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A B S T R A C T

Despite its great promise, neural interface has yet to substantially impact modern healthcare monitoring and
therapeutic interventions. However, considering the recent development of self-power solutions, data trans-
mission technologies, and artificial intelligence, neural interface has the potential to transform future clinical
applications. Together with the recent self-powered energy harvesting technologies, neural interfaces are
evolving towards fully implantable systems. Here, we first review the progress and current status of neural
interfaces, start from the well-established neuromodulation protocols and efforts to translational applications,
then move on to milestones of neural interface development, and end with the review on considerations and
requirements of active and inactive materials. With the knowledge of neural interface current status, we further
review implantable systems which are built on top of the neural interfaces. Particularly, we review well-es-
tablished powering solutions. Furthermore, we summarize the recent demonstrations of direct tissue stimulation
with self-powered energy harvesters in chronological order. In the end, we discuss the future opportunities and
challenges in the direction towards self-powered systems for healthcare monitoring and rehabilitation purposes.

1. Introduction

Luigi Galvani's discovery of electrically induced motor movements
laid the foundation for current knowledge of neural signaling [1],
moreover, started a new era of exploration into the decoding of neural
functionalities and further introducing of therapeutic interventions by
using electricity. Ever since 2005, when a single-component control
tool of microbial opsin genes safely conferred to neurons was firstly
demonstrated, optogenetics, yet another important toolkit using light,
has fueled the exploration and intervention of neural functionalities to
another level over the past decade [2,3]. For current neuroscience and
neuroengineering research, right in the center of the enabling tech-
nologies lies the emerging field of the neural interface, which comes in
direct connect with biological tissues to electrically and optically record
and interfere with neural functionalities [4–7]. Furthermore, we have
witnessed the recent convergence of neural interfaces with pharma-
cology, by combining drug delivery functions alongside the well-es-
tablished electrical and optical methods to empower the multi-

functional neural interfaces.
Neurological, neurodegenerative, psychiatric and neuromuscular

conditions, for example, epilepsy, Alzheimer disease, depressive dis-
order, and multiple sclerosis, respectively, cause a huge social and
economic burden on a global scale [8,9]. According to the Parkinson's
Foundation, in the United States alone, nearly one million people will
be living with Parkinson's disease by 2020, and the current combined
direct and indirect cost of Parkinson's disease is estimated to be nearly
$25 billion per year. These diseases have motivated the advance of
neurotechnology, to develop novel tools combining well-established
electrical and optical methods, pharmacology, and recent emerging
ultrasound and magnetic methods to achieve observational and inter-
ventional purposes. Immense initiatives and funding projects are
launched to support the fundamental research of neural mechanisms
and translational research for the diagnosis and intervention of the
diseases as well as brain-inspired intelligence technology, and examples
include the United States' BRAIN Initiative [10], The Human Brain
Project in Europe [11], China Brain Project [12], and Korea Brain
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Initiative [13].
Here, we review the progress and current status of neural interfaces.

Considering the versatile designs and wide applications, we first in-
troduce the examples of neural interfaces employed on different bio-
logical tissues, with emphasis on well-established neuromodulation
protocols and efforts to translational applications. Then, we move on to
review neural interface milestones in terms of the central nervous
system (CNS), peripheral nervous system (PNS), and muscle and organ
applications, respectively, in chronological order. We finish the review
on neural interface by discussing the considerations and requirements
of conductive and non-conductive materials, as well as the new mate-
rials that enable novel features, such as biodissovable, self-adhesive,
and stretchable.

From the perspectives of laboratory experiments and translational
applications, the desirable neural interfaces have evolved towards im-
plantable systems, to support long-term experimental observations,
healthcare monitoring, and therapeutic interventions. With the
knowledge of neural interface current status, we further review im-
plantable systems which are built on top of the neural interfaces.
Particularly, we review well-established powering solutions, which
used to be a bottleneck technology on the way of developing sustain-
able systems, and reveal the recent trend of emerging self-powered
solutions. Furthermore, we summarize the recent demonstrations of
direct tissue stimulation with self-powered energy harvesters in
chronological order. In the end, we discuss the future opportunities and
challenges in the direction towards self-powered systems for healthcare
monitoring and rehabilitation purposes.

