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Abstract
Throat cancer treatment involves surgical removal of the tumor, leaving patients with facial disfigurement as well as
temporary or permanent loss of voice. Surface electromyography (sEMG) generated from the jaw contains lots of voice
information. However, it is difficult to record because of not only the weakness of the signals but also the steep skin
curvature. This paper demonstrates the design of an imperceptible, flexible epidermal sEMG tattoo-like patch with the
thickness of less than 10 μm and peeling strength of larger than 1 N cm−1 that exhibits large adhesiveness to complex
biological surfaces and is thus capable of sEMG recording for silent speech recognition. When a tester speaks silently,
the patch shows excellent performance in recording the sEMG signals from three muscle channels and recognizing
those frequently used instructions with high accuracy by using the wavelet decomposition and pattern recognization.
The average accuracy of action instructions can reach up to 89.04%, and the average accuracy of emotion instructions
is as high as 92.33%. To demonstrate the functionality of tattoo-like patches as a new human–machine interface (HMI)
for patients with loss of voice, the intelligent silent speech recognition, voice synthesis, and virtual interaction have
been implemented, which are of great importance in helping these patients communicate with people and make life
more enjoyable.

Introduction
Speech is an important means by which humans com-

municate and express their emotions and opinions. In the
United States, 53,000 adults are expected to be diagnosed
with oral and oropharyngeal cancer in 20191. Treatment
can involve surgical removal of the tumor, radiation ther-
apy, and chemotherapy, leaving patients with facial dis-
figurement as well as temporary or permanent loss of voice,
which greatly hinders daily patient communication2.
Surface electromyography (sEMG) is a bioelectrical

signal emitted from neuromuscular activity and can be

recorded by electrodes on the surface of the human ske-
letal muscle, which are widely used in clinical medicine,
kinematics, etc.3–5. Studies have confirmed that sEMG
generated by the muscles of the face and the lower jaw
contains useful voice information related to speaking6,7.
Different muscle motion patterns are produced by the
contraction of different muscle groups, and the accom-
panying sEMG signals are different. In silent speech, the
muscle groups of the face and the lower jaw correspond to
different motion patterns, so it is entirely possible to
distinguish the motion patterns from different sEMG
signals and identify the internal speech information. Since
the 1980s, sEMG from some smaller muscles associated
with speech has been analyzed, and the results are pro-
mising. Michael S. Morse et al. used four-channel facial
sEMG to recognize 10 English words. Their best accuracy
rate was 58.0%, using the magnitude as the sEMG
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feature8. C. Jorgensen et al. used sEMG to perform six-
word speech recognition in a real-time simulated envir-
onment, in which six words can be used as a control set
for NASA's spacecraft Mars Cruiser. M. Janke et al. ana-
lyzed and compared sEMG generated from audible,
whispered, and silent speech, indicating that speech
recognition based on sEMG can be applied to silently
mouthed speech9.
In fact, it is very difficult to acquire sEMG signals from

the jaw and face by traditional sEMG electrodes because
of not only the weakness of the signals but also the sharp
skin curvature of this area. Traditional sEMG measure-
ments use rigid electrodes coupled to the skin via elec-
trolyte gels affixed with adhesive tape or straps. During
the recording, the electrode sheet may be detached from
the superficial skin, resulting from the drying of the gel
and the movement of the muscle, leading to a decrease in
measurement accuracy10. These defects also practically
limit mounting locations to relatively flat regions of the
body, such as the forehead, back, chest, forearm, or thigh.
The ability to extend the traditional sEMG electrode to
measure the sEMG of the jaw is deficient.
Owing to the recent advances and the rapid develop-

ment in soft materials and micro-electromechanical sys-
tem (MEMS) fabrication, the emerging field of wearable
flexible electronic devices offers a technological solution
to measure the sEMG of the face, jaw, neck, etc.11–23. One
of the major trends is to apply textiles made of functional
yearns and coatings or to use flexible materials to fabri-
cate devices for detecting physiological signals24–26, con-
ducting drug delivery27, and realizing intuitive human–
machine interfaces28–31. Another trend is the thin-film
technique for stretchable electronics and wearables,
including epidermal sensors, the epidermal electronic
system (EES), and electronic tattoos (e-tattoos), which
have demonstrated a wide range of functionalities,
including physiological sensing32–43, on-skin display44,
ultraviolet (UV) detection45, transdermal therapeutics34,
human–machine interface (HMI)46, prosthetic electronic
skin47, and skin-adhesive rechargeable batteries48,49.
J. A. Rogers et al. proposed EES interfaces that can

