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Abstract
Silicon-on-insulator is an attractive choice for developingmid-infrared photonic integrated circuits.
It benefits frommature fabrication technologies and integrationwith on-chip electronics.We report
the development of SOI channel and ribwaveguides formid-infraredwavelengths centered at 3.7 μm.
Propagation loss of∼1.44 dB/cm and∼1.2 dB/cmhas beenmeasured for TE andTMpolarizations in
channel waveguides, respectively. Similarly, propagation loss of∼1.39 dB/cm and∼2.82 dB/cmhas
beenmeasured for TE andTMpolarized light in ribwaveguides. The propagation loss is consistent
with themeasurements obtained using a different characterization setup and for the samewaveguide
structures on a different chip. Given the tightly confined single-mode in our 400 nm thick Si core, this
propagation loss is among the lowest losses reported in literature.We also report the development of
Ge-on-SOI stripwaveguides formid-infraredwavelengths centered at 3.7 μm.Minimumpropagation
loss of∼8 dB/cmhas beenmeasuredwhich commensurate with that required for high powermid-
infrared sensing. Ge-on-SOIwaveguides provide an opportunity to realizemonolithically integrated
circuit with on-chip light source and photodetector.

1. Introduction

Mid-infrared sensing has been an attractive area of research sincemost of themolecules find their vibrational
resonances in 2–20 μmpart of the electromagnetic spectrum. Startingwith lead-salt lasers, nonlinear optical
frequency conversion sources, and quantum cascade lasers (QCLs), manymajor breakthroughs have been
reported over the decades formid-IR sensing applications [1]. In recent times we are now seeing its revival in
silicon-on-insulator (SOI) based photonic integrated circuits (PICs). There has always been an industrial need to
developmid-IR sensing PICs to trace gases which are hazardous for theworking environment. Secondly,mid-IR
sensing can be employed to trace pollutants in the closed environment such as hospitals and large communal
spaces. Other applications which can be realized usingmid-IR sensing PICs are security, forensics, clinical
analysis, and foodmonitoring.

SOI is undoubtedly themost popularmaterial for the development of near-infrared optical devices [2–5],
and in particular, for the realization of low-loss conventional optical elements including filters, splitters/
combiners, tapers, directional couplers, resonators,multiplexers, and grating couplers [6]. These elements are
now readily available as constituent components for the development of PICs in all the leading foundries [7].
Although,most of the developments in SOI photonics have concentrated largely on telecommunications,
however, there is a recent surge inmaking use of SOI formid-IR applications. It was noted previously that the
low-loss transmission for SOIwaveguides is limited up to 3.6 μm [8], however, the optical elements
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demonstrated for thewavelengths up to 3.8 μmhave proven that SOI is still amajor contender for optical
interconnects inmid-IR PICs [9]. In addition to this, the suspended SOIwaveguides can extend the transmission
well into long-wave IR [8].

SOIwaveguides have been reportedwith various Si layer thicknesses in literature for 3.7–3.8 μm
wavelengths. A 2 μmthick Si core ribwaveguide achievingminimum loss of 1.5 dB/cmhas been reported in
[10]. Silicon corewith thickness of 400 nmhas been employed in SOI stripwaveguide to achieve propagation
loss of 3.1 dB/cm in [11], and ribwaveguide to achieve propagation loss of 1.46 dB/cm in [12]. Finally, SOI strip
waveguide formed in 500 nm thick Si core has been reported to achieve propagation loss of 1.28 dB/cm in [9],
which is the lowest value reported formid-IRwaveguides. It should be noted that these propagation losses have
been reported only for TE polarization.

A significant challenge however is the integration of on-chip pump source in SOI basedmid-IR PICs.
Although hybrid integration of near-IR sources in SOI platform is now amature technology, there have been few
demonstrations to extend this integration intomid-IR [13].More recently, we have seen integration ofQCL on
Si-on-N-on-insulator (SONOI) [14]. This opens up the option of developingmid-IR sensors for wavelengths
beyond 3 μmandup to the available wavelength range ofQCLs. Itmeans that the detection of trace gases such as
methane (CH4)which finds its absorption peak near 3.5 μmcan be realized.We can develop SOI based PICs to
detect pollutants such as formaldehyde (H2CO). Integration of tunable on-chip sources would help us achieve
gas imaging systems andmid-IR spectroscopy, however, it is a challenge realizing this usingQCLswhose
emission is defined at thewafer growth stage. Hybrid integration of III-V nonlinear optical frequency converters
with Si can be one of theways forward to achieve tunable on-chipmid-IR pump sources, wheremonolithic
integration of nonlinear optical frequency conversion has been previously reported for near-IRwavelengths
[15]. In these sources, the signal and idler wavelengths are controlled by the phasematching period of nonlinear
waveguide and can be extended to producemid-IRwavelengths. Finally, it is encouraging to note that the
foundry scale efforts have started to develop low-lossmid-IR optical elements in SOI for sensing
applications [16].

Germanium is another contender to realize low-loss PIC formid-IR sensing applications due to its
transparency up to 15 μm. It has been employed to demonstrate various low-lossmid-IR optical elements on Si
substrate [17]. Additionally, germanium-tin (GeSn), an alloy ofGe, has gained significant popularity as on-chip
mid-IR source inGe-on-Si [18]. GeSn has also beenwidely reported for photodetection, and a relatively higher
concentration of 9%–10%Snhas been used to demonstrate photodetector and photoconductor for 2.2–2.4 μm
wavelengths in [19] and [20], respectively. AwaveguideGeSn photodetector has been reported in [21]. Therefore
it is feasible to realize amonolithically integratedGeSn sensor forwavelengths near 2.2 μm in order to detect
greenhouse gases such aCO2. Finally, it has been reported that Ge-on-SOI provides better thermal stability and
electrical isolation thanGe-on-Si [22–24]. Therefore it is preferred to achievemonolithic integration ofGeSn
mid-IR sensors inGe-on-SOI platform.

Low-loss Ge-on-Simid-IRwaveguides have been consistently reported previously, such as in [17, 25–27].
Secondly, Ge-rich Si1−xGexwaveguides grown using low energy plasma enhanced chemical vapor deposition
(LEPECVD) have demonstrated low-loss for wavelengths up to 8.5 μm [28, 29].Mid-IRwaveguides have also
been demonstrated inGe-on-insulator (GeOI) [30], andGe-on-SOI [22]. However, the achieved propagation
loss inGeOI andGe-on-SOI is still higher than the reported values of 3–4 dB/cmor less inGe-on-Si andGe-rich
Si1−xGexwaveguides.

In this paperwe present ourwork on the development of low-lossmid-IRwaveguides in SOI andGe-on-
SOI. Thework reported here complements the development ofmid-IR PICs for sensing applications. For SOI
waveguides, two structures including channel and ribwaveguides have been fabricated forwavelengths near
3.7 μm. Secondly, Ge-on-SOIwaveguides have been developed formid-IRwavelengths centered at 3.7 μm.
Stripwaveguides inGe core of thicknesses 0.85 μmand 2 μmhave been developed.

2. SOImid-IRwaveguides

In this work, Si channel waveguide is designedwith a dimension of 400 nm in height and 1.2 μm inwidth to
ensure singlemode operation at thewavelength of 3.7 μm. For ribwaveguide, the height andwidth is kept
consistent to the channel waveguide, whereas, the etch depth is 240 nm. Figures 1(a) and (b) show the simulated
TE00mode profile for channel and ribwaveguides, respectively. It is observed that the designedwaveguides are
indeed single-mode for 3.7 μmexcitation.

Thewaveguide fabrication starts with commercially available 8-inch SOIwaferwith 220 nm thick Si
overlayer and 3 μmthick buried oxide layer. Firstly, blanket Si is epitaxially grown to achieve Si overlayer of
thickness 400 nm. SiO2 is then deposited as a hardmask forwaveguide definition. The device patterning has been
done using deep ultra-violet photolithography followed by single-step reactive ion etching forwaveguide
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definition. Plasma enhanced chemical vapour deposition SiO2 of thickness 3 μm is deposited as top cladding.
Finally, deep trench is formed for end-fire coupling. In order to achieve efficient coupling into thewaveguides,
200 μm long inverted nanotapers have been employed at each end of thewaveguides. The scanning-electron
micrographs (SEMs) of the fabricated ribwaveguide and nanotaper are given infigures 2(a) and (b), respectively.

Cut-backmethod has been employed tomeasure the propagation loss in our SOIwaveguides. The light
source is a continuouswave tunablemid-IR quantum cascade laser fromPranalytica, Inc. The light set at
3.682 μmhas been launched into thewaveguides using ZnSemid-IR objective. Amid-IRwave plate and
polarization beam cube has been used tomanipulate the polarization at the input. The output light is collimated
using ZnSemid-IR objective and detected at PbSe photodetector. An iris is used to retain the excitedwaveguide
mode at the photodetector. In addition to this, we have used amid-IR InSb camera fromXenics to precisely align
thewaveguides. Finally, themeasurements have been recorded using lock-in amplifier coupledwithmechanical
chopper. The schematic of characterization setup is given infigure 3.

The normalized transmission of waveguides of various lengths has been plotted infigures 4(a) and (b) for
channel and ribwaveguides, respectively. All the transmissionmeasurements have been performed by setting
the sample temperature at 300 K. The propagation loss calculated for channel waveguides is 1.44±0.03 and
1.2±0.04 dB/cm for TE andTMpolarized light, respectively. This value is consistent with the propagation loss
of 1.28±0.65 dB/cm at 3.8 μmreported for 500 nm thick Si core stripwaveguide in [9]. However, it should be
noted that Si core in our case is 400 nm thickwhich results in higher confinement of thewaveguidemode.We
would also like to highlight that themeasured loss of 1.44±0.03 dB/cm for TE polarization in this work is
moderately consistent with the loss of 2.65±0.08 dB/cmmeasured using the setup inwhich ZrF4fiber has
been used to excite the samewaveguide structures on a different chip [16, 31]. This demonstrates the process and
performance repeatability using differentmeasurement setups.

Figure 1.The simulated TE00mode profile for (a) channel waveguide, and (b) ribwaveