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Machine Learning Glove Using Self-Powered Conductive
Superhydrophobic Triboelectric Textile for Gesture
Recognition in VR/AR Applications

Feng Wen, Zhongda Sun, Tianyiyi He, Qiongfeng Shi, Minglu Zhu, Zixuan Zhang,
Lianhui Li, Ting Zhang,* and Chengkuo Lee*

The rapid progress of Internet of things (IoT) technology raises an imperative
demand on human machine interfaces (HMIs) which provide a critical linkage
between human and machines. Using a glove as an intuitive and low-cost
HMI can expediently track the motions of human fingers, resulting in a
straightforward communication media of human–machine interactions. When
combining several triboelectric textile sensors and proper machine learning
technique, it has great potential to realize complex gesture recognition with
the minimalist-designed glove for the comprehensive control in both real and
virtual space. However, humidity or sweat may negatively affect the
triboelectric output as well as the textile itself. Hence, in this work, a facile
carbon nanotubes/thermoplastic elastomer (CNTs/TPE) coating approach is
investigated in detail to achieve superhydrophobicity of the triboelectric textile
for performance improvement. With great energy harvesting and human
motion sensing capabilities, the glove using the superhydrophobic textile
realizes a low-cost and self-powered interface for gesture recognition. By
leveraging machine learning technology, various gesture recognition tasks are
done in real time by using gestures to achieve highly accurate virtual
reality/augmented reality (VR/AR) controls including gun shooting, baseball
pitching, and flower arrangement, with minimized effect from sweat during
operation.
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1. Introduction

Wearable electronics have drawn tremen-
dous interest from the academic commu-
nity as revealed by increasing research ef-
fort in this area.[1–10] Among them, epi-
dermal electronics (e.g., E-skin) based on
polymer substrate, as an important cate-
gory of wearable electronics, have been in-
vested with significant effort to develop
skin-like biochemical monitoring patch,[11]

physical signal sensing (e.g., pressure map-
ping) system[12,13] and miniaturized elec-
tronics incorporated epidermal array.[14] Be-
sides, many works have been conducted
to develop textile-based wearable electron-
ics by leveraging screen printing,[15] ink-
jet printing,[16] functionalization[17–21] and
direct adhesion.[22,23] They are used in di-
versified applications such as healthcare,
smart home and human–machine inter-
faces (HMIs).

The new era of the internet of things
(IoT) is emerging owing to artificial intel-
ligence and 5G technologies. Hence, wear-
able HMIs are experiencing an impera-
tive requirement for human–machine in-
teraction in IoT applications.[24–30] Glove,
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as a daily used wearable item, fitting human fingers well and
matching with the operation logic of the brain, is a perfect carrier
for the realization of HMIs.[31,32] As a promising material, the
textile is widely used for diversified HMI applications due to its
unique characteristics of softness, conformability and wearable
convenience.[33–36] There have been a few works reported HMIs
based on capacitive, resistive and triboelectric mechanisms. C.
Boutry et. al.[37] designed a capacitive sensor array in pyramid
microstructures for robotic hands to discriminate normal and
tangential forces. S. Sundaram et al.[38] proposed a tactile knitted
glove assembled with 548 resistive sensors to achieve the signa-
ture recognition of human grasp, showing a great potential of
using a glove to realize highly accurate object manipulator. How-
ever, complicated system design and data processing may restrict
their broadened applications in human machine interactions
since they need a large number of sensors to capture compre-
hensive information for human/robotic hands. In numerous
scenarios, glove-based HMIs can perfectly meet the needs of
control even equipped with several sensors, which is so called
minimalist design. Accordingly, S. Choi et al.[39] proposed an in-
tuitive control interface involving 3 resistive sensors distributed
on 3 fingers of the glove to perform VR shooting game, indicat-
ing a simple HMI solution. Similarly, K. Suzuki et. al.[40] used 9
carbon nanotube (CNT)-based resistive strain sensors as compo-
nents of a textile-based glove for the real-time finger joint motion
detection. Nevertheless, the reported capacitive and resistive
glove-based HMIs require an external power supply to maintain
sensor operations and cannot achieve the perception of complex
gestures without advanced signal analysis methods such as ma-
chine learning. Emerged energy harvesting techniques, such as
piezoelectric[41–45] and triboelectric,[38,46–49] promote the advance-
ment of power-compatible and self-powered wearable HMIs by
scavenging ubiquitous mechanical energy from human motions
to mitigate battery dependence.[50–52] Triboelectric nanogener-
ator (TENG),[53–66] owing to its unique advantages of simple
working principle, broadened choice of materials, easy fabrica-
tion, lightweight and low cost, can be an optimal solution for
diversified applications, such as healthcare,[67–72] sensing,[73–76]

and self-powered wearable HMIs.[28,77–79] In the past few years,
triboelectric glove-based HMIs become popular to enable expedi-
ent detection of human hand gestures leading to intelligent inter-
action between human and machine. For example, X. Pu et. al.[80]

developed a joint motion triboelectric quantization sensor to op-
erate robotic hands via human gestures by counting signal peaks.
On the other hand, by leveraging the threshold of amplitude, a
car control with adjustable speed was realized by using triboelec-
tric glove-based HMI to measure the finger bending degree.[32]

Although the amplitude and number of peaks of triboelectric
signals are important indexes for triboelectric HMIs to achieve
interactive communication between human and machines,[81]

human motions related triboelectric signals have much subtle
information that cannot be distinguished by naked eyes or be
simply differentiated using signal amplitude or peak number.[82]

That is, complex gestures cannot be recognized by only depend-
ing on triboelectric amplitude or peak number. The rapid devel-
opment of HMIs calls for an effective and continuous solution
to realize a more comprehensive and complicated signal analy-
sis and recognition. Machine learning from Artificial Intelligence
(AI) has a great potential to achieve the functionality through Ta
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Figure 1. a) Schematic diagram of diversified applications that can be enabled by the developed superhydrophobic triboelectric textile. The man model is
reproduced with permission from Freepik.com (https://www.freepik.com/). bi) Fabrication process of the superhydrophobic textile (i.e., positive layer),
bii) The SEM image of fibers of superhydrophobic textile and biii) the enlarged view. c) Configuration of the superhydrophobic textile TENG. d) The
image of the superhydrophobic textile TENG held by a tweezer, showing its flexibility. e) The triboelectric mechanism of two structures.

readily analyzing signals from multiple channels. As an emerg-
ing technology for extracting subtle differences and processing
multichannel signals, machine learning is showing its momen-
tum in delicate signal analysis and accurate recognition.[83] Re-
cently, distinct gait characteristics,[84] keystroke dynamics,[85–87]

and finger motions[88] enable identity recognition or gesture
recognition by leveraging machine learning to analyze individual
behaviors or habits. For example, Zhong Lin Wang’s group[89] re-
ported triboelectric keyboard interfaces augmented by machine
learning to recognize typing samples of different people. Besides,
X. Liang et. al.[88] used different types of data sources from re-
sistive sensors and radar to realize intelligent gesture recogni-
tion but needing an external power supply. Differentiated from
the abovementioned works, low-cost and self-powered glove in-
terfaces based on TENG are developed for complex gesture recog-
nition with the help of machine learning. Since finger motions
contain tremendous information concerning the triboelectric sig-
nals of various gestures, both simple and complex gestures can
be recognized as long as appropriate training process is carried
out. The combination of machine learning with low-cost and self-
powered gloves explores a new possibility of a universal platform
for the recognition of complex gestures compared with previous
works,[12,32,37–40,80,90–92] which is indicated in Table 1.

