies related to the process of
data acquisition, processing/analysis, and transmission79,80.
Recently, deep learning technologies due to its high level of
performance across many types of data are becoming a very
favored subset of machine learning, which offers a promising and
feasible solution for triboelectric output analysis to achieve a
higher accuracy of complex recognition. For the recent study on
the integration of deep learning techniques and triboelectric
devices, Zhao at al. has successfully used multiple deep belief
network to realize the keystroke dynamic identification by a
triboelectric keyboard81. Apart from that method, convolutional
neural network (CNN) becomes another promising technology of
deep learning for automatically extracting features from

triboelectric output by its convolutional layers. In addition, the
one-dimensional (1D) CNN-based method for recognizing human
activity has been proven to be very effective for the overall
dataset, in which the position of features in the segment is not
highly correlated; thus, it is suitable for the analysis of time
sequences of sensor data82–85. In our work, the raw data from sock
which contains diversified information about a dynamic gait cycle,
e.g., gait speed, contacting force between feet and shoes,
triggering sequence of sensors and the individual usage manners
for a specific user, will be fed into the training 1D CNN model
directly without the complicated data processing steps. Figure 4a,
b shows the gait pattern identification of five participants wearing
the single-sensor sock with the 1D CNN method. A dataset was
built from the five participants with proposed sock (45 kg female,
40 kg female, 60 kg male, 70 kg male, and 55 kg male), as they
walked normally on a 5m corridor within ~600 s. Next, the middle
500 s data (16,000 datapoints) representing the stable gait of
participants will be segmented by a sliding window without
overlap. For each participant, the whole data were divided into the
training set (60%), testing set (20%), and validation set (20%).
Because individual walking speed is an important consideration
for gait analysis, the length of the sliding window needs to be
carefully determined to ensure that each sample can cover
enough information. In view of the trade-off between sample

Fig. 3 The characterization of T-TENG socks and preliminary gait analysis. a Schematics of four phases of a typical contact cycle and
b corresponding signals of normal walking (right foot). c, d The real-time healthcare monitoring of mimetic walking pattern of Parkinson’s
disease patient and gait signals of a fall-down event. e, f The maximum output powers of a single sock on right foot under 1 Hz walking and
2 Hz running were tested by changing the external load resistances from 0.1 to 100 MΩ. g Charging curve of different capacitors (i.e., 1, 4.7, 10,
and 27 μF) were charged to 5 V. h Charging and discharging curve with the socks on foot, where each voltage drop represents a discharging
to the Bluetooth module. i Monitoring the temperature on armpit under various exercise intensities by Bluetooth module.
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number and window length, the accuracy rate reaches the highest
when the sample length is 4 s (Supplementary Fig. 11). The sample
triboelectric outputs for the five participants are shown with the
featured patterns, including some important features (Fig. 4b), i.e.,
amplitude, frequency, interval of events in gait cycle, etc. The
proposed network architecture of the intelligent sock system
(Fig. 4b) consists of four convolutional layers, four max-pooling
layers, and one fully connected layer that outputs the predicted
identification of five participants. The accuracy of training set is
100% after 500 epochs training of the neural network and the
accuracy of validation set can be up to 98.4%. Then the trained

1D CNN model can assist the testing set of the intelligent sock to
achieve 96% accuracy of identity recognition, and the confusion
map of the classified result is shown in Fig. 4c. Although the sock
with single sensor demonstrates a relatively good accuracy for
differentiating the gait patterns of five participants, it could be
largely reduced as the number of participants increases for it lacks
spatiotemporal detecting of foot pressure. Using a small piece of
3 cm × 3 cm of the textile sensor to test the different outputs of
various places around the foot is shown in Supplementary Fig. 12.
The larger voltage means the better sensitivity to distinguish the
gait pattern of different people; thus, we chose the three locations

