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We investigate nanocavities in deterministic aperiodic pho-
tonic crystal (PhC) nanobeams. We reveal that even a single
nanocavity can support multiple mode-matched resonan-
ces, which show an almost perfect field overlap in the cavity
region. The unique property is enabled by the existence of
adjustable multiple bandgaps in deterministic aperiodic
PhC nanobeams. Our investigation may inspire related
studies on low threshold lasers, integrated nonlinear devi-
ces, optical filters, and on-chip sensors. © 2018 Optical
Society of America

https://doi.org/10.1364/OL.43.005407

Photonic crystal (PhC) nanobeams are compact on-chip one-
dimensional dielectric waveguides that confine light in the
transverse directions and have photonic bandgaps along their
propagation direction [1,2]. Conceptually similar to a Fabry–
Pérot cavity consisting of an optical cavity surrounded by two
Bragg mirrors, nanocavities in nanobeams can also be designed
deterministically and achieve high quality (Q) factors and
small mode volumes [3]. By merit of their unique properties,
nanocavities have been widely used in various areas such as
integrated nanoscale emitters [4,5], cavity optomechanics [6],
on-chip single particle sensing [7], and interconnects applica-
tions [8]. Besides, it has long been desired to achieve multiple
field-matched resonances in a single nanocavity for applications
such as multiple narrowband light sources and integrated non-
linear devices [4,9]. Traditionally, multimode nanocavities are
obtained by increasing the cavity length [10]. While the fun-
damental mode is confined at the center, field distribution of
the higher-order mode shifts away, making the overall field
overlap between different modes negligible. Another potential
alternative is to use both dielectric and air modes in a tapered
nanocavity; however, since dielectric and air modes are mainly

focused in the dielectric and air regions, respectively, the over-
lap between the two types of modes is also limited [7,11].
Modes with different orthogonal polarizations can be sup-
ported in a single nanocavity, but the different polarizations also
limit the field overlap [12]. Besides, coupled PhC nanocavities
show two energy-split modes, which also possess opposite sym-
metry [13]. Therefore, it still remains challenging to design a
nanocavity that can support multiple resonances with a signifi-
cant field overlap.

On the other hand, since the surprising discovery of quasi-
crystal by Shechtman in 1984, researchers have revealed that
nonperiodic structures own unique properties that may not
be possessed by periodic structures [14]. Although nonperiodic
structures, in general, lack translational symmetry, they can
possess a long-range order [15]. The uniqueness of the nonperi-
odic structure is revealed in a clearer way when we look at the
Fourier transform of the geometrical structures. In contrast to
periodic structures that show only one dominant Fourier com-
ponent, rich Fourier spectra have been found in nonperiodic
structures such as Fibonacci, Tue–Morse, Rudin–Shapiro,
and period-doubling sequences[14]. Another research direction
in nonperiodic PhC is deterministic design by simply summing
multiple periodic structures logically [16,17]. Although para-
sitic bandgaps are usually expected, this method provides an
intuitive way to design the structure in Fourier space. Since
the discrete components contribute to the formation of bandg-
aps, which further have an impact on resonances in a nanocav-
ity, we anticipate that the problem of multiple mode-matched
resonances in a single nanocavity could be solved using non-
periodic PhC nanobeams [14,18].

In this Letter, we report on the design of deterministic aperi-
odic PhC nanobeam structures which possess two discrete
adjustable components in Fourier space. Both simulation
and experimental results confirm the existence of two distinct
bandgaps in the nanobeams. This Letter suggests that there is
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no interference between the reflection phase responses from the
two bandgaps. Within each bandgap, the reflection phase
response changes almost linearly from π to 0 when the wave-
length sweeps from the shorter wavelength edge to the longer
wavelength edge, which agrees with the previous studies [18].
One resonance exists in each bandgap, the mode orders of
which are confirmed to be the same by (FDTD) simulation
and experimental results. The calculated field overlap efficiency
of the two resonances in the gap region is nearly perfect. We
envision that this Letter offers opportunities for integrated non-
linear optics, filters, multiple wavelength light sources, slow
light engineering, and on-chip sensing.

Figure 1 shows a schematic illustration of our design con-
cept. We first start from a single periodic structure, as shown in
Fig. 1(a). A nanobeam is plotted in gray with white rectangles
as etched holes with a period of P. Figures 1(b) and 1(c) show
the typical effective refractive index (neff ) profile and Fourier
components of a conventional periodic nanobeam, respectively.
Here we have assumed that holes can be regarded as perturba-
tion. Then the process of Fourier transform can be expressed by
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where IIIp�x�, rect�x�, and sinc�x� denote the comb function
with a period of P, rectangle function, and sinc function,
respectively. a is the width of the rectangle function. FT rep-
resents the Fourier transform operator. � denotes the operation
of convolution. Due to the existence of distinct Fourier

components in Fig. 1(c), a bandgap will appear at the edge
of the Brillouin zone in the dispersion, as shown in Fig. 1(d).
The width of the bandgap in Fig. 1(d) is proportional to the
intensity of the Fourier component in Fig. 1(c) [2]. After we
have been familiar with the case of a periodic PhC nanobeam,
we move to deterministic aperiodic PhC structure, as shown in
Fig. 1(e). Figures 1(f ) and 1(g) show the effective index profile
and calculated Fourier components, respectively. From
Fig. 1(g), we can obviously see two strong Fourier components,
which are related to the formation of two bandgaps, as illus-
trated in Fig. 1(h). The Fourier transform of the index profile
of an aperiodic PhC nanobeam is given by
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From both Fig. 1(g) and Eq. (2), we confirm that there are no
parasitic Fourier components, and the Fourier components are
just a simple summation of the two periodic structures.

As the first step, we design aperiodic nanobeams with multi-
ple adjustable bandgaps using commercially available FDTD
software (Lumerical). The width of the silicon nanobeam is
set to be 1.2 μm, and the thickness of the device layer is
500 nm. The holes are rectangles with a lateral length of
250 nm. Since the range of our laser source is limited, we have
intentionally designed narrow photonic bandgaps by shifting
holes away from the center of a nanobeam. The distance
between the center line of the nanobeam and the center of
the hole is 0.6 μm. The designed devices are then fabricated
on a commercial silicon-on-insulator wafer using standard elec-
tron beam lithography followed by reactive ion plasma etching.
Grating couplers are designed to couple light in and out of the
nanobeam, which has been reported in our previous work [19].
Figure 2(a) shows the numerical and experimental results for
aperiodic structures with two periods of 0.96 and 1 μm.
In the figure, we can see that there are two distinct bandgaps
covering from 3.79 to 3.82 μm and from 3.86 to 3.89 μm, and
simulated results match well with measured data. The band-
widths of the two photonic bandgaps are almost the same, since
the two arrays of holes are designed to possess the same size.
In Fig. 2(b), we experimentally demonstrate that the two

Fig. 1. (a)–(c) Schematic, index profile, spatial frequency spectra,
and dispersion of a typical conventional periodic PhC nanobeam.
(d)–(f ) Schematic, effective refractive index (neff ) profile, spatial fre-
quency spectra, and dispersion of a deterministic PhC aperiodic nano-
beam. Note that the dispersions shown here are not accurate and are
only for illustration. P, P1, and P2 represent the periods of nano-
beams.

Fig. 2. (a) Numerical and experimental result of transmission of an
aperiodic PhC nanobeam. (b) Experimental results with one period
varying from 0.92 to 1 μm and the other period fixed at 0.96 μm.
The spectra are shifted vertically for clarity, and the black dashed lines
are plotted for the guide of the eye to show the shifting of bandgaps.
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bandgaps can be designed independently at adjustable wave-
lengths. The period of one hole array (P1) varies from 0.92
to 1 μm, while the other (P2) is fixed at 0.96 μm. In the case
that both periods become 0.96 μm, only one bandgap with
almost a doubled bandwidth is observed, which is reasonable.
Probably due to the limited range of our laser, we do not
observe any parasitic bandgaps in experiments. However, simu-
lated results show the existence of parasitic bandgaps in a wider
range, similar to previous work [17].

After verifying the multiple bandgaps in the aperiodic PhC
nanobeams, we further investigate the possibility of obtaining
multiple resonances in a single nanocavity. The nanocavity is
created by introducing a phase-delay region in a PhC nano-
beam, and the scanning electron microscope (SEM) image is
shown at the top of Fig. 3(a). For the experimental results
in Fig. 3, the periods of the two arrays of holes are fixed to
be 0.92 and 0.98 μm. Figure 3 shows the transmission of a
nanocavity with a gap of 2 μm, with two shaded bandgaps.
It is obvious that there exists one resonance peak in each
bandgap. The Q values are fitted to be 733 and 667 for the
resonances at 3.73 and 3.83 μm, respectively. The relatively
lowQ value is attributed to three reasons: (1) poor confinement
due to a small bandgap, (2) material absorption of the SiO2

substrate, (3) scattering loss because of fabrication imperfec-
tion. In order to quantify the respective contributions, the
Q values of the two resonances are also simulated, which
can be as high as 4554 and 3357, respectively. Therefore,
we conclude that fabrication imperfection should be the limit-
ing factor of the Q value.