Triboelectric textile glove has been demonstrated in many
HMIs to address power consumption and wearability issues.[93]

However, humidity is considered as a major limitation for TENG
due to charge dissipation, decreasing the triboelectric output

and inducing a large amplitude variation.[94,95] On the other
hand, the textile itself commonly exposes to sweat during op-
eration, which may contribute to output deterioration of textile-
based TENGs.[96] To ease these issues, M. Zhu et al.[1] reported
a smart hybrid sock involved piezoelectric sensor as a refer-
ence which was not affected by sweat. Recently, endowing tex-
tile hydrophobic property is attracting research interest indicated
by many works.[97–99] Until now, researchers normally employ
chemical modification,[100,101] waterproof package,[102] and mim-
icking hydrophobic microstructure to fulfill the superhydropho-
bicity requirement.[103,104] However, mimicking hydrophobic mi-
crostructure may not be suitable for large-scale fabrication due
to the complex manufacturing restriction. Extra packaging does
not make the textile itself waterproof but depends on other ma-
terials. Hence, a scalable and facile chemical coating method to
functionalize textile with hydrophobic property would be desir-
able since this kind of method is low-cost and especially making
the textile itself hydrophobic.

Herein, the pristine textile is transformed into superhydropho-
bic one (Figure 1a) by using a facile, scalable, and cost-effective
coating method. Basically, the superhydrophobic textile is used
to scavenge biomechanical energy from human motion as well
as to monitor human exercise. Furthermore, using a glove-based
HMI by integrating the superhydrophobic textile, the recogni-
tion of complex gestures is achieved by training finger mo-
tion signals with machine learning. The accuracy of recogni-
tion is just slightly deteriorated from 99.4% to 96.9% in sweat
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condition owing to the superhydrophobic capability of the device.
Finally, 3D VR/AR applications including gun shooting, baseball
pitching, and floral arrangement are achieved by gesture recog-
nition based on the glove-based HMI.

2. Hydrophobic Textile Fabrication and Material
Optimization

The water contact angle (CA) over 150° is generally used to char-
acterize the superhydrophobic surface which extensively exists
in nature such as lotus leaf[105,106] and leg of water-strider.[107]

Carbon nanotubes (CNTs), intrinsically conductive 1D mate-
rial, could endow wearable substrate conductivity as well as tai-
lored microstructure. Meanwhile, thermoplastic elastomer (TPE)
holds hydrophobic nature and could generate tunable hydropho-
bic composite microstructure with CNTs,[108] which provides a
possibility to create a superhydrophobic surface on triboelectric
textile for mitigating humidity and sweat issues.

A facile spray coating method is adopted to fabricate a smart
superhydrophobic textile for energy harvesting, human motion
sensing, and HMIs applications with a minimized sweat effect.
As shown in Figure 1bi, the prepared CNTs/TPE solution is
spray-coated onto the pristine polyester textile. After solvent evap-
oration in the drying process, the CNTs/TPE composite is re-
tained on the textile surface. With a subsequent ethanol etching
process, a superhydrophobic textile is obtained. The correspond-
ing SEM image of final superhydrophobic textile is depicted in
Figure 1bii and enlarged view of individual fiber surface is shown
in Figure 1biii. For negative triboelectrification layer, it is ac-
quired by pouring Ecoflex onto the lotus leaf mold to duplicate
the hydrophobic microstructure and then peeling off as shown
in Figure S1 in the Supporting Information. Figure 1c presents
the assembled textile TENG in which the superhydrophobic tex-
tile works as the positive triboelectrification layer as well as the
electrodes. The photograph of the assembled TENG that the size
of it is 4 cm × 4 cm held by a tweezer is shown in Figure 1d,
which indicates its flexible, soft, and thin characteristics that are
well fitted with regular clothes for wearable applications. With the
simple triboelectric mechanism of two structures given in Fig-
ure 1e, the contact-separation stimulus will induce charges flow-
ing in the external circuit and hence the mechanical energy can
be transformed into electricity.

Since TPE is of vital importance for the hydrophobic property,
we first investigate the appropriate content of TPE in CNTs/TPE
solution for a better waterproof performance. The decision of op-
timized TPE content is made based on several aspects including
triboelectric performance, hydrophobicity, conductivity, and me-
chanical robustness. With an increased TPE content from 0 to
120 mg, Figure 2a–c shows the highest triboelectric open-circuit
voltage Voc (72 V) and short circuit current Isc (1 µA) in the TPE
content of 60 mg. Further increasing TPE content, excessive TPE
induced continuous film gradually covers CNTs. Corresponding
SEM images (Figure S2, Supporting Information) of increased
TPE content clearly show the gradual formation of TPE film and
CNTs covering. From the facet of the hydrophobic property, a first
CA increase and the following decrease are observed in Figure 2d
with the largest CA at 60 mg TPE. With appropriate TPE con-
tent (i.e., optimum CNTs/TPE ratio), the hydrophobic composite

micro-/nanostructure may experience most suitable growth sur-
rounding or atmosphere and leading to the largest CA.[85] With
the help of large CA, the water droplet is difficult to reside at the
textile surface as shown in Video S1 (Supporting Information).
Considering the superhydrophobic textile serving as electrodes,
conductivity investigation under increased TPE content is sum-
marized in Figure 2e. Remarkable rise of sheet resistance can be
seen when TPE content is over the 60 mg threshold due to the
gradual cover of conductive CNTs by excessive TPE. The slightly
decreased CNTs exposure is responsible for the lightly increased
sheet resistance before the dramatical resistance increase caused
by superfluous insulator TPE. According to the kinetics of mate-
rials, the free energy barrier of the formation of a liquid nucleus
on surfaces can be expressed as[109]

ΔG = 𝜋𝜎ls𝛾
∗

[
2 − 3 cos 𝜃 + (cos 𝜃)3]

3
(1)

where 𝜎 ls is the liquid-solid interfacial energy, 𝛾* is the critical
radius, and 𝜃 is the contact angle. To reduce the variables, linear
terms 𝜎 ls and 𝛾* are considered as constant for simplification.
Thus, the contact angle 𝜃 makes the difference in the free energy
barrier. Meanwhile, the polynomial fitting of the contact angle
with the content of TPE is expressed as in terms of the experi-
mental result in Figure 2d

𝜃 =
∑4

i=0
aiC

i (2)

where ai is the coefficient, C is the content of TPE. Combined
(1) with (2), the relationship between free energy barrier and
the content of TPE is obtained as shown in Figure S3a in the
Supporting Information marked in pink. Higher free energy bar-
rier makes the liquid difficult to nucleus at the superhydropho-
bic surface leading to less charge dissipation and better TENG
performance.[103] On the other hand, the sheet resistance of su-
perhydrophobic textiles (Figure 2e) increases as the content of
TPE increases, hence the conductivity of prepared textiles de-
creases (blue line in Figure S3a in the Supporting Information).
Higher conductivity contributes to better TENG output. Overall,
the two factors free energy barrier and conductivity jointly de-
termine the TENG performance. Hence, there is an optimized
content of TPE that shows best TENG performance in the whole
material system (Figure S3b, Supporting Information).

Although an increased content of TPE negatively contributes
to the conductivity of the electrode in Figure 2e, it serves as the
protection layer of CNTs to avoid exfoliation of electrode material
caused by repetitive mechanical loading. Thus, Figure 2f shows
an increased retention rate of Voc with increased TPE content
after 5000 cycles loading. The saturation is achieved when the
TPE exceeds 60 mg since a good protection has been formed with
60 mg TPE. From all results mentioned above, 60 mg TPE could
be an optional choice in terms of desirable triboelectric property,
hydrophobicity, conductivity, and durability. Such optimization
characterization of TPE content will be the basis of further anti-
humidity capability exploration. Consequently, Figure 2g shows
a slower descending in triboelectric output in which the textile is
treated with the optimum TPE concentration compared with pris-
tine textile. The superhydrophobic textile possesses better anti-
humidity ability where the degree of Voc retention remains at
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Figure 2. The basic characterization and optimization of TPE content. a) The Voc, b) Isc output, and c) their dependence on TPE content. d) The contact
angle, e) sheet resistance, and f) retention rate of Voc after 5000 cycles of mechanical loading varies with TPE content. g) The degree of remained Voc
with increasing RH from 35% to 85% of pristine textile and superhydrophobic textile, indicating the humidity resistance capability of each textile. The
real-time output voltage of textile h) without and i) with superhydrophobic treatment under increased RH from 35% to 62%. (The untreated textile is
nonconductive. Therefore, the commercialized conductive textile is attached on the back of it to serve as the electrode.)