2. Neural interface – protocols and translational applications

Electricity is the common language naturally spoken by various
levels of biological tissues. Furthermore, recent advances in optoge-
netics have expanded the capability of selective gene modification from
merely the cortex to various biological tissues, including the spinal
cord, the peripheral nerves [14,15], skeletal muscle tissues [16–18],
and cardiac tissue [19], providing an additional language for external
observation and artificial intervention. To adapt neural interfaces to
bidirectional communication with various biological tissues, there has
been intense research on the versatile neural interface designs, in terms
of three phases ranging from the preliminary research trials, well-es-
tablished observation/intervention protocols, to translational applica-
tions (Fig. 1 shows the examples of neural interfaces designed for var-
ious biological tissues).

With the ever-increasing knowledge of neural signaling mechanism,
electrical stimulation is becoming a powerful tool to treat the neuro-
logical, neurodegenerative, psychiatric and neuromuscular conditions.
Some well-established neuromodulation protocols include FDA-ap-
proval deep brain stimulation therapy for the treatment of Parkinson's
disease [20], epilepsy [21], and dystonia [22]. In addition, electrical
spinal cord stimulation is applied to restore walking in humans with
spinal cord injury [23,24]. Electrical recording from the brain has long
been employed to decode motor intentions to achieve movement con-
trol [25,26], and more recently, it is proven that brain recording can be
used to decipher complicated human speech [27]. Apart from these
well-established observation/intervention protocols, there is an emer-
ging trend of electroceutical, especially named for electrical stimulation
targeting at the autonomic nervous systems, including the cervical
vagus nerve, gastric vagus nerve, and sacral nerve [28,29]. Electro-
ceutical is considered as a substitute for conventional medicines, to
target specifically at the fine autonomic nerves by employing minia-
turized devices to deliver localized electrical therapy, and thus is also
named bioelectronic medicines. In 2013, pharmaceutical company
GlaxoSmithKline (GSK) initiated the research on electroceuticals, fol-
lowed closely in 2014 by the Electrical Prescriptions (ElectRx) program
at DARPA and the NIH Stimulating Peripheral Nerves to Relieve Con-
ditions (SPARC) initiatives. In 2016, Galvani Bioelectronics was formed

through a partnership between GSK, and technology company, Verily
Life Sciences, to specialize in the development of bioelectronic medi-
cines.

One step further from the well-established observation/intervention
protocols, some neural interface technologies have become successful
translational applications, including retinal prosthesis, cochlear im-
plant, and pacemaker. Cochlear implant represents the mature neural
interface technology for translational applications [30,31], which by-
passes the peripheral auditory system and electrically stimulates nerves
inside the inner ear. By 2018, worldwide recipients of cochlear implants
manufactured by Cochlear and Advanced Bionic have reached 450, 000
and 79,000 respectively. Another example of successful translational
applications is a retinal prosthesis, which involves the use of electrode
arrays surgically implanted on the retina to restore functions of the
damaged light-activated photoreceptor cells by directly stimulating the
retinal nerve cells with electrical pulses [32–34]. In 2015, the Argus® II
Retinal Prosthesis System became the first FDA-approval treatment for
individuals with severe Retinitis Pigmentosa. Starting from 2016, IRIS®
II Epi-retinal bionic vision system is going through clinical trials for
treatment of retinal dystrophies.

3. Neural interface – research roadmap

Biological tissues that are constituted of neurons or innervated by
nerves naturally communicate in the language of electricity. Thus,
certain diseases related to neural signaling in these biological tissues
can potentially be treated by employing neural interfaces to observe
and modulate the electrical signals. Structural design is of crucial im-
portance for neural interface development to target different biological
tissues. Central nervous system (CNS) and peripheral nervous system
(PNS) constitute the two major parts of the nervous system in verte-
brates. In addition, muscles innervated by nerves can also be targeted
by the neural interface. These biological tissues come in dramatically
different structures. The CNS consists of the brain and the spinal cord,
where the brain is soft and has a layered structure. The PNS consists
mainly of nerves, which are enclosed bundles of the long fibers or
axons, that connect the CNS to every other part of the body. Although
both are constituted of muscle tissue, skeletal muscles, and organs,
including heart, and bladder come in different structures. Application
on these different biological tissues represents different preference,
requirement, and limitation in terms of the neural interface design. The
delicacy of the biological tissues and the complexity of the neural sig-
nals need to be considered during the design of the neural interface.
Particularly, intimate localization can be of crucial importance for the
application of electrical, optical, or pharmacological solutions. Here,
we review the milestones of neural interface development in CNS, PNS,
skeletal muscles and organs respectively (Fig. 2).