Fig. 4 Gait identification of deep learning-enabled socks. a The process of data collection and the 4-s sliding window for the segment of
dataset. b Schematics of the process and parameters for constructing the 1D CNN structure. c Confusion map of the prediction with the gait
patterns of five participants. d Schematic of the triple-sensor socks and its three-channel output characteristics within 600 s. e, f Confusion
maps of the prediction with the triple-sensor socks of 5 and 13 participants.
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with the largest pressure for further research. By attaching a multi-
pixel sensor array (i.e., three pieces) on the intelligent sock with
the locations as shown in Fig. 4d, the intelligent sock should be
able to collect more information from foot motions for more
complicated gait analysis, and potentially raise the accuracy for a
larger group of participants. It should be noted that the sensing
outputs show negligible interference from shoe wearing (Supple-
mentary Fig. 13), which demonstrates the good stability and
adaptability of the intelligent sock in gait monitoring. In terms of
the triple-sensor intelligent sock, after applying the same method
of data collection, the triboelectric signals from three channels can
form a whole spectrum and enter the input layer of same CNN
structure (Fig. 4b) to classify the different users. The final accuracy
of the triple-sensor intelligent sock can reach 100% (Fig. 4e), which
is a 4% improvement over the single-sensor sock. In general, the
larger the number of samples, the higher the classification
accuracy of the trained model. To increase the accuracy of the
recognition system, here we present a method of 4 s sliding
window with 2 s overlap. It will extend the limited training set
twice than the previous dataset. As shown in Supplementary Fig.
14, with the increase of participants, models trained with
overlapping window datasets have higher accuracy. As a result,
a dataset of 13 individual gait patterns was collected and a high
accuracy of 93.54% was also achieved with the aforementioned
sliding window method, as shown in Fig. 4f. The detailed
parameters used for training a 13-class CNN are provided in
Supplementary Table 1. Due to the limitation of the number of
datasets, the accuracy rate decreases slightly as the number of
people increases. This problem can be solved by expanding the
training set samples, e.g., collecting more gait data from multiple
participants.
The rapid development of VR and augmented reality (AR)

technologies paves a way for the diversified application in social
media, personal engagement, surgical training, gaming, and so on.
The deep learning-enabled sock as a wearable HMI can provide
the gait information of the users to create an immersive
experience for VR/AR scenarios, and here we demonstrate a VR
fitness game with the proposed intelligent sock as the control
interface (Supplementary Video 2). As depicted by the schematics
in Fig. 5a, the complete real-time control system includes the
triple-sensor sock, signal preprocessing circuit, MCU with wireless
transmitter module, PC, and the virtual space in Unity software.
First, when the user moves, the triboelectric output signal from
the sock will be generated and then enter the MCU after going
through the preprocessing circuit. The preprocessing circuit is
used for filtering out the ambient noise and removing the
crosstalk between different channels, which is mainly composed
of circuit blocks with several functions, i.e., bias circuit, amplifier
circuit, and low-pass filter (further described in Supplementary
Note 2 and Supplementary Fig. 15). Then the MCU will detect the
equivalent analog signal of output voltage and send the data of
the whole spectrum to the PC through wireless transmission.
Based on the received spectrum of signals, the trained machine
learning model will then send respective motion commands to
Unity. In our demonstrated VR fitness game, there are five default
movements available for detection to control the virtual character,
including the leaping, running, sliding, jumping, and walking. The
corresponding triboelectric outputs are shown in Fig. 5b, with
respect to the five different motions in virtual space. After the
training model of 1D CNN, the recognition accuracy of human
activities reaches 96.67% with 100 training samples from each
motion as shown in the confusion map (Fig. 5c). The program of
unity can receive the command of the predicted motion and
convert it into the motion of the virtual character, as show in
Fig. 5d. For example, when the wood pile appears, the user should
take the leap motion to pass it, which will be simultaneously
synchronized onto the virtual character’s movement in virtual
space. Next, users can choose run motion or walk motion in the

woods path, and gravel road until the following barrier. When they
are facing the rock and the stone cave, they should take the jump
and slide motion, respectively. This VR demonstration well
indicates the potential of the intelligent sock for the realization
of the advanced multifunctional HMIs toward diversified applica-
tions. In the future, the intelligent system based on the proposed
socks could be further integrated with personal fitness monitoring
system, which measures and analyses data on physical perfor-
mance during the VR gaming.
Since the deep learning-enabled sock is capable of recognizing

identification and monitoring activity, it has a great aspect in the
development of the intelligent wearable system, where the whole-
body movement and the physical signals can be continuously
monitored by the integration of the sock and other wearable
sensors. Such a wearable system would facilitate the rapid
advancement of the future digital human, where a realistic digital
replicate of a human could be created in the virtual space. For a
simple demonstration toward the future application of the digital
human, a smart home system is developed to enable the
automatic distinguishing of the family members from strangers,
as well as the real-time monitoring of family member’s indoor
activities in a no-camera environment, where the recognition
results in the real space can be projected into a virtual space.
Figure 6a summarizes the structure of the whole system, including
the first stage of identity recognition, second stage of activity
monitoring, and real-time VR projection. As shown in Fig. 6b, the
server side of the smart home can establish wireless communica-
tion protocols with multiple users’ intelligent socks at the same
time. The middle segment of the collected gait signals from the
users will be sent to the first stage of smart home system
separately (Fig. 6c) to recognize the user’s identity. It is known that
triboelectric output can be susceptible to environmental varia-
tions, such as humidity, which will affect the recognition accuracy
of the user’s identity as well. To eliminate the interferences from
the environment, here we tried to collect the datasets of the users
from multiple days to form a comprehensive training set so as to
generalize the data. And it is observed that as the number of
training days increases, the accuracy is improved significantly,
showing the excellent stability of the deep learning-enabled sock
in gait pattern identification (Supplementary Note 3 and
Supplementary Fig. 16). These results also indicate a reliable and
general method to improve the reliability of the triboelectric
sensors, which is considered as one of the great challenges for
them to be used for practical applications. After the identity
recognition of first stage, the gait signals of family members will
enter second stage of real-time activity monitoring to output the
final individual activity. Here, three common actions (running,
walking, and jumping) are extracted to build individual classifiers
for second stage. The corresponding signals from the triple-sensor
sock of each family member under walking states are shown in
Fig. 6c. Integrating the trained identification model and motion
recognition model, the laptop screen displays the signal waveform
of gait and the corresponding prediction result. Simultaneously,
the virtual space will generate the corresponding human model
who will perform the same actions as the predicted motion of the
gait in the second stage of the system. The proposed system
provides a no-camera environment for the privacy and security
aspect of the smart home, as shown in Supplementary Video 3.
This integrated system of different deep learning models can

also be used for future smart classroom setting. From Fig. 7a, b, a
check-in system is demonstrated. All the signals obtained from the
students who have entered the classroom will be identified and
displayed in the system. As shown in Fig. 7c, when an unknown
student moves from outside classroom to the classroom, the real-
time gait signal will be collected and analyzed by the system to
identify the student. And the students entering the classroom will
be logged into the system via a trigger signal, as shown in Fig. 7d,
i.e., stamping foot twice, and it will be synchronously displayed in
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the virtual space. After that, it can be detected whether the
student is sitting on the seat or keeping moving around in Fig. 7e.
The system not only can record the number of people
participating in classes, but also can monitor the records of
students entering and leaving the classroom (Supplementary
Video 4). In addition, the user’s body temperature could be
detected with an embedded temperature sensor and uploaded to
the server together with the gait information, in which case the
body temperature of all check-in students in the classroom will
also be monitored, providing a more comprehensive personal
status monitoring. Body temperature monitoring is not only
beneficial for the user himself, but also helpful in controlling the
wide spread of the contagious diseases that may cause a fever, as

the detectable symptom. As a result, by leveraging the deep
learning techniques, this intelligent sock can eventually turn into a
solution for supplying a safer and more intelligent environment,
regarding the smart building in no need for supports from
cameras and microphones.

DISCUSSION
In summary, a deep learning-enabled sock based on the
triboelectric textile sensors has been developed with great
potential of providing a low cost and low-power consumption
solution to the future digital human. The sensing range and
sensitivity of the triboelectric textile sensor are highly improved

Fig. 5 Human activities recognition of deep learning-enabled socks. a The process flow from sensory information collection to the real-time
prediction in VR fitness game. b 3D plots of the deep learning sock outputs responding to different motions (leap, run, slide, jump, and walk).
c The confusion map for deep learning outcome. d The motion of the virtual character corresponding to real motion in a proposed digital
human system.
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with the aid of the mm-scale frustum structures patterned on the
contact surface, making it more suitable for gait sensing. By
scavenging energy from normal walking, this sock can charge up a
27 µF capacitor in 3–4min, which is sufficient to support a
Bluetooth IoT sensor module to transmit temperature and
humidity data. Furthermore, 96% accuracy of differentiating gait
patterns among five participants has been achieved with the
single-sensor sock by 1D CNN-based deep learning analytics. To
further boost the gait patterns sensing accuracy of the intelligent
sock, a triple-sensor sock can enhance the identification accuracy
of 5 and 13 participants to 100% and 93.54%, respectively. More
importantly, the proposed sock is capable of detecting different
human activities with 96.67% accuracy among five predefined
motions for an identified user. A VR fitness game with it as a
control interface has been demonstrated. Combining the identi-
fication and activity monitoring capabilities, we demonstrate the
deep learning-enabled sock as a functional part in both smart
home and smart classroom applications by creating a virtual figure
with replicated motions of the user, showing its great prospect in
the development of the digital human in near future. In general,
the proposed socks are equipped with diversified functionalities
for the application of energy harvesting in IoT framework, and gait
sensing for walking pattern recognition and human activity
monitoring. Further explorations would obtain more comprehen-
sive information of users ranging from entertainment, social
network, healthcare, sports monitoring, and smart home, etc.

METHODS
Fabrication of the triboelectric textile sensor
The triboelectric textile sensor contains two layers: a positive charge
generation layer and a negative charge generation layer. Firstly, the
conductive textile is cut into the desired size and shape, which is made of
metalized fabric (polyester Cu) coated with an adhesive. To fabricate the
positive charge generation layer, a thin nitrile film is attached to one side
of a conductive textile. Another conductive textile is coated with silicone
rubber film on the one side as well. The coating process was firstly
dispensing required amounts of parts A and B of the EcoFlexTM 00-30 into
a mixing container (1A:1B by volume or weight), followed by mixing the
blend thoroughly for 3 min, and then the mixed solution was poured into a
3D-printed mold followed by 20-min baking at 70 °C for curing. For the
textile sensor without surface structures, the uncured mixture was directly
pasted onto the conductive textile to form a flat surface. Lastly, the silicone
rubber-coated textile was stitched to the nitrile-coated textile with two
nonconductive textiles attached to the outer sides for encapsulation, the
detailed fabrication sees the Supplementary Information (Supplementary
Figs. 1 and 2).

Experiment measurement and characterization
The signal outputs in the characterization of the T-TENG sensor were
measured by an oscilloscope (DSO-X3034A, Agilent), using a high
impedance probe of 100MΩ. Calibrations of output voltage against force
for triboelectric sensors were conducted by force gauge (Mecmesin,
MultiTest 2.5-i) with the speed of 600mmmin−1. Finite element method
simulation of electric potential between two triboelectric layers (Eco-flex
and Nitrile) were numerically calculated using the commercial software

Fig. 6 Integrated demonstration of smart home application. a Overview of the two-stage recognition system. b Schematics of multiple
users with their gait signals collected by wireless communication. c The gait signal of two family members for gait identification in the first
stage of smart home system. d The gait signals of recorded family members responding to different motions (run, walk, and jump) in the
second stage of the smart home system.
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COMSOL (Supplementary Fig. 5). The open-circuit voltages, transferred
charges, and short-circuit currents were measured by an electrometer
(Model 6514, Keithley), and the signals were displayed and recorded by an
oscilloscope (DSO-X3034A, Agilent). The Bluetooth module for transmitting
the data of temperature and humility sensors were made from commercial
BLE sensors (CYALKIT-E02), with an integrated temperature and humility
sensors (Si7020-A20). Analog voltage signals generated from intelligent
socks for real-time monitoring, HMIs, and digital human system are
collected and processed by the hardware circuit, consisting of a
conditioner PCB and an MCU (ESP32-PICO-KIT V4). After the measure-
ments, MATLAB®2019a was used for data analysis. The CNN models were
developed in Python with Keras and Tensorflow backend.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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