22.3% in high humidity atmosphere (relative humidity (RH) =
85%) while the output of pristine textile is almost zero in the
same condition. The introduction of superhydrophobic surface
endowed by composite micro-/nanostructure relatively mitigates
adverse effects on textile TENGs. The mechanism of superhy-
drophobicity maintaining the triboelectric performance can be
expressed from 2 aspects. First, the superhydrophobic interface
makes water difficult to generate thin films on the rough micro-
/nanostructure of CNTs/TPE composite (Figure S4a,b, Support-
ing Information) leading to stronger water repellency as shown in
Figure S4c in the Supporting Information.[110] Thereby, the adhe-
sion ability of the water droplets on the micro-/nanostructure is
weaker than that of the pristine surface.[111,112] Second, the rough
surface of CNTs/TPE composite has the advantage of large spe-
cific surface area that enhances the triboelectric effect. Further-
more, the superhydrophobic textile can quickly recover from a
high humidity environment with a recovery time of 20.75 s which
is 7 times shorter than the pristine textile (recover time is 144
s) as shown in Figure 2h,i. When textile TENG escapes from

a high humidity atmosphere to the initial environment, quick
water molecules desorption from superhydrophobic surface in-
duces quick recovery due to higher energy barrier.[108,113,114] Gen-
erally, the universal hydrophobic treatment provides a solution to
address the issue of triboelectric output susceptible to humidity.

3. Biomechanical Energy Harvesting

Realizing energy harvesting from daily wearable garments pro-
motes wearable electronic system integration with the prospect of
all-in-one e-textile. Using textiles to scavenge energy from human
motion has been extensively investigated in many works. Shen
et al. reported a humidity-resisting TENG for high-performance
biomechanical energy harvesting.[115] This work preliminarily in-
vestigated the effect of humidity on the performance of proposed
hydrophobic TENG. Y. Lai et al.[102] used fabric-based TENG to
harvest energy from raindrop, wind and human motion. The wa-
terproof package made fabric-based TENG insusceptible to water

Adv. Sci. 2020, 7, 2000261 2000261 (5 of 15) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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and hence direct energy harvesting from raindrop was realized.
However, the fabric itself did not possess waterproof capability
but rely on the extra package. Generally, efficient energy harvest-
ing based on textile itself remains a challenge due to the humidity
issues, especially in high-humidity ambient.

Hence, we use superhydrophobic textiles with the dimension
of 8 cm × 8 cm to harvest biomechanical energy from daily hu-
man activities. First, the dependence of voltage output on force
and humidity are calibrated by standard weights to provide steady
and controllable force. As the force increases, the voltage out-
put increases first and then saturates at around 10 V when 30
N is applied. The slope (i.e., sensitivity) of force–voltage calibra-
tion curve is 0.4 V N−1 (Figure 3a). To demonstrate the humidity-
resistant capability of the proposed superhydrophobic textile, Fig-
ure 3b indicates the effect of RH on the voltage output of the
pristine textile and the superhydrophobic counterpart. The tex-
tile without hydrophobic treatment experiences a dramatic de-
crease in output as RH goes higher. It almost drops to zero when
RH ranges from 57% to 76%. However, superhydrophobic textile
TENG remains 50% of its original output even as RH reaches to
76%. Expectedly, the superhydrophobic textile TENG may oper-
ate better than the pristine group, especially in the high-humidity
atmosphere. Then the superhydrophobic textile TENG is used to
scavenge the energy from elbow bending (Figure 3c), hand tap-
ping (Figure 3e) and walking/running (Figure 3g) in high RH
environment (76%) by placing the device at different body parts
to verify its efficient energy harvesting capability. Figure 3d shows
detailed waveforms for different elbow bending degree of 30°,
60°, and 90°. A larger bending angle makes output increase ow-
ing to a larger contact area and force. Similarly, a higher voltage
can be seen when the force of hand tapping and walking speed
increase as shown in Figure 3f,h. For the power curve measure-
ment, the maximum power density of treated textile (i.e., super-
hydrophobic textile) is 0.18 W m−2 in running case while 0.05 W
m−2 is for untreated textile (i.e., pristine textile) given in Figure 3i.
Meanwhile, capacitor charging curves are presented in Figure 3j.
Among three human motions, running generates the largest volt-
age output as well as the highest charging speed for both treated
and untreated textiles. However, charges of pristine textile are
taken away by water molecules from the fabric surface at a much
faster speed until charges are exhausted while composite micro-
/nanostructure of superhydrophobic textile is beneficial for the
rapid desorption of water vapor to prevent deep electrical perfor-
mance deterioration. Therefore, a more efficient energy harvest-
ing with treated textile is achieved to support the low-power con-
sumption electronics such as an electronic watch and calculator
with 2 min charging as shown in Figure 3k.

4. Human Motion Monitoring

Textiles are frequently exposed to sweat in the ambient due
to daily wearing. Endowing textile hydrophobic property is re-
quired to mitigate the effect of sweat on triboelectric output. Al-
though there are several works that investigated the humidity-
resisting property of hydrophobic textile TENG, the anti-sweat
performance was rarely discussed. Besides, in the case of out-
door activities with garment wearing, physical indexes including
motion steps, speed, and burned calories are always interesting

parameters for sports-related applications. Correspondingly, cur-
rent commercial products such as Mi band, apple watch, and Fit-
bit are designed to collect such sport indexes. These wearable
electronics, however, are mainly based on rigid semiconductor
fabrication techniques and not conformable with the curvature
of the human body. Hence, a hydrophobically functionalized tex-
tile with good conformability is prospective to realize stable and
anti-interfered human motion sensing.

Firstly, the anti-sweat capability of proposed superhydropho-
bic textile is investigated. The device with the size of 6 cm × 6 cm
is sewed onto the garment underneath the armpit. One layer lo-
cates at underarm while another layer is sewed onto the cloth at
the chest side as shown in Figure 4a. The friction between two
triboelectrification layers could generate voltage peaks which are
in different time intervals when people swing their arms in dif-
ferent motions such as walking, fast walking and running. Under
the condition of 1 h exercise, the simulated sweating curves are
depicted in the first column of Figure 4b, and detailed measure-
ment and calibration can be found in the Experimental Section.
Artificial sweat is sprayed to superhydrophobic textile every 5 min
in 1 h measurement. As shown in the second column in Fig-
ure 4b, the superhydrophobic textile TENG experiences a much
slower output descending as sweat volume increases. Nearly 85%
of output remains even after 1 h slow walking while the output
retention rate of untreated textile TENG dramatically decreases to
around 30% due to its hygroscopic nature as shown in the third
column of Figure 4b. Figure 4ci presents the voltage output of real
1 h slow walking of a female adult. The treated textile, slightly de-
creasing to 92% of maximum output, is superior to untreated tex-
tile since its output is reduced to 34%. Similarly, the output reten-
tion rate of treated textile remains 84% and 80% in fast walking
and running cases respectively as shown in Figure 4di and Fig-
ure 4ei. Secondly, inspired by commercial smartwatch or wrist
band with the function of measuring motion steps, speed and
burned calories, we demonstrate these functions of our wearable
superhydrophobic TENG. From the enlarged view (Figure 4cii)
of Figure 4ci, the time interval of two positive/negative peaks can
be extracted by the algorithm and hence the corresponding real-
time motion speed can be read with a known step distance 37 cm
as shown in Figure 4ciii. Besides, motion steps are obtained by
counting output peaks. By involving the empirical formula of
burned calorie calculation,[116] burned calories are also displayed
in the MATLAB interface as shown in Figure 4civ. Similarly, cases
of fast walking and running are demonstrated in Figure 4d,e, re-
spectively. The result indicates that proposed superhydrophobic
textile TENG has a good anti-sweat performance which is highly
desirable for human motion monitoring without obvious output
degradation in the sweating circumstance, especially in the con-
dition of strenuous exercise.