3.1. Neural interface for central nervous system (CNS)

The tradeoff between selectivity and invasiveness is a major lim-
itation in CNS neural interface design [44,45]. For both recording and
stimulation purposes, high selectivity requires the intimate location of
the neural interface to the targeted biological tissue, which at the same
time inevitably increases the invasiveness. The brain tissue naturally
works as a low-pass filter, to allow only low-frequency electrical signals
to propagate further. Electrical recording from the scalp, dura, or the
pia can only capture low-frequency electrical signals propagated from
the deep brain tissue, while losing the high-frequency neural spikes that
encode the temporal and spatial firing information of individual neu-
rons. Thus, to record high-frequency neural spikes requires invasive
neural interface design, while surface EEG and ECOG can be used for
learning low-frequency oscillation information. The early neural in-
terface designs for recording purpose employed multiple-channel si-
licon probes, including Michigan probe and Utah electrode array (UEA)
[46,47]. Syringe injectable electronics emerged in 2015, as a novel
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invasive neural interface structure to reduce brain tissue damage [48].
More recently in 2017, 384-channel Neuropixels [39], the first fully-
integrated silicon CMOS digital neural probe, leads the development of
high-density invasive recording probes.

The tradeoff between selectivity and invasiveness also affects the
design of the neural interface for stimulation purposes. Intrinsically,
electric field tends to spread out in the brain tissue. Thus, electrical
stimulation delivered by electrodes implanted on the scalp, dura, or the
pia will spread out and have difficulty in targeting at a specific spatial
location. Considering the recent progress of applying temporally in-
terfering electric field for spatial location selectivity [49–51], im-
plantation of several electrode arrays on the scalp, dura, or the pia may
have improved spatial selectivity. In addition to surface electrode ar-
rays, novel designs of fiber-based penetration electrodes integrate
electrical, optical, and pharmacological functions, to enable selective
therapy delivery to targeted brain areas [52,53].

3.2. Neural interface for peripheral nervous system (PNS)

Similarly, the neural interface for PNS also faces the tradeoff be-
tween selectivity and invasiveness. The peripheral nerves contain af-
ferent sensory fibers and efferent motor fibers. Both afferent and ef-
ferent nerve fibers are grouped in fascicles surrounded by connective
tissue (epineurium, perineurium, and endoneurium) in the peripheral
nerves. Such nerve fiber grouping is based on their destinations instead
of their functions. In this way, nerve fascicles provide a topographic
organization to peripheral nerves. To selectively record or stimulate
specific nerve fibers requires the neural interface to penetrate the nerve
tissue and form intimate contact with nerve fibers. Yet, the neural in-
terface for PNS faces another challenge, and that is the small dimension
of the peripheral nerves, especially the autonomic nerves which are
largely concerned with functions not normally under voluntary control.

The small dimension of the peripheral nerves dramatically increases the
difficulty for neural interface design, as advanced micro-machined
fabrication technology is needed to achieve multiple channel neural
interface within small footage.

Three are two types of micro-machined PNS neural interface,
namely extra-neural interface and intra-neural interface. Extra-neural
electrodes are implanted to tightly surround the peripheral nerve, and
examples include flat-interface nerve electrode (FINE) [54], self-adap-
tive neural ribbon [38], pelvic nerve clip electrode [42], twining elec-
trodes using shape memory material [55]. The intra-neural interfaces
include intra-fascicular, penetration, and regenerative interface. Pene-
tration electrodes access individual nerve fibers for high selectivity, and
examples include transverse intrafascicular multichannel electrode
(TIME) [56], longitudinal intrafascicular electrode (LIFE) [57], slanted
Utah electrode array (SUEA) [58], and highly selective 3D spiked ul-
traflexible neural (SUN) interface [59]. Different from the conventional
penetration electrode, axon-guiding electrode, such as the SIEVE elec-
trode [60], aims at guiding and improving the nerve regeneration after
severe damage.