In Fig. 3(b), we further record the position of resonances for
increasing gaps to clarify the reflection response of an aperiodic
PhC nanobeam reflector. For resonances in a nanocavity, the
wavelength should fulfill the phase-matching condition

2π
2neffGap

λ
� 2ϕ � 2Nπ, (3)

where λ, neff , and ϕ are the wavelength in free space, the
effective refractive index in the waveguide, and the reflection
phase response, respectively. The order of mode is denoted
by N. As reported by previous works, for a bandgap in
PhC, the reflection phase response changes almost linearly from
π to 0 when the wavelength sweeps from the shorter to the
longer wavelength edge [18]. Each time that resonance restarts

from the shorter wavelength edge, the mode order increases by
1. Based on our results, it appears that this rule also applies to
an aperiodic nanobeam with multiple bandgaps. By fitting the
experimental data, we can see clearly that the resonances in each
bandgap sweep to longer wavelengths for increasing gaps
almost linearly, as a result of the linear change of the reflection
phase response in the bandgap. Since the reflection response
covers a range of π, we can always find a wavelength in the
bandgap which meets the resonance equation. Besides, from
Eq. (3), the expression of gap difference between adjacent
modes can be derived: ΔGap � λ∕2neff . The measured gap
differences (0.89 and 0.93 μm) also match with the calculated
results (0.81 and 0.82 μm). The discrepancy may come from
the inaccuracy of linear fitting assumption. Therefore, this
Letter suggests that reflection responses in multiple bandgaps
of an aperiodic PhC nanobeam also linearly sweep for a range of
π independently, when the resonance wavelength shifts from
the shorter to the longer wavelength edge. The resonances
in an aperiodic PhC nanocavity can still be well described
by Eq. (3).

Besides, the mode orders of resonance can also be calculated
by Eq. (3). At 3.74 and 3.84 μm, the respective neff are simu-
lated to be 2.34 and 2.29, and the respective ϕ are estimated to
be 0.33π and 0.61π. Then the mode orders of the two reso-
nances at 3.74 and 3.84 μm can be calculated to be 2.8 and 3.0,
both of which are closest to the integer of 3. That is, based on
Eq. (3), we can ascertain within a certain degree that the mode
orders of the two resonances are the same.

Apart from the calculation based on Eq. (3), we also simu-
lated the mode distribution of two resonances to further con-
firm the matching of mode orders. Figures 4(a)–4(b) show the
simulated Re�Ey� at the wavelengths of 3.73 and 3.83 μm, re-
spectively, as shown in Fig. 3(a). The solid white lines represent
the borders of the nanobeam, while the white solid rectangles

Fig. 3. (a) Measured transmission spectra of an aperiodic PhC nano-
cavity. P1 and P2 are 0.92 and 0.98 μm, respectively. The gap is 2 μm.
The inset shows a SEM image of the nanocavity, and the scale bar is
1 μm. (b) Measured positions of resonances for different gaps. The
brown lines are the linear fittings of different mode orders. The arrows
represent the gap differences between the adjacent modes.

Fig. 4. (a), (b) Electric field (Ey) profiles for the resonances at
(a) 3.73 and (b) 3.83 in Fig. 3(a). The solid white lines represent
the borders of the nanobeam, while the white solid rectangles denote
the etched holes. (c) Electric field (Ey) profiles of two resonances along
the dashed lines in (a) and (b).
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denote the etched holes. From the figure, both resonances show
odd field (Ey) distribution, and the mode orders are both 3,
the same as the calculated result. For a better comparison,
Fig. 4(c) plots the amplitude of Re�Ey� along the dashed lines
in Figs. 4(a) and 4(b). Since the two resonances have the same
mode order, they oscillate almost in phase in the gap region,
showing nearly perfect field matching. For regions outside
the gap, oscillation of the two resonances becomes out of phase
gradually, due to the mismatch of the propagating wave vectors.
This mismatch could be addressed by using different hole sizes
for each resonance. The mismatch is also not critical for appli-
cations such as single emitters and nonlinear devices, where the
region within the gap is of most importance, since it holds the
highest field intensity. To characterize the field match, we
define the field-matching factor of two resonances by

η � j R E⋆
1 E2dAj2R jE1j2dA
R jE2j2dA

, (4)

where η, E1, E2, are A are the field overlap factor, electric field
of the first resonance, electric field of the second resonance, and
integral area, respectively. Using Eq. (4), we calculated η of the
two resonances in Figs. 4(a) and 4(b) over the gap region to be
99.2%. However, the overlap factor will drop for increasing
wavelength mismatch 2�λ1 − λ2�∕�λ1 � λ2� or gap length,
which is a natural result of phase mismatch. According to
our calculation, η drops below 90% when the period mismatch
exceeds 16% for a fixed gap of 2 μm or when the gap is above
5 μm for two resonances at 3.73 and 3.83 μm.

Before we bring this Letter to its end, it is worth reiterating
that we have intentionally designed smaller bandgaps due to the
limited range of our laser source. However, a proper bandwidth
of the bandgap is important for nanocavities to achieve high Q
and good confinement. In order to increase the bandgaps of the
aperiodic PhC nanobeams, in addition to the well-known
method using an increased hole size, in Fig. 5(a), we show an-
other way by varying the shift factor (SF) of the hole arrays.
Here we define the SF to linearly change from 0 and 1 when
hole arrays shift from the center line of the nanobeam to the
edge. Figures 5(b)–5(f ) show the SEM images of samples with
different SFs in Fig. 5(a). Since the fundamental transverse

electric (TE) mode is involved in our experiment, the field am-
plitude is strongest at the center of the nanobeam. Therefore,
holes closer to the center line of the nanobeam contribute more
to the intensity of the Fourier components, and the resultant
bandgap is broader. This trend can be obviously seen in
Fig. 5(a). When the SF becomes 0, the two bandgaps become
so broad that they merge into one.

In conclusion, we reported on the design and implementa-
tion of deterministic aperiodic PhC nanobeams featuring
multiple adjustable bandgaps. The unique property enables
the existence of multiple resonances with the same mode order
in a single PhC nanocavity. The matching of mode orders is
confirmed by both cavity resonance equation and field profile
simulation. By merit of the mode matching, the field overlap is
almost perfect in the cavity region. We also draw a phenom-
enological conclusion that in aperiodic PhC nanobeams there is
a linear relation between the reflection phase response and the
wavelength in each bandgap. The relatively lowQ in our proof-
of-concept experiments is mainly limited by fabrication imper-
fection. This Letter offers the opportunities for ultra-compact
high-Q nanocavities supporting multiple mode-matched reso-
nances, paving the way to integrated low threshold lasing, com-
pact multiple narrowband emission, and on-chip sensing.
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Fig. 5. (a) Measured transmission of aperiodic PhC nanobeams
with different SFs (SF). The black dashed lines are drawn to mark
the borders of bandgaps for the guide of the eye. (b)–(f ) SEM images
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5410 Vol. 43, No. 21 / 1 November 2018 / Optics Letters Letter

https://doi.org/10.1038/36514
https://doi.org/10.1063/1.3107263
https://doi.org/10.1038/nphoton.2016.70
https://doi.org/10.1038/nphoton.2016.70
https://doi.org/10.1038/ncomms3822
https://doi.org/10.1038/ncomms2201
https://doi.org/10.1038/ncomms2201
https://doi.org/10.1021/acsphotonics.5b00602
https://doi.org/10.1109/JSTQE.2012.2225828
https://doi.org/10.1109/JSTQE.2012.2225828
https://doi.org/10.1364/OE.22.026498
https://doi.org/10.1364/OE.19.018529
https://doi.org/10.1364/AO.56.004363
https://doi.org/10.1364/AO.56.004363
https://doi.org/10.1063/1.3568897
https://doi.org/10.1063/1.3568897
https://doi.org/10.1063/1.3176442
https://doi.org/10.1038/nphoton.2012.343
https://doi.org/10.1038/nphoton.2012.343
https://doi.org/10.1364/OL.36.001584
https://doi.org/10.1364/OL.36.001584
https://doi.org/10.1039/C4NR05810K
https://doi.org/10.1364/OL.42.003602
https://doi.org/10.1063/1.1905812
https://doi.org/10.1364/OE.26.026242

	XML ID funding