5. Gesture Recognition in VR/AR Applications

The glove is a frequently used wearable textile item in daily life.
The low-cost glove-based HMI equipped with triboelectric sen-
sors can fulfill requirements of self-powered control.[80] Here, we
fabricate a glove-based HMI with the superhydrophobic textile
TENG sensors distributed on the individual fingers of the glove to
demonstrate a VR shooting game control. The sensors on gloves
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Figure 3. The biomechanical energy harvesting of the superhydrophobic textile TENG. a) Calibration curve of output voltage against force applied by
standard weights. b) The real-time output voltage under increased relative humidity. c) The schematic diagram of device attached on human elbow to
harvest the elbow bending energy. d) The output voltage with bending angle of 60°, 90°, 120°. e) The schematic diagram of energy harvesting based on
hand tapping, f) the output voltage with small, medium and large force. g) The schematic diagram of energy harvesting based on walking and running.
h) The output voltage with slow walking, fast walking and running. i) The power curves of elbow bending, hand tapping, running by using treated textile
and untreated textile. j) The charging curves of elbow bending, hand tapping, and running. k) The photographs of powering an electronic watch and
calculator using the stored electrical energy in a 10 µF capacitor by biomechanical energy harvesting.
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Figure 4. The human exercise monitoring. a) The schematic diagram of human exercise monitoring system with the calculation capability of moving
steps, velocity, distance, and burned calories. The man model is reproduced with permission from Freepik.com (https://www.freepik.com/). b) The
calibration curves of output voltage on sweat volume with slowing walking, fast walking, and running based on treated textile and untreated textile. The
output voltage of 1 h slowing walking fast walking and running with treated (red line) and untreated textile (blue line). The c–ei) output voltage, c–eii)
time interval, c–eiii) instantaneous velocity, and c–eiv) the display interface of calculated steps, distance, and burned calories with c) slow walking, d)
fast walking, and e) running.

are in single-electrode mode if there is no special statement (Fig-
ure S5, Supporting Information). Besides, the dependence of
voltage output on finger bending degree is depicted in Figure S6
in the Supporting Information. As shown in a schematic diagram
of control in Figure 5a, each sensor channel is connected to Ar-
duino for data acquisition with the sensor response time ≈100 ms
(Figure S7 and Table S1, Supporting Information). Through se-
rial port control, Python can process acquired data in a real-time
manner and send a command to Unity based on TCP/IP com-
munication. A shooting game control, including grabbing the
gun, loading the gun and shooting, is achieved by 3 distinct sig-
nal patterns. First, middle, ring, and little fingers bend to make
superhydrophobic textile contact with Ecoflex, which is defined
as grabbing the gun with three negative peaks in the signal pat-
tern (Figure 5b). The virtual hand in Unity responds to the cor-

responding order and grabs the gun as shown in Figure 5ci. In
the second stage, the sensor in the thumb is excited by left-hand
press to trigger loading action as shown in Figure 5cii. Finally,
index bends for shooting. The corresponding signal and screen-
shot are presented in Figure 5b and Figure 5ciii, respectively. A
detailed video demonstration can be found in Video S2 (Support-
ing information). By such a demonstration, it is proved that the
simple gesture recognition can be a choice for two or more states
control.

Triboelectric signals have much subtle information that can-
not be distinguished by naked eyes or be simply differentiated
by signal amplitude or peak number. As an emerging technique
for extracting subtle differences, machine learning has been used
in triboelectric signal pattern analysis.[71] Triboelectric signals
from human fingers contain abundant hints of many similar and

Adv. Sci. 2020, 7, 2000261 2000261 (8 of 15) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.advancedsciencenews.com www.advancedscience.com

Figure 5. The demonstration of shooting game, which is based on the amplitude of output signals. a) The schematic diagram of the control system. b)
Signal patterns of grabbing, loading gun, and shooting. c) The corresponding screenshot of grabbing, loading gun, and shooting in VR space of Unity.

complex gestures where the difference in the appearance of the
signal is hardly distinguished in a manual method. Thus, we
demonstrate a VR baseball scenario based on 3 similar pitching
ball gestures recognition. As the flow chart shows in Figure 6a,
the triboelectric signal from glove will be obtained by Arduino
MEGA 2560 with 8 integrated circuits of amplifier. The convo-
lutional neural network (CNN) in Python will recognize gestures
and give a corresponding order to Unity through TCP/IP commu-
nication. The process and parameters for constructing the CNN
model can be found in Table S2 in the Supporting Information
and Figure 6b. The signal from each sensor is recorded with 200
data points (5 sensors in total) and 200 samples are collected for
each gesture where 120 samples used for training (60%), 40 sam-
ples used for validation (20%), and 40 samples used for testing
(20%). As can be seen, signal patterns for 3 gestures of throw-
ing the ball, including palm ball, curved ball and knuckle ball,
are very similar in terms of signal appearance (Figure 6c). Af-
ter the training process in the CNN model, a high recognition
accuracy 99.167% is achieved as depicted in Figure 6d. After 50
training epochs, the accuracy is almost 98.3% as shown in Figure
S8 in the Supporting Information. Such a high accuracy provides
a great potential for real-time control based on gesture recogni-
tion of similar signal patterns through machine learning. Fig-
ure 6ei–iii show screenshots of using 3 pitching ball gestures to
control the virtual hand in Unity. Detailed Video S3 in the Sup-

porting Information can be found in supplementary materials.
This demonstration shows the feasibility of using machine learn-
ing to achieve highly accurate gesture recognition with similar
signal patterns and real-time control in virtual space.

The abovementioned gestures use less than 10 fingers. Fur-
thermore, recognition of more complex gestures involving 10 fin-
gers is demonstrated to study the universality of the glove-based
HMI for various gesture recognition. It aims at building a uni-
versal interface or platform for various gestures, in which ges-
tures involve either 10 fingers or less than 10 can be applicable.
To first verify the advantage of the superhydrophobic glove, the
accuracy for gesture recognition based on gloves with treated and
untreated sensors is compared when sweat appears. In the train-
ing sample collection process, each of 10 sensors has 200 data
points recorded per action to train the model for recognition. For
each gesture, 400 samples are collected for training (60%), val-
idation (20%) and testing (20%). Here same CNN structure is
used as shown in Figure 6b except the input size becomes 10*200
(10 sensors, 200 data points for each sensor) and the final output
size becomes 4 for four gestures. In Figure 7a, four gestures us-
ing 10 fingers are respectively defined as ‘watering,’ ‘rotation,’
‘lighting,’ and ‘plucking’ for following flower arrangement in AR
space. In the condition without sweat, signal patterns of these
four gestures from untreated and treated gloves are presented
in Figure 7b. Each gesture employs signals from all fingers and

Adv. Sci. 2020, 7, 2000261 2000261 (9 of 15) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.advancedsciencenews.com www.advancedscience.com

Figure 6. The demonstration of baseball game scenario with machine learning. a) The flow chart for gesture recognition and control. b) The structure
of CNN model. c) The signal patterns of 3 gestures. d) The confusion matrix for 3 common gestures of pitching ball. e) The photographs of 3 gestures
(left), and corresponding screenshot of using gestures to achieve VR control in Unity (right).

occupies 10 channels. A high accuracy (around 99%) of recogni-
tion for both groups is achieved as shown in Figure 7c,d. How-
ever, under sweat condition (sweat weight: 0.43 g), the untreated
glove experiences a dramatic decrease in the signal amplitude,
leading to a signal appearance change (Figure 7e) and conse-
quently lowering the accuracy to 92.1% (Figure 7f). The treated
group remains 45% of the original output (Figure 7e) and desir-
able accuracy (96.9%, Figure 7g). Generally, the untreated group
exposes to large amplitude decrease, inducing signal amplitude
almost compromised to zero. This changes the overall shape of
signal patterns and reduces the occupied signal channel num-
ber. The optimized CNN model cannot recognize anymore un-
less parameters for CNN are reoptimized with newly collected
data samples under specific sweat conditions. By contrast, the
superhydrophobicity of treated group maintains the output at a
recognizable level in the sweating atmosphere. It helps to avoid
the endless effort of collecting a large quantity of data samples
under different sweat conditions.

After the compared trial of untreated and treated gloves, the
benefit of superhydrophobicity is indicated. A flower arrange-
ment in AR space is conducted based on four aforementioned
gestures plus another seven gestures. Except ‘watering,’ ‘rota-
tion,’ ‘lighting,’ and ‘plucking,’ another seven gestures involv-
ing less than 10 fingers are added for interesting AR flower
arrangement application including ‘switching,’ ‘picking flower
(right hand),’ ‘release (right hand),’ ‘picking flower (left hand),’
‘release (left hand),’ ‘triming,’ and ‘stop’. Photographs of these
eleven gestures are shown in Figure 8a. Their corresponding sig-
nals are summarized in Figure 8b. Here, 200 data samples of

each gesture are obtained for training (60%), validation (20%)
and testing (20%). After the training process in the CNN model,
average accuracy for gesture recognition can reach up to 95.23%
as depicted in the confusion matrix of Figure 8c. Based on such
highly accurate recognition, a real-time AR flower arrangement is
demonstrated by wearing the glove-based HMI. Next, the proce-
dures of arranging flowers are described. As shown in Figure 8d,
first, users wear gloves to switch in the AR space to choose a
wanted flower and then pick the flower to flowerpot with rotat-
ing to appropriate visual angle (Figure 8dI–VI). Three flowers
are picked for demonstration (repeating the steps in Figure 8dI–
VI for three times). Following the leaf trimming process, water-
ing and light exposure are performed to make flowers bloom and
grow (Figure 8dVII–X). A ‘stop’ signal is used for terminating the
watering and lighting. Finally, all the flowers are plucked up (Fig-
ure 8dXI). When the user makes these gestures, virtual flowers
in the AR space will be controlled to perform corresponding ac-
tions. It should be noted that the signal of ‘switching’ is composed
of negative peaks for contact and positive peaks for separation,
and the successful recognition depends on the whole contact-
separation cycle. Comparably, the signals of other gestures only
consist of negative peaks or positive peaks. Thus, in Figure 8dI,
there are two images for ‘switching’ to show the intact gesture
while one image is for other gestures as shown in Figure 8dII–
XI. Meanwhile, the detailed AR demonstration is shown in Video
S4 (Supporting Information).

In order to clearly identity the uniqueness of this novel glove-
based HMI, the previous works are summarized in Table 1.
Finger bending degree, pressure and strain are popular and
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Figure 7. The illustration of superhydrophobic glove for better accuracy under sweat condition of wearer. a) Photographs of four gestures with similar
signal patterns. The signal patterns of untreated and treated glove b) without sweat and e) with sweat. Without sweat, the confusion matrix for c) untreated
glove and d) treated glove. With sweat, the confusion matrix for f) untreated glove and g) treated glove, showing that the glove with superhydrophobic
textile maintaining a high accuracy even in a sweating condition.

interesting parameters for human hand related motion monitor-
ing. First, among the listed 3 mechanisms commonly used for
the flexible/stretchable electronics development, the triboelectric
effect is a desirable solution for the realization of self-powered
sensors while another 2 mechanisms require external power sup-
ply. Second, most of reported works realize gesture recognition
based on the difference of signal amplitude and number of peaks
that may contain limited information and cannot help achiev-
ing the recognition of complex gestures without the assistant of
advanced analysis tool (e.g., Machine learning). Third, in gen-
eral, large number of sensors could provide more abundant and
accurate information to achieve comprehensive gesture recog-
nition. But this approach increases the complexity of fabrica-
tion and data processing. Overall, with the help of machine
learning as glove can perceive complex gestures with mini-
mal number of self-powered sensors for the first time. Mov-
ing forward, glove-based HMI combined with machine learn-
ing, such a universal platform, has the prospect to achieve
more complex and comprehensive control by involving more
gestures.

6. Conclusion

The polyester textile is converted into a superhydrophobic one
for energy harvesting, human motion sensing, and self-powered
HMI with minimized sweat or humidity effect by using a facile
and cost-effective CNTs/TPE coating manufacturing method.
The superhydrophobic textile experiences a quick recovery from
a high-humidity environment with the recovery time of 20.75 s
which is 7 times shorter than the pristine textile (144 s) as well as
threefold boosted triboelectric performance. The power density
of superhydrophobic triboelectric textile to scavenge biomechan-
ical energy from human activities (0.18 W m−2) is 4 times higher
than that of pristine textile (0.05 W m−2) in high-humidity at-
mosphere. With anti-sweat capability, the superhydrophobic tex-
tile enables human exercise monitoring without obvious out-
put voltage deterioration. The voltage output remains 80% with
minimized sweat effect even after 1 h exercise. Furthermore, a,
low-cost, self-powered, intuitive glove-based HMI with proposed
superhydrophobic triboelectric textile sensors is developed. By
leveraging machine learning, a minimalist design with each
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Figure 8. The AR demonstration of flower arrangement based on complex gesture recognition using machine learning. a) The photographs of eleven
gestures. b) Signal patterns of eleven gestures. c) The confusion matrix of gesture recognition. d) The corresponding screenshot of eleven gestures in
AR space of Unity.

finger containing only one triboelectric sensor can perform
recognition of complex and similar gestures by using glove-
based HMI. Benefited by the superhydrophobic characteristic,
the negative effect of sweat is minimized, leading to an improved
recognition accuracy (96.7%) compared to that without super-
hydrophobicity (92.1%). Finally, 3D VR/AR controls including
shooting game, baseball pitching, and floral arrangement are suc-
cessfully achieved using the developed glove interface, showing
its great potential in diversified VR/AR applications. Looking for-
ward, the combination of machine learning with low-cost, self-
powered and minimalist-designed gloves explores a new possi-
bility of a universal platform for various recognition tasks of com-
plex gestures.

7. Experimental Section
Preparation of CNTs/TPE Solution and Spray Coating: 60 mg CNTs was

fully dispersed in 200 mL cyclohexane followed by 2 h ultrasonication. The

content of CNTs was fixed at 60 mg since it was used as electrode material.
Then different contents of TPE (0/10/30/60/90/120 mg) was dissolved in
prepared CNTs suspension with 2 h ultrasonication. In this way, a series of
CNTs/TPE suspensions with different TPE content were obtained for opti-
mization purpose. The spray coating process onto textiles was executed by
the spray coater (USI, PRISM 400). The air pressure for spraying was main-
tained at 45 psi, the distance between the spray-gun and the substrates
was≈10 cm, and the spraying speed was ≈ 0.5 cm s−1 to steadily con-
trol the spray coating process. Then samples are immersed in the ethanol
solution (purity: 99%) to etch the surface for 5 min.

The Fabrication of Assembled Superhydrophobic Textile TENG: The su-
perhydrophobic textile was used as positive triboelectrification layer as well
as the electrode. The pristine textile was used to encapsulate the triboelec-
tric layer. The microstructure Ecoflex was attached on superhydrophobic
textile electrode to fabricate negative layer. The encapsulation layer was
also pristine textile. Finally, these two layers were assembled together to
form a narrow-gap textile TENG

Calibration and Measurement of Output Curve Under Simulated Sweat
Condition: As a study shows,[117] an adult was at exercise with a sweat
rate of about 0.24 to 0.464 mg cm−2 min−1. 0.24, 0.352, and 0.464 mg
cm−2 min−1 are chosen for sweating simulation of slow walking, fast
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walking and running respectively. Since efficient contact area of device with
human body here was around 48 cm2, the amount of generated sweat at
specific device area ranges from 691 to 1336.32 mg in 1 h exercise. Artifi-
cial sweat was purchased and contained in 15, 20, and 30 mL spray bottles,
and each spray delivers 0.058 g, 0.084 g, and 0.11 g solution, respectively.
The bottle sprayed once every 5 min.

The Fabrication of Smart Glove: Ecoflex is coated on fingers of gloves
with drying 30 min in 80 °C oven. Then the superhydrophobic textile with
encapsulation layer was on the back of glove fingers in arch-shaped struc-
ture. The work mode of arch-shaped triboelectric sensors on gloves was
in single electrode mode. For the motivation of using sing electrode mode
in glove design, first, the two-electrode mode of sensors on glove will
generate 20 electrodes for 10 fingers in total that increases the fabrica-
tion complexity of glove and wearing burden due to increased conductive
wires. Second, in terms of sensors output amplitude of single-electrode
mode, it was effective for the analysis of machine learning, which was indi-
cated by the successful recognition of complex gesture in single-electrode
mode.

Measurements: The photos are taken by a digital camera (Canon EOS
70D). The SEM images are acquired from Hitachi S-4800 cold field emis-
sion SEM at an accelerating voltage of 5 kV. Open-circuit voltage and
short-circuit current measurement are performed by a Keithley Electrome-
ter (Model 6514). Other voltage measurements are carried out by a DPO-
5034B oscilloscope (Tektronix) with the normal 10 MΩ probe. A multi-
function digital four-probe tester (JG, ST-2258C) was used to measure the
sheet resistance of samples.

Study Participation: Prior to participation in the experiments, in-
formed consent was obtained from the volunteer in all experiments.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
F.W. and Z.S. contributed equally to this work. This work was supported by
HiFES Seed Funding-2017-01 grant (R-263-501-012-133) “Hybrid Integra-
tion of Flexible Power Source and Pressure Sensors” at the National Uni-
versity of Singapore; RIE 2020-AME-2019-Nanosystems at the Edge grant
(R-263-000-D67-305) at the National University of Singapore; Artificial In-
telligence (AI) Singapore Grand Challenge grant (AISG-GC-2019-002) “Ex-
plainable AI as a Service for Community Healthcare” at National University
of Singapore; The Science Foundation for Distinguished Young Scholars of
Jiangsu Province (BK20170008); and National Key R&D Program of China
(No. 2018YFB1304700).

Conflict of Interest
The authors declare no conflict of interest.

Keywords
gesture recognition, machine learning, superhydrophobic textiles, tri-
boelectric nanogenerators (TENGs), virtual reality/augmented reality
(VR/AR) controls

Received: January 21, 2020
Revised: February 22, 2020

Published online: June 9, 2020

[1] M. Zhu, Q. Shi, T. He, Z. Yi, Y. Ma, B. Yang, T. Chen, C. Lee, ACS
Nano 2019, 13, 1940.

[2] G. Shi, Z. Zhao, J. H. Pai, I. Lee, L. Zhang, C. Stevenson, K. Ishara,
R. Zhang, H. Zhu, J. Ma, Adv. Funct. Mater. 2016, 26, 7614.

[3] Z. Wu, Y. Wang, X. Liu, C. Lv, Y. Li, D. Wei, Z. Liu, Adv. Mater. 2019,
31, 1800716.

[4] G. Ge, Y. Lu, X. Qu, W. Zhao, Y. Ren, W. Wang, Q. Wang, W. Huang,
X. Dong, ACS Nano 2020, 14, 218.

[5] Z. Liu, Y. Ma, H. Ouyang, B. Shi, N. Li, D. Jiang, F. Xie, D. Qu, Y. Zou,
Y. Huang, Adv. Funct. Mater. 2019, 29, 1807560.

[6] W. Deng, T. Yang, L. Jin, C. Yan, H. Huang, X. Chu, Z. Wang, D. Xiong,
G. Tian, Y. Gao, Nano Energy 2019, 55, 516.

[7] C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin, Y. Zhang, Adv. Mater.
2019, 31, 1801072.

[8] T. Li, J. Zou, F. Xing, M. Zhang, X. Cao, N. Wang, Z. L. Wang, ACS
Nano 2017, 11, 3950.

[9] H. Guo, T. Li, X. Cao, J. Xiong, Y. Jie, M. Willander, X. Cao, N. Wang,
Z. L. Wang, ACS Nano 2017, 11, 856.

[10] Y. Yang, N. Sun, Z. Wen, P. Cheng, H. Zheng, H. Shao, Y. Xia, C.
Chen, H. Lan, X. Xie, ACS Nano 2018, 12, 2027.

[11] S. B. Kim, K. Lee, M. S. Raj, B. Lee, J. T. Reeder, J. Koo, A. Hourlier-
Fargette, A. J. Bandodkar, S. M. Won, Y. Sekine, Small 2018, 14,
1802876.

[12] Y. Gao, H. Ota, E. W. Schaler, K. Chen, A. Zhao, W. Gao, H. M. Fahad,
Y. Leng, A. Zheng, F. Xiong, Adv. Mater. 2017, 29, 1701985.

[13] S. Honda, Q. Zhu, S. Satoh, T. Arie, S. Akita, K. Takei, Adv. Funct.
Mater. 2019, 29, 1807957.

[14] S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez,
J. W. Chung, S. Niu, V. R. Feig, J. Lopez, Nature 2018, 555, 83.

[15] M. Parrilla, R. Cánovas, I. Jeerapan, F. J. Andrade, J. Wang, Adv.
Healthcare Mater. 2016, 5, 996.

[16] T. Carey, S. Cacovich, G. Divitini, J. Ren, A. Mansouri, J. M. Kim, C.
Wang, C. Ducati, R. Sordan, F. Torrisi, Nat. Commun. 2017, 8, 1202.

[17] W. He, C. Wang, H. Wang, M. Jian, W. Lu, X. Liang, X. Zhang, F. Yang,
Y. Zhang, Sci. Adv. 2019, 5, eaax0649.

[18] T. Lee, W. Lee, S. W. Kim, J. J. Kim, B. S. Kim, Adv. Funct. Mater. 2016,
26, 6206.

[19] H. Liu, Q. Li, Y. Bu, N. Zhang, C. Wang, C. Pan, L. Mi, Z. Guo, C. Liu,
C. Shen, Nano Energy 2019, 66, 104143.

[20] X. Tian, P. M. Lee, Y. J. Tan, T. L. Y. Wu, H. Yao, M. Zhang, Z. Li, K.
A. Ng, B. C. K. Tee, J. S. Ho, Nat. Electron. 2019, 2, 243.

[21] R. Wu, L. Ma, C. Hou, Z. Meng, W. Guo, W. Yu, R. Yu, F. Hu, X. Y.
Liu, Small 2019, 15, 1901558.

[22] B. Nie, R. Huang, T. Yao, Y. Zhang, Y. Miao, C. Liu, J. Liu, X. Chen,
Adv. Funct. Mater. 2019, 29, 1808786.

[23] S. Takamatsu, T. Lonjaret, E. Ismailova, A. Masuda, T. Itoh, G. G.
Malliaras, Adv. Mater. 2016, 28, 4485.

[24] T. Chen, Q. Shi, M. Zhu, T. He, Z. Yang, H. Liu, L. Sun, L. Yang, C.
Lee, Nano Energy 2019, 60, 440.

[25] S.-B. Jeon, S.-J. Park, W.-G. Kim, I.-W. Tcho, I.-K. Jin, J.-K. Han, D.
Kim, Y.-K. Choi, Nano Energy 2018, 53, 596.

[26] S. Jung, J. H. Kim, J. Kim, S. Choi, J. Lee, I. Park, T. Hyeon, D. H.
Kim, Adv. Mater. 2014, 26, 4825.

[27] S. Lim, D. Son, J. Kim, Y. B. Lee, J. Song, Adv. Funct. Mater. 2015, 25,
375.

[28] Q. Shi, C. Lee, Adv. Sci. 2019, 6, 1900617.
[29] K. Sim, Z. Rao, Z. Zou, F. Ershad, J. Lei, A. Thukral, J. Chen, Q.-A.

Huang, J. Xiao, C. Yu, Sci. Adv. 2019, 5, eaav9653.
[30] C. Wang, L. Dong, D. Peng, C. Pan, Adv. Intell. Syst. 2019, 1, 1900090.
[31] S. Chen, Z. Lou, D. Chen, K. Jiang, G. Shen, Adv. Mater. Technol.

2016, 1, 1600136.
[32] T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R.

Yuce, A. V.-Y. Thean, C. Lee, Nano Energy 2019, 58, 641.

Adv. Sci. 2020, 7, 2000261 2000261 (13 of 15) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.advancedsciencenews.com www.advancedscience.com

[33] J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu, C. Tao, X. Fan, Z. L.
Wang, Nat. Energy 2016, 1, 16138.

[34] W. Paosangthong, R. Torah, S. Beeby, Nano Energy 2019, 55, 401.
[35] J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida, M.-F. Lin, P. S. Lee, Nat.

Commun. 2018, 9, 4280.
[36] A. Yu, X. Pu, R. Wen, M. Liu, T. Zhou, K. Zhang, Y. Zhang, J. Zhai, W.

Hu, Z. L. Wang, ACS Nano 2017, 11, 12764.
[37] C. M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos, O.

Khatib, Z. Bao, Sci. Rob. 2018, 3, eaau6914.
[38] S. Sundaram, P. Kellnhofer, Y. Li, J.-Y. Zhu, A. Torralba, W. Matusik,

Nature 2019, 569, 698.
[39] S. Choi, K. Yoon, S. Lee, H. J. Lee, J. Lee, D. W. Kim, M. S. Kim, T.

Lee, C. Pang, Adv. Funct. Mater. 2019, 29, 1905808.
[40] K. Suzuki, K. Yataka, Y. Okumiya, S. Sakakibara, K. Sako, H. Mimura,

Y. Inoue, ACS Sens. 2016, 1, 817.
[41] C. Sun, Q. Shi, D. Hasan, M. S. Yazici, M. Zhu, Y. Ma, B. Dong, Y.

Liu, C. Lee, Nano Energy 2019, 58, 612.
[42] K. H. Koh, Q. Shi, S. Cao, D. Ma, H. Y. Tan, Z. Guo, C. Lee, Nano

Energy 2019, 56, 651.
[43] M. T. Todaro, F. Guido, L. Algieri, V. M. Mastronardi, D. Desmaële,

G. Epifani, M. De Vittorio, IEEE Trans. Nanotechnol. 2018, 17, 220.
[44] X. Chen, J. Shao, X. Li, H. Tian, IEEE Trans. Nanotechnol. 2016, 15,

295.
[45] M. Kandpal, V. Palaparthy, N. Tiwary, V. R. Rao, IEEE Trans. Nan-

otechnol. 2017, 16, 259.
[46] H. Wang, J. Wang, T. He, Z. Li, C. Lee, Nano Energy 2019, 63, 103844.
[47] Q. Shi, H. Wang, H. Wu, C. Lee, Nano Energy 2017, 40, 203.
[48] Q. Shi, H. Wang, T. Wang, C. Lee, Nano Energy 2016, 30, 450.
[49] H. Wang, Z. Xiang, P. Giorgia, X. Mu, Y. Yang, Z. L. Wang, C. Lee,

Nano Energy 2016, 23, 80.
[50] C. Hou, T. Chen, Y. Li, M. Huang, Q. Shi, H. Liu, L. Sun, C. Lee, Nano

Energy 2019, 63, 103871.
[51] Q. Shi, Z. Zhang, T. Chen, C. Lee, Nano Energy 2019, 62, 355.
[52] Q. Shi, C. Qiu, T. He, F. Wu, M. Zhu, J. A. Dziuban, R. Walczak, M.

R. Yuce, C. Lee, Nano Energy 2019, 60, 545.
[53] J. Bian, N. Wang, J. Ma, Y. Jie, J. Zou, X. Cao, Nano Energy 2018, 47,

442.
[54] F.-R. Fan, Z.-Q. Tian, Z. L. Wang, Nano Energy 2012, 1, 328.
[55] H. Guo, X. Pu, J. Chen, Y. Meng, M.-H. Yeh, G. Liu, Q. Tang, B. Chen,

D. Liu, S. Qi, Sci. Rob. 2018, 3, eaat2516.
[56] S. Li, W. Peng, J. Wang, L. Lin, Y. Zi, G. Zhang, Z. L. Wang, ACS Nano

2016, 10, 7973.
[57] G. Liu, J. Chen, Q. Tang, L. Feng, H. Yang, J. Li, Y. Xi, X. Wang, C. Hu,

Adv. Energy Mater. 2018, 8, 1703086.
[58] L. Liu, Q. Shi, J. S. Ho, C. Lee, Nano Energy 2019, 66, 104167.
[59] W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H.

Guo, C. Hu, Nat. Commun. 2019, 10, 1426.
[60] Y. Liu, N. Sun, J. Liu, Z. Wen, X. Sun, S.-T. Lee, B. Sun, ACS Nano

2018, 12, 2893.
[61] J. Wang, H. Wang, T. He, B. He, N. V. Thakor, C. Lee, Adv. Sci. 2019,

6, 1900149.
[62] J. Wang, H. Wang, N. V. Thakor, C. Lee, ACS Nano 2019, 13, 3589.
[63] Z. Wen, Y. Yang, N. Sun, G. Li, Y. Liu, C. Chen, J. Shi, L. Xie, H. Jiang,

D. Bao, Adv. Funct. Mater. 2018, 28, 1803684.
[64] Y. Xi, H. Guo, Y. Zi, X. Li, J. Wang, J. Deng, S. Li, C. Hu, X. Cao, Z. L.

Wang, Adv. Energy Mater. 2017, 7, 1602397.
[65] Z. Zhang, W. Gong, Z. Bai, D. Wang, Y. Xu, Z. Li, J. Guo, L.-S. Turng,

ACS Nano 2019, 13, 12787.
[66] H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng,

C. Chen, A. C. Wang, Z. L. Wang, Nat. Commun. 2019, 10,
1427.

[67] J. Wang, T. He, C. Lee, Nano Energy 2019, 65, 104039.
[68] S. Lee, H. Wang, W. Y. X. Peh, T. He, S.-C. Yen, N. V. Thakor, C. Lee,

Nano Energy 2019, 60, 449.

[69] S. Lee, H. Wang, J. Wang, Q. Shi, S.-C. Yen, N. V. Thakor, C. Lee,
Nano Energy 2018, 50, 148.

[70] F. A. Hassani, R. P. Mogan, G. G. L. Gammad, H. Wang, S. C. Yen,
N. V. Thakor, C. Lee, ACS Nano 2018, 12, 3487.

[71] F. A. Hassani, W. Y. X. Peh, G. G. L. Gammad, R. P. Mogan, T. K. Ng,
T. L. C. Kuo, L. G. Ng, P. Luu, S. C. Yen, C. Lee, Adv. Sci. 2017, 4,
1700143.

[72] H. Wang, G. Pastorin, C. Lee, Adv. Sci. 2016, 3, 1500441.
[73] H. Wang, H. Wu, D. Hasan, T. He, Q. Shi, C. Lee, ACS Nano 2017,

11, 10337.
[74] T. He, H. Wang, J. Wang, X. Tian, F. Wen, Q. Shi, J. S. Ho, C. Lee,

Adv. Sci. 2019, 6, 1901437.
[75] C. Chen, Z. Wen, A. Wei, X. Xie, N. Zhai, X. Wei, M. Peng, Y. Liu, X.

Sun, J. T. W. Yeow, Nano Energy 2019, 62, 442.
[76] X. Xie, Y. Zhang, C. Chen, X. Chen, T. Yao, M. Peng, X. Chen, B. Nie,

Z. Wen, X. Sun, Nano Energy 2019, 65, 103984.
[77] T. Chen, M. Zhao, Q. Shi, Z. Yang, H. Liu, L. Sun, J. Ouyang, C. Lee,

Nano Energy 2018, 51, 162.
[78] L. Dhakar, P. Pitchappa, F. E. H. Tay, C. Lee, Nano Energy 2016, 19,

532.
[79] T. Chen, Q. Shi, M. Zhu, T. He, L. Sun, L. Yang, C. Lee, ACS Nano

2018, 12, 11561.
[80] X. Pu, H. Guo, Q. Tang, J. Chen, L. Feng, G. Liu, X. Wang, Y. Xi, C.

Hu, Z. L. Wang, Nano Energy 2018, 54, 453.
[81] L. Xie, X. Chen, Z. Wen, Y. Yang, J. Shi, C. Chen, M. Peng, Y. Liu, X.

Sun, Nano-Micro Lett. 2019, 11, 39.
[82] W. Ding, A. C. Wang, C. Wu, H. Guo, Z. L. Wang, Adv. Mater. Technol.

2019, 4, 1800487.
[83] J. H. Han, K. M. Bae, S. K. Hong, H. Park, J.-H. Kwak, H. S. Wang,

D. J. Joe, J. H. Park, Y. H. Jung, S. Hur, Nano Energy 2018, 53, 658.
[84] Y. Han, F. Yi, C. Jiang, K. Dai, Y. Xu, X. Wang, Z. You, Nano Energy

2019, 56, 516.
[85] C. Wu, W. Ding, R. Liu, J. Wang, A. C. Wang, J. Wang, S. Li, Y. Zi, Z.

L. Wang, Mater. Today 2018, 21, 216.
[86] G. Zhao, J. Yang, J. Chen, G. Zhu, Z. Jiang, X. Liu, G. Niu, Z. L. Wang,

B. Zhang, Adv. Mater. Technol. 2019, 4, 1800167.
[87] J. Chen, G. Zhu, J. Yang, Q. Jing, P. Bai, W. Yang, X. Qi, Y. Su, Z. L.

Wang, ACS Nano 2015, 9, 105.
[88] X. Liang, H. Li, W. Wang, Y. Liu, R. Ghannam, F. Fioranelli, H. Hei-

dari, Adv. Intell. Syst. 2019, 1, 1900088.
[89] Y. Chen, Y. C. Wang, Y. Zhang, H. Zou, Z. Lin, G. Zhang, C. Zou, Z.

L. Wang, Adv. Energy Mater. 2018, 8, 1802159.
[90] R. Tutika, S. Kmiec, A. B. M. T. Haque, S. W. Martin, M. D. Bartlett,

ACS Appl. Mater. Interfaces 2019, 11, 17873.
[91] O. Atalay, A. Atalay, J. Gafford, C. Walsh, Adv. Mater. Technol. 2018,

3, 1700237.
[92] Y. Sun, Z. Du, Nanomaterials 2019, 9, 945.
[93] Y. C. Lai, J. Deng, S. L. Zhang, S. Niu, H. Guo, Z. L. Wang, Adv. Funct.

Mater. 2017, 27, 1604462.
[94] A. Chandrasekhar, V. Vivekananthan, G. Khandelwal, S. J. Kim, Nano

Energy 2019, 60, 850.
[95] J. Chen, W. Xuan, P. Zhao, U. Farooq, P. Ding, W. Yin, H. Jin, X. Wang,

Y. Fu, S. Dong, Nano Energy 2018, 51, 1.
[96] H.-J. Qiu, W.-Z. Song, X.-X. Wang, J. Zhang, Z. Fan, M. Yu, S. Ra-

makrishna, Y.-Z. Long, Nano Energy 2019, 58, 536.
[97] K. Y. Lee, J. Chun, J. H. Lee, K. N. Kim, N. R. Kang, J. Y. Kim, M.

H. Kim, K. S. Shin, M. K. Gupta, J. M. Baik, Adv. Mater. 2014, 26,
5037.

[98] A. Synytska, R. Khanum, L. Ionov, C. Cherif, C. Bellmann, ACS Appl.
Mater. Interfaces 2011, 3, 1216.

[99] J. Xiong, M. F. Lin, J. Wang, S. L. Gaw, K. Parida, P. S. Lee, Adv. Energy
Mater. 2017, 7, 1701243.

[100] D. Mullangi, S. Shalini, S. Nandi, B. Choksi, R. Vaidhyanathan, J.
Mater. Chem. A 2017, 5, 8376.

Adv. Sci. 2020, 7, 2000261 2000261 (14 of 15) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.advancedsciencenews.com www.advancedscience.com

[101] M. Sala de Medeiros, D. Chanci, C. Moreno, D. Goswami, R. V. Mar-
tinez, Adv. Funct. Mater. 2019, 29, 1970294.

[102] Y. C. Lai, Y. C. Hsiao, H. M. Wu, Z. L. Wang, Adv. Sci. 2019, 6,
1801883.

[103] Q. Zhou, K. Lee, K. N. Kim, J. G. Park, J. Pan, J. Bae, J. M. Baik, T.
Kim, Nano Energy 2019, 57, 903.

[104] K. Zhao, Z. L. Wang, Y. Yang, ACS Nano 2016, 10, 9044.
[105] W. Barthlott, C. Neinhuis, Planta 1997, 202, 1.
[106] R. Blossey, Nat. Mater. 2003, 2, 301.
[107] X. Gao, L. Jiang, Nature 2004, 432, 36.
[108] L. Li, Y. Bai, L. Li, S. Wang, T. Zhang, Adv. Mater. 2017, 29,

1702517.
[109] L. Zheng, R. Shafack, B. Walker, K. Chan, Nanomater. Nanotechnol.

2017, 7, 1.

[110] J. N. Wang, Y. Q. Liu, Y. L. Zhang, J. Feng, H. Wang, Y. H. Yu, H. B.
Sun, Adv. Funct. Mater. 2018, 28, 1800625.

[111] X. J. Huang, D. H. Kim, M. Im, J. H. Lee, J. B. Yoon, Y. K. Choi, Small
2009, 5, 90.

[112] M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho, L. Feng, L. Jiang, Macromol.
Rapid Commun. 2005, 26, 1805.

[113] W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Bar-
czewski, S. Walheim, A. Weis, A. Kaltenmaier, A. Leder, Adv. Mater.
2010, 22, 2325.

[114] F. Feuillebois, M. Z. Bazant, O. I. Vinogradova, Phys. Rev. Lett. 2009,
102, 026001.

[115] J. Shen, Z. Li, J. Yu, B. Ding, Nano Energy 2017, 40, 282.
[116] D. P. Swain, Sports Med. 2000, 30, 17.
[117] N. A. S. Taylor, C. A. Machado-Moreira, Extreme Physiol. Med. 2013,

2, 4.

Adv. Sci. 2020, 7, 2000261 2000261 (15 of 15) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