3.3. Neural interface for muscles and organs

As compared to the peripheral nerves where hundreds of nerve fi-
bers are tightly packed together, skeletal muscles generally are of larger
sizes and are easier to operate on. Another important fact is that ske-
letal muscles adapt better to external implantations, which reduces the
possibility of deteriorating the electrodes due to inflammatory reac-
tions. Both the larger size and better adaptation to external implanta-
tions make the geometric design of skeletal muscle electrodes easier as
compared to the peripheral nerve electrodes. The well-established
skeletal muscle electrodes fall in two categories, namely epimysial
electrode and intramuscular electrode. The epimysial electrode is

Fig. 1. Well established neuromodulation protocols and translational applications of neural interfaces. Neural interfaces can be widely applied to different biological
tissues, examples include retinal prosthesis [35], cochlear implant [36], cardiac pacemaker [37], peripheral nerve electrode [38], brain electrode [39,40], spinal cord
electrode [41], bladder implant [42], and muscle electrode [43].
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applied on the surface of muscles and fixed by suturing to the nearby
tissue and is preferably fabricated of PDMS to allow conformal adhesion
during muscle contractions [61,62]. The intramuscular electrode is
implanted into the muscle tissue, to access motoneurons deep in the
muscle tissue [43,63,64]. In addition to the skeletal muscles, cardiac
muscles also receive great research attention. By monitoring the cardiac
activities and delivering therapy when a cardiac abnormality occurs,
the neural interface can be an effective solution to cardiac diseases. The
recent cardiac patches come in stretchable material that wraps around
and deform with the heart, with integration of the ECG sensors, tem-
perature sensors, and electrical stimulation electrodes [37,65,66].

4. Neural interface – material aspects

The neural interface is the bridge connecting the biological tissue
and external electronics. In terms of recording, neural interfaces serve
to record bioelectrical signals from the biological tissue to obtain sen-
sory information or motor intentions. In terms of stimulation, neural
interfaces inject charge into the biological tissue to modulate biological
functions. The physical interaction between neural interface and bio-
logical tissue can be complicated, and this is an important consideration
when choosing the active electrode material. For the inactive electrode
material (e.g., insulating material), biocompatibility and biostability

are the important considerations. Here, we will discuss the criteria for
active electrode material and inactive electrode material. Then, we will
review the emerging materials that enable novel features, such as bio-
dissovable, self-adhesive, and stretchable (Fig. 3).

During stimulation and recording on the biological tissue, dis-
turbing electrical events can occur at the active electrode material
surface. For metal electrodes, electrons serve as the carriers. For the
biological tissue, cations and anions are the carriers. Because of the
different carriers, there is an interface between electrodes and tissue
where they interact with each other. This electrode-tissue interaction
can be capacitive, faradaic, or a combination of both capacitive and
faradaic, depending on the active electrode material properties. The
difference between capacitive and faradaic charge injection lies in
whether redox reactions happen. In terms of capacitive charge injec-
tion, there is no redox reaction. It works similarly as parallel plate ca-
pacitors, as electrons accumulate in the metal and the attracted cations
accumulate on the electrode surface, which forms a double layer
(Helmholtz fixed layer, and Goy-Chapman diffuse layer which is ne-
glected for well-conducting electrolytes). Electrodes made of materials
that only employ capacitive charge injection are named perfectly po-
larizable electrode. Perfectly polarizable electrodes are ideal for sti-
mulation because they will not corrode (electrode corrosion can happen
in faradaic charge injection). A capacitor is used to describe the

Fig. 2. Research roadmap of neural interfaces. (a) Milestones of CNS neural interface development [27,39,41,46–48,52,53,67–69]. (b) Milestones of PNS neural
interface development [38,42,54–60,70–73]. (c) Milestones of skeletal muscle and organ neural interface development [37,43,61–66,74]. (d) Structural design of
CNS, PNS, skeletal muscle, and organ neural interfaces.
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capacitive charge injection. In terms of faradaic charge injection, redox
reactions are involved. It seems like the electrons just flow into the
tissue from the metal electrodes, while the true physical process is that
the electrons are transferred into the tissue in redox reactions. Thus, a
resistor is used to characterize the faradaic charge injection. Electrodes
made of materials that only employ faradaic charge injection are named
perfectly non-polarizable electrode. Perfectly non-polarizable elec-
trodes are ideal for recording, because they show the same impedance
at all frequencies, so that not to induce filtering effect on signals of
different frequencies. Faradaic charge injection may cause electrode
corrosion, depending on whether the redox reaction is reversible.
Materials employing reversible redox reaction can also be used for
stimulation, and these materials often offer higher charge injection
capability as compared to pure capacitive charge injection materials,
which is desirable in stimulation.

The conventional active material is noble metal, such as platinum
and gold [75]. However, platinum and gold suffer from low charge
delivery capability, the electrodeposition method is developed to in-
crease the surface roughness by introducing conductive polymer
PEDOT-PSS and CNT [76,77]. In addition, shape memory alloy is de-
monstrated as an active material, to allow curling to tightly wrap

around the biological tissue at the same time of providing conductive
surface [78]. To allow simultaneous optogenetics observations together
with electrical stimulation, graphene is developed as an optically
transparent active layer [68]. Bioabsorbable active material including
magnesium and silicon oxide opens a possibility to future transient
electronics [71].

In addition to the consideration of electrode-tissue interaction, all
neural interfaces have to fulfill general requirements to become ap-
proved as a medical device: they must not harm the body and should
stay stable and functional over a certain life-time which is in most cases
in the range of decades [79]. To not harm the body, the electrode
materials need to be biocompatible. The biocompatibility can be con-
sidered in two aspects: surface biocompatibility (whether the material
is toxic to the tissue), and structural biocompatibility (whether the
material matches the mechanical properties of the tissue). All surgical
procedures will cause an inflammatory response. If the electrode ma-
terial fails to fulfill the biocompatibility requirement, the inflammatory
response will get worsen. The inflammatory response includes both
acute response and chronic response. Acute inflammation can be
characterized by the presence of erythrocytes, activated platelets,
clotting, and factors released from disrupted blood vessels [80–82].

Fig. 2. (continued)
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Fig. 3. Progress of neural interface active and inactive material development [53,67–69,71,72,76–78,83–87]

Fig. 4. Overview of the implantable system. Implantable system consists of four functional modules, including power source, data transmission, stimulation, and
sensing module.
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Once acute inflammation declines, the chronic response will initiate,
which can be characterized by the presence of both reactive astrocytes
and activated microglia that form a glial scar. These glial scars will
isolate the electrodes from the surrounding neural tissue, making it
more difficult to either stimulate the tissue or record signal. In addition,
the electrode materials need to be biostable to ensure long-term func-
tionality after implantation. In vitro soaking tests, for example, in
physiologic saline, Ringer's solution or cell culture media allow a first
approximation of the biostability of the materials and are often per-
formed at higher temperatures to accelerate the diffusion processes and
thereby their influence on aging and the mean time to failure.

Polymer materials have been widely explored for the applications of
neural electrodes. With considerations of biocompatibility and biost-
ability, well-established polymer materials include polyimide [83],
PDMS [83], Parylene [83], and SU-8 [84]. Compared to the rigid ma-
terials like silicon, these polymer materials match well with the tissue
mechanical properties, which help to reduce inflammatory reactions
caused by the implantation. Conventional silicon is engineered into
ultrathin silicon layers to explore dissolvability of the silicon-based
neural interface [84]. In addition, hydrogel is also employed as inactive
substrate material, rendering the properties of high stretchability to
allow accommodation to biological tissue movement [72]. Natural
polymer materials are also used as inactive substrates, such as silk,
which dissolves to enhance adhesion to the biological tissue surface
[69].

5. Implantable systems – overview

Moving forward, neural interfaces are evolving towards implantable
systems, to enable long term applications, including observational ex-
periments on animal models, and translational therapeutic solutions. As
shown in Fig. 4, a fully implantable system requires power source
(supply power through ultrasound, radio frequency, implanted battery,
or energy harvesters), data transmission (transmit power through ul-
trasound, radio frequency, or the wires), sensing modules (to record
electrical signals, pressure, temperature, or concentration of biomarkers
[88–90]), and stimulation modules (to deliver electrical/optical/mag-
netic/ultrasound/pharmacological treatment), to realize closed-loop
control. Take the well-established pacemaker as an example, a pace-
maker typically consists of a battery, a computerized generator, and
electrodes. The electrodes simultaneously serve two purposes, on the
one hand, they detect heart's electrical activity and send data through
the wires to the computer in the generator, on the other hand, they
deliver electrical stimulation to modulate and control abnormal heart
rhythms. Similar close-loop principle also applies to diabetes therapy,
which employs implantable continuous glucose monitor for blood glu-
cose level to control implanted insulin pumps for drug delivery, and the
on-going research targeting at vagus nerve stimulation to treat epilepsy,
which employs implantable pacemaker-like devices to monitor brain
activity patterns to detect seizures before they happen and deliver
electrical stimulation or drug to stop the seizure.