record sEMG signals from four different bimanual ges-
tures of forearms to control a drone quadrotor10. Lu and
colleagues proposed graphene electronic tattoo (GET)
electrooculography (EOG) sensors to control a quadcop-
ter wirelessly in real time to demonstrate the functionality
of GET EOG sensors for the human–robot interface50.
T. Ren et al. manufactured an intelligent laser-induced
graphene artificial throat, which can not only generate
sound but also detect sound in a single device51. H. Zhang
et al. proposed a flexible hybrid device that can be
attached to different parts of the body for the real-time
monitoring of human physiological signals, such as
respiratory information and the radial artery pulse52. It is

apparent that using ultrathin dry electrodes instead of wet
conductive gel silver/silver chloride (Ag/AgCl) electrodes
to couple to human skin is beneficial for expanding the
monitoring area for silent speech recognition and
improving human comfort.
Generally, the ability to accurately and imperceptibly

monitor health sEMG is vital for healthcare professionals
and patients. The development of machine-learning
techniques in data analysis offers much assistance in
decoding sEMG signals, which dramatically enhance the
reliability of information recognition and expand the
application fields. This study illustrates an epidermal
sEMG tattoo-like patch that can be laminated on the jaw
and face without any additional adhesives and imper-
ceptibly measures the sEMG from a patient who has lost
his/her voice. Experiments are conducted, and the sEMG
signals are collected when the tester speaks silently.
Through wavelet decomposition and machine-learning
algorithms, the frequently used action and emotion
instructions can be recognized with high accuracy. To
demonstrate the functionality of the epidermal sEMG
tattoo-like patch for the human–machine interface, action
instructions of silent speech recognition are used to
control an intelligent car, and emotion instructions are
used to control a Bluetooth speaker and virtual interac-
tion in real time (Fig. 1a).

Design of the epidermal sEMG tattoo-like patch
The electrode layout of the sEMG patch contributes to

the magnitude of the electrical noise and crosstalk
contamination, such as the electrode size, the inter-
electrode distance, and the electrode shape. As illu-
strated in Fig. 1b, the electrodes and interconnects are
made of copper (Cu). The double-wave interconnected
Cu wires incorporate polyimide (PI) coatings above and
below each layer to physically encapsulate the Cu traces
and minimize the bending-induced strains. The Cu
traces are terminated at the exposed contact pads for the
purpose of external connection and signal acquisition.
As the European concerted sEMG group determined,
the two measuring electrodes should provide separa-
tions of 20 mm, measured along the direction of the
muscle fibers to obtain the optimal signals10. The fila-
mentary serpentine (FS) mesh electrodes involve bare
metal in direct contact with the skin. Figure 1c shows
the epidermal sEMG tattoo-like patch mounted on the
forearm. The patch consists of two measuring electrodes
(MEA) and a reference electrode (REF) (400 nm in
thickness and 9 mm in diameter) with FS meshes of
0.1 mm in width and 0.2 mm in radius of curvature. The
interconnects are designed in a double-wave wire
structure to enhance the local stretchability and
deformability of the patch. The electrodes and inter-
connects are transferred onto a sterile wound dressing
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(polyurethane, Qingdao Hainuo, CHINA). The sterile
wound dressing can provide not only excellent flexibility
but also great adhesiveness to the muscles of the lower
jaw and face without falling off. The layout and con-
figuration yield soft and elastic responses to applied
strains in a manner that both provides conformal con-
tact to the skin and the ability to accommodate natural
motions without mechanical constraints or interface
delamination.

The fabrication process follows the micromachining
procedures described in the “Experimental section” (see
supplementary information, Fig. S1), in which all
electrode-patterning processes are carried out on a silicon
wafer. As illustrated in Fig. 1d, the double-transfer process
by using a water-soluble tape (3M, USA) releases the
resulting device from the wafer to the sterile wound
dressing. Specifically, the first step is to use the soluble
tape to emancipate the epidermal sEMG electrodes from

Sterile wound dressing

Water-soluble tape

Si wafer

Electrode
d

Skin

PI Cu

Sterile wound dressing

sEMG recording

Human–machine interface

Laptop

Bluetooth

1 cm

a

b c

Silent speaking

REF

MEA

MEA

Connection pad

Fs electrode

Fig. 1 Introduction of the epidermal sEMG tattoo-like patch for patients with loss of voice. a Schematic drawing showing the control flow of
the human–machine interface based on the epidermal sEMG tattoo-like patch for patient voice loss. b Layer-by-layer configuration of the epidermal
sEMG electrode patch. c Epidermal sEMG tattoo-like patch mounted on the forearm. The configuration and the internal structure of the epidermal
sEMG electrode, including two sensing electrodes (MEA) and a reference electrode (REF) of filamentary serpentine (FS) meshes, are shown. d Double-
transfer process of the epidermal sEMG electrode from the wafer to the sterile wound dressing.

Liu et al. Microsystems & Nanoengineering            (2020) 6:16 Page 3 of 13



the silicon wafer. Then, the application of water dissolves
the water-soluble tape after transferring the electrode to
the sterile wound dressing.

Results and discussion
Mechanical characterization
The face and lower jaw of the human body typically

have a fairly high skin curvature. However, the majority of
the current physiological monitoring systems, including
traditional sEMG electrodes, are made of rigid metal or
hard materials and coupled to the skin via electrolyte gels.
These rigid electrodes are difficult to apply to areas with a
complex skin curvature and need to be affixed with
adhesive tape or straps to prevent them from falling off.
To overcome the drawbacks of traditional rigid electrodes
and increase the comfort of the patients wearing them,
imperceptible and flexible epidermal electrodes with good
adhesiveness that can match the sharp curvatures of the
jaw and face more closely are required. To test and verify
the flexibility of the epidermal sEMG tattoo-like patch, a
mechanical stage is used to stretch the patch, and the
finite element method (FEM) is used to simulate the
deformation and stress distribution of the FS electrodes.
Simulation and experimental results indicate that the FS
electrode traces can be stretched over 20% (strain levels of
skin: 10–20%), where the maximum principal elastic
strain in the metals is 11.24% (fracture strain of Cu:
33.3%). The corresponding optical microscope (OM)
images of the FS mesh electrodes show that the FS elec-
trodes do not show any cracks when the FS electrode
trace is stretched by 20%. More details and figures can be
seen in the supplementary information (Figs. S2–S5).

Silent speech recognition
The flow diagram of the sEMG system for intelligent

silent speech recognition and the human–machine
interface are depicted in Fig. 2a. In the experiment, the
epidermal sEMG tattoo-like patches were attached to a
tester’s lower jaw and the left and right sides of the face,
representing three different sEMG channels from three
targeted muscle groups. The proposed silent speech
recognition system measures the sEMG signal in a dif-
ferential electrode configuration. Two measuring elec-
trodes (MEA) of the patch were placed along the target
muscle. Thereafter, the differential activation between the
two measuring electrodes against the reference electrode
(REF) was transmitted into the sEMG conditioning circuit
(ZTEMG-1300, Qingdao, China) to reduce the inter-
ference caused by noise sources, such as power supply
interference and movement artifacts, which can increase
the signal-to-noise ratio (SNR) validly. The sEMG signals
were recorded at 2000 Hz with a 16-bit resolution by
using a data acquisition unit (NI USB-6003, Austin,
Texas) and filtered with a band-pass filter with cutoff

frequencies of 10–1000 Hz when the tester spoke silently.
Then, the sEMG signals were converted into digital sig-
nals and analyzed by using MATLAB (The Mathworks,
Inc., Natick, MA).
For patients with loss of voice, their action and emotion

intentions are very important and must be expressed
properly in their daily lives. Therefore, we selected five
frequently used words, i.e., Front, Back, Left, Right, and
Stop, as the basic action instructions to express their daily
action intentions. Meanwhile, some common words, i.e.,
Happy, Sad, Hello, Goodbye, Hug, and Love, were chosen
as the emotion instructions that these patients could use
to express their emotions or greetings. The anterior belly
of digastric (ABD), buccinators (BUC), and zygmaticus
(ZYG) were selected as the target muscle groups because
of their close connections with the talking and swallowing
actions (channel #1: ABD, channel #2: BUC, and channel
#3: ZYG). Once the silent speech recognition system was
set up, the tester was asked to carry out a series of tasks:
a. Baseline: The tester was asked to remain still and

breathe quietly for 5–10 s to keep the muscles
relaxed.

b. Action instructions (each action for 30 trials):
The tester was asked to speak five action
instructions (Front, Back, Left, Right, and Stop)
silently.

c. Emotion instructions (each action for 30 trials): The
tester was asked to speak six emotion instructions
(Happy, Sad, Hello, Goodbye, Hug, and Love) silently.

Figure 2b, c shows the spectra and envelopes of the
recorded sEMG signals from the three muscle channels
when the tester spoke the action instructions (Back and
Left). Similarly, the recorded spectra and envelopes of
the sEMG signals for the emotion instructions (Good-
bye and Love) are depicted in Fig. 2d, e. The other
sEMG signals for the action instructions (Front, Right,
and Stop) and emotion instructions (Sad, Hello, Happy,
and Hug) are shown in the supplementary information,
Figs. S4 and S5.
The procedure of the proposed silent speech recognition

method based on the wavelet decomposition and pattern
recognization is illustrated in Fig. 3. First, the sEMG signals
from three muscle channels are recorded by the epidermal
tattoo-like patch. Then, features are extracted from the
sEMG signals, which have been preprocessed to construct a
data set. The data set is then divided into training and
testing sets, in which the training set is used to train the
linear discriminant analysis (LDA) model in the training
stage and the testing set is input to the trained model to
evaluate the identification performance. According to the
evaluation results, feature and preprocessing methods are
applied to optimize the LDA model again. Finally, the
original sEMG signals are translated into control com-
mands for HMI.
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Fig. 2 The intelligent silent speech recognition system for human–machine interface via sEMG. a Illustrations of the epidermal sEMG tattoo-
like patch worn by a tester (three channels), and flow diagram of the sEMG system for intelligent silent speech recognition with a real-time voice
synthesizer as the human–machine interface. b–e sEMG signals and their envelopes recorded from three muscle channels when the tester spoke the
words “Back”, “Left”, “Goodbye”, and “Love”, respectively.
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The implementation of the wavelet decomposition and
pattern recognition for data processing can be further
elaborated, as shown in Fig. 4. In the surroundings of the
target muscle, the common mode noise and 50-Hz power
line interference will reduce the quality of the sEMG
signal from the targeted muscles. The other high-
frequency noise within the biophysical bandwidth comes
from movement artifacts that change the skin–electrode
interface, muscle contraction or electromyographic
spikes, respiration (which may be rhythmic or sporadic),

electromagnetic interference, and so on. Therefore, noise
reduction is necessary before feature extraction. In this
work, the wavelet transform method is used for noise
reduction because of its great time–frequency localization
characteristics and unique advantages in addressing
nonstationary time-varying signals. In addition, the
wavelet transform can better preserve the abrupt part of
the signal and useful information while filtering out the
signal noise.
The original sEMG signal {s} is decomposed by the db4

wavelet; after four levels of decomposition, five-set coef-
ficients are produced: {d1, d2, d3, d4, a4}. a4 is the low-
frequency coefficient segment. d1, d2, d3, and d4 are the
high-frequency coefficient segments. The waveforms of
the wavelet coefficients a4 and d4 are similar to those of
the original signal {s}, which means the wavelet coeffi-
cients {d4, a4} contain the most valid information of the
original signal.
The obtained wavelet coefficients are processed by three

different threshold quantization functions, i.e., fixed
threshold denoising, default threshold denoising, and soft
threshold denoising, and then the signal is reconstructed.
As shown in Fig. 5a–d, the default threshold denoising
and soft threshold denoising can preserve the active
ingredients of the sEMG from 50 to 200 Hz, which is the
effective frequency bandwidth of sEMG. With the intro-
duction of two quantitative indicators, the SNR and root
mean square error (RMSE), as the criteria to pass judg-
ment on the denoising effect, soft threshold denoising
shows a better SNR (20.87 ± 1.47 dB) and lower RMSE
(16.82 ± 2.1 μV), as shown in Fig. 5e, f. In the feature
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extraction process, a feature vector with a length of ten is
constructed by extracting the maximum and singular
values from each wavelet coefficient {a4, d4}, extracting
the four-order autoregressive (AR) model coefficients, and
selecting the first two cepstral coefficients to characterize
each trial.
In this study, 150 feature vector sets were recorded from

the five action instructions, and 180 feature vector sets
were recorded from the six emotion instructions (each
instruction for 30 trials). Tenfold cross-validation was

applied. Ninety percent of the feature vector sets were
used for the training of the LDA, with the others used for
testing. Figure 5g, h shows the accuracy comparison of
pattern recognition by using different features. The
average accuracy of pattern recognition by using cepstral
coefficients as feature vectors is lower than that using
other features in both the action and emotion instruc-
tions, which indicates that cepstral coefficients do not
apply to this experiment. Hence, in this study, the AR
model coefficients and the maximum and singular values
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of the wavelet coefficients were combined to construct a
feature vector, aiming to reduce its dimensions.
The accuracies of the five action and six emotion

instructions from the three individual channels and the
combined channel are depicted in Fig. 6a, b. The results
show that the average accuracy of the action instructions
(Front, Back, Left, Right, and Stop) of the combined
channel can reach up to 89.6 ± 0.6% and that the best
accuracy of a single channel is 80.9 ± 0.9%. The average
accuracy of the emotion instructions (Happy, Sad, Hello,
Goodbye, Hug, and Love) of the combined channel can
reach up to 92.7 ± 0.5%, and the best accuracy of a single
channel is 81.9 ± 0.6%. Figure 6c, d shows the visualization
of features from the sEMG of the six emotion and five
action instructions. The detailed accuracies of these three
muscle channels are presented in Tables S2 and S3
(Supplementary Information). It can be seen from the
figure that the ABD muscle channel achieves higher
accuracy in terms of the action instructions than do the
other two channels, while the ZYG muscle channel shows
the best accuracy in terms of the emotion instructions
among the three channels. This result may be due to the
individual differences in terms of the muscle group and
the pronunciation habit of the tester during silent speech.
It is obvious that an increase in the number of channels
can increase the accuracy. However, considering that an
increase in the number of channels is at the expense of the
comfort of the testers, we select the sEMG of the ABD
channel (for action instructions) and the ZYG channel

(for emotion instructions) as the control signal sources for
the later HMI process.

Human–machine interface
These sEMG signals are binned into discrete commands

using the LDA classification algorithm. The accuracy of
this classifier can then be visualized utilizing a confusion
matrix (Fig. 7a), in which the columns and rows represent
the predicted class and the actual instructions (“actual
class”), respectively. As in the figure, the five action
instructions correspond to distinct commands: Front,
Back, Left, Right, and Stop. As an example, the success
rate for the Front command is 100% for 50 trials. The
overall accuracy of all five classifications is 77.6%. The five
action instructions control the intelligent car with regard
to five different motions, i.e., Front: “move forward”, Back:
“move backward”, Left: “turn left”, Right: “turn right”, and
Stop: “stop moving”. As demonstrated in Fig. 7b, the
movement of the intelligent car can be successfully con-
trolled in this manner. The specific demo video can be
found in the supplementary information (Movie S1).
Similarly, the accuracy of the emotion instructions can

be visualized by a confusion matrix (Fig. 8a). As shown in
the figure, the six emotion instructions correspond to
distinct commands: Happy, Sad, Hello, Goodbye, Hug,
and Love. The success rate for the command “Hello” is
94% for 47 trials. The overall accuracy of all six classifi-
cations is 83.6%. The six emotion instructions were syn-
thesized and broadcasted simultaneously by a Bluetooth
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speaker. As depicted in Fig. 8b, the voice synthesis of the
Bluetooth speaker can be successfully controlled in this
manner (the vignettes at the top left indicate the mouth
types when the tester spoke the six different emotion
instructions). The specific demo video can be found in the
supplementary information (Movie S2).
In addition, it may be slightly insufficient to express

emotions simply by relying on simple voice synthesis for
people who have lost their voice. Therefore, we created a
virtual character to represent the patient that could pro-
nounce the patient’s words and make some body move-
ments to better express their motions. As shown in Fig. 9,
when the tester spoke “hello” silently, the virtual animated

character would raise his hand to express the intention to
shake hands. Then, the virtual animated character would
make a goodbye gesture when the tester spoke “goodbye”.
Finally, the virtual animated character would bounce to
express joy and cry while hiding his face to express sad-
ness when the tester spoke “happy” and “sad”, respec-
tively. The specific demo video can be found in the
supplementary information (Movie S3).

Conclusions
In summary, an imperceptible epidermal sEMG tattoo-

like patch is developed to monitor sEMG signals gen-
erated by the muscles of the face and the jaw. The
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action instructions from the ABD channel.
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epidermal sEMG electrodes manufactured by the MEMS
process combined with a sterile wound dressing provide
excellent flexibility and viscosity to adapt to the strain of
skin. This tattoo-like patch shows excellent performance
in recording the sEMG of three muscle channels when a
tester speaks silently. The collected signals are processed

by wavelet decomposition and a machine-learning
algorithm to identify the action and emotion instruc-
tions of the tester. The results indicate that the average
accuracy of the action instructions (Front, Back, Left,
Right, and Stop) from the combined channel can reach
up to 89.6% and that the best accuracy of a single
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channel is 80.9%. For the emotion instructions (Happy,
Sad, Hello, Goodbye, Hug, and Love), the average
accuracy of the combined channel can reach up to 92.7%,
and the best accuracy of a single channel is 81.9%. In the
future, such flexible and functional tattoo-like patches
will have great potential in intelligent speech recognition
and voice synthesis, which is of great importance to help
patients who have lost their voice to express their
intentions by an HMI, such as wheelchair control, a
human–robot interface, virtual reality interaction, etc.
The device also offers expansion of the potential appli-
cation to artificial throat and healthcare monitoring. In
the future, thinner and more integrated electronics
patches will show great potential in medical treatment,
biomonitoring, sensing, etc.

Experimental section
Fabrication of the epidermal sEMG electrodes
The fabrication process began with the preparation of

a glass substrate to facilitate the delamination of elec-
trode patterns. It was followed by spin-coating poly-
dimethylsiloxane (PDMS, 100 μm in thickness) onto the
temporary substrate (mixed at a 10:1 ratio, 3000 rpm for
30 s, at 110 °C for 2 h) and exposed to oxygen plasma to
enhance the vitality of the surface. A thick layer of PI
(2.4 μm in thickness) was made for the protective layer
(2000 rpm for 60 s, at 150 °C for 4 min and at 210 °C for
1 h). Then, a thick layer of Cu (400 nm in thickness) was
deposited by electron beam evaporation onto the PI. The
electrode and interconnect structure were defined by
photolithography and etching (CH3COOH:H2O2:H2O=
1:2:10). Then, a second PI layer (2.4 μm in thickness) and
silicon oxide layer (SiO2, 200 nm in thickness) were used
to cover the entire structure. Next, photolithography,
reactive ion etching (RIE), and oxygen plasma etching
were conducted to pattern the layers of PI in a geometry

matched to the metal traces and exposed the sEMG
electrodes and connection pads (20 Sccm O2, 80 mT,
200W for 60min). The residue SiO2 mask was removed
by using buffered oxide etchant (BOE, 1:20). Finally, the
wafer was soaked in dilute hydrochloric acid (HCl, 3%
concentration) for 30 s and cleaned by flowing water to
remove the copper oxide layer.

Wavelet decomposition
Continuous sampling of the continuous signal f(t) can

yield the corresponding discrete signal f(n) (n= 0, 1, ……
N–1). The wavelet transform is defined as

Wf ðj; kÞ ¼ 2�
j
2

XN�1

n¼0

f ðnÞψð2�jn� kÞ

where ψð2�jn� kÞ is the wavelet function and Wf(j, k) is
the wavelet coefficient. The wavelet transform is imple-
mented by the Mallat algorithm as follows:

Sf ðjþ i; kÞ ¼ Sf ðj; kÞ�hðj; kÞ
Wf ðjþ i; kÞ ¼ Wf ðj; kÞ�gðj; kÞ

Accordingly, the refactoring formula is

Sf ðj� i; kÞ ¼ Sf ðj; kÞ�ĥðj; kÞ þWf ðj; kÞ�ĝðj; kÞ

where h(j, k) denotes the low-pass and high-pass filters
corresponding to the scaling function, g(j,k) denotes the
low-pass and high-pass filters corresponding to the
wavelet function Ψ (x), and “*” implies conjugation.

Experiments on human subjects
All experiments were approved by the human protec-

tion program at Soochow University.

Hello Goodbye Happy Sad

Hello

Happy Sad

Goodbye

Fig. 9 Flowchart of the augmented reality (AR) interaction via sEMG signals recorded using the epidermal sEMG tattoo-like patch.
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