With the knowledge of neural interface current status, we will move
on to review the recent development and current status of power
source, which used to be a bottleneck technology in the implantable

Fig. 5. Progress of current available powering solutions, including ultrasound [92], electromagnetic [15], battery [117], biofuel [102], piezoelectric [112], and
triboelectric [111]. Summary of recent publications by searching for ‘TS=(“self-powered” AND implant*)’ in Web of Science.
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system development. We will focus on the recent emerging energy
harvester technology, and the novel demonstration of direct biological
tissue stimulation using energy harvesters.

6. Implantable systems – power source solutions

Since the introduction of the first cardiac pacemaker in 1958, bat-
teries have been the conventional solution for powering implantable
systems. Although batteries are reliable energy sources with high en-
ergy density, and despite the features of low power electrical stimula-
tion required by cardiac pacemakers, the cardiac pacemaker batteries
still suffer from limited lifetime, which ranges between 5 and 15 years,

and requires subsequent replacement. Besides the conventional bat-
teries, powering solutions fall into two main categories, namely wire-
less powering, and self-power energy harvesting (Fig. 5).

Electromagnetic (EM) and ultrasound are commonly used for
wireless power transfer [91]. EM power transfer can be generally
classified into two categories, namely non-radiative (near-field), and
radiative (far-field). Although EM power transfer is broadly used for
implanted device powering, it has difficulty in powering devices deep in
the body, as the electric or magnetic field (for near-field transfer) and
the electromagnetic beam (for far-field transfer) suffers from dramatic
decay in biological tissue. Another issue with EM power transfer lies in
the high requirement of coil requirement, as a slight coil misalignment

Fig. 6. Research roadmap of direct biological stimulation using piezoelectric/triboelectric energy harvesters [43,65,111,112,118–127]
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decreases the energy transfer efficiency. Recent efforts on mid-field
transfer show enhanced efficiency [15], however, it heavily relies on
the proper engineering of source current and phase distribution in the
antenna. In addition to EM power transfer, the recently reported ul-
trasonic energy transfer opens another possibility of wireless energy
supply [92]. As compared to EM radiation, ultrasonic energy attenuates
less in biological tissues and thus can achieve higher penetration
depths. Although ultrasound technologies have long been used for other
diagnostic and therapeutic purposes, the exploration of ultrasound en-
ergy supply for implanted devices has just started.

Besides wireless power transfer, self-power energy harvesting is
receiving immense research attention in recent years [93–95]. Although
wireless power transfer avoids the batteries' issues of limited lifetime
and replacement, EM and ultrasound power transfer still requires an
external energy source to supply power to the implanted device. A more
desirable energy supply solution will be to harvest energy from biolo-
gical tissues, whether it is due to body/organ motion or electrochemical
energy, to ultimately eliminate the requirement of external power
supply. Self-powered energy harvesting falls into three categories,
namely biofuel energy harvester, piezoelectric energy harvester, and
triboelectric energy harvester [96–101]. It is reported that implantable
glucose biofuel cell based on carbon nanotube/enzyme electrodes
generates sufficient power from a mammal's body fluids to act as the
sole power source for electronic devices, by utilizing glucose oxidase for
glucose oxidation and laccase for dioxygen reduction [102]. Different
from biofuel energy harvesters, piezoelectric [103–105] and tribo-
electric [106–110] energy harvesters turn mechanical deformation into
electrical power. By harvesting mechanical deformation energy from
the contraction of heart, brain and vagus nerve stimulation are de-
monstrated by piezoelectric and triboelectric energy harvesters, re-
spectively [111,112]. In recent years, there are emerging fully-im-
plantable triboelectric energy harvesters [113–116].

Recently, there is an emerging trend of implantable self-powered
energy harvesters. By searching ‘TS=(“self-powered” AND implant*)’
in Web of Science, which means search in title, abstract, and keyword
for both exact “self-powered” and implanted or implantable or im-
plants, we summarized the recent publication related to implantable
self-powered energy harvesters in Fig. 5. The popularity and commu-
nity of implantable self-powered energy harvesters gradually grew
throughout these years and increased faster in recent years.

7. Direct stimulation with self-powered energy harvesters –
current status

Piezoelectric and triboelectric energy harvesters can harvest me-
chanical energy generated by the contraction of organs and skeletal
muscles, and it is possible to apply the collected energy for therapeutic
purposes. In this way, a self-sustained system can be established as a
treatment to some diseases. There is tremendous progress in the de-
velopment of piezoelectric and triboelectric energy harvesters towards

the self-sustained system (Fig. 6). For piezoelectric energy harvesters, in
2014, John A. Rogers's team first demonstrated a fully implantable
system with conformal piezoelectric energy harvesting and storage
from motions of the heart, lung, and diaphragm to power commercial
cardiac pacemaker [65]. Later, in 2015, Keon Jae Lee's team reported
direct cortex stimulation with the electrical current output from the
piezoelectric energy harvester, which opens a new possibility to avoid
using the complicated circuits and achieve direct cortex stimulation
with the energy harvesters [112]. Furthermore, in 2019, Hao Zhang's
team further improved the performance of piezoelectric energy har-
vesting from the motions of the heart [118].

Unlike the piezoelectric-based self-sustained system which was first
developed as a fully implantable system in 2014 [65], only until re-
cently in 2019, Zhou Li's team first successfully demonstrated fully
implantable triboelectric-based self-sustained system which harvests
mechanical energy from heartbeat motion and powers commercial
pacemakers [119]. Despite the late report on the fully implantable
triboelectric-based self-sustained system, there has been tremendous
research achievement on exploring fundamental principles and various
rehabilitation applications of employing triboelectric energy harvesters.
In 2013, Haixia Zhang's team first demonstrated direct stimulation on
the frog's sciatic nerve to induce muscle contraction using a tribo-
electric energy harvester [120]. Then, Chengkuo Lee's team and Xu-
dong Wang's team individually demonstrated direct stimulation on the
sciatic nerve, the pelvic nerve, and the vagus nerve by using tribo-
electric energy harvester, providing the fundamental knowledge on
triboelectric stimulation efficiency and opened opportunities for wide
applications on the peripheral nerve neuromodulation [111,121–123].
In addition to the peripheral nerves, triboelectric energy harvesters
have been applied on cells [124], the cortex [125,126], to enhance
wound healing [127] by generating an electric field. Different from the
PNS and CNS with abundant neurons, skeletal muscles have much
fewer neurons innervating the bulk muscle fibers. As a result, skeletal
muscles have a much higher threshold as compared to the CNS and
PNS. In 2019, the first paper reporting successful direct skeletal muscle
stimulation using TENGs with μA-level output was published [43], and
different approaches for muscle stimulation efficiency improvement are
also reported [128,129], representing a step forward in the exploration
of fundamental knowledge on triboelectric stimulation efficiency.

8. Summary and future perspectives

As shown in Fig. 7, in the past decades, neural interfaces have de-
veloped towards high density, multiple functions, reduced biological
damage, and chronic implantation. Ranging from the commercializa-
tion of high-density brain probes, including the Neuropixels and Utah
Electrode Array (UEA), to the exploratory stretchable peripheral nerve
electrodes, neural interfaces have evolved for both CNS and PNS ap-
plications. In general, neural interfaces have evolved towards multiple-
channels for high-resolution recording and simulation, multiple-

Fig. 7. Future perspectives.
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functions with electrical/optical/pharmacological capabilities, and
more flexible and stretchable to reduce potential damage to biological
tissues. Parallel to the neural interface development, power source so-
lutions have also evolved in recent years, from the conventional battery
to wireless powering, and to the more recent self-power energy har-
vesters. Exciting progress is reported on direct stimulation using the
piezoelectric and triboelectric energy harvesters.

Looking forward, new challenges of system integration with other
functional modules and clinical translation are in front of the devel-
opment of future neural interfaces. Neural interfaces show huge po-
tential in healthcare monitoring of biomarkers, vital signs (body tem-
perature, pulse rate, respiration rate, blood pressure), and bioelectrical
signals. With the re-emerging of artificial intelligence into the scientific
and public consciousness, augmentation or even transformation of
neural interface applications is expected [130–132]. By integration
with self-powered technologies, data transmission, and artificial in-
telligence, a close-loop implantable system can be realized. In this way,
when a certain event is sensed, corresponding therapeutic intervention
(electrical/optical/pharmacological) can be delivered to relief or
eliminate the danger. Such event-triggered close-loop therapies opti-
mize the intervention dosage and reduce social and economic cost of
long-term monitoring of the patients. Although translating the research
results into clinical applications is not straightforward, yet applications
of neural interfaces have the potential to transform the conventional
healthcare monitoring and rehabilitation methods. We wish to see the
prosperous future development of self-powered intelligent systems for
healthcare monitoring and rehabilitation purposes.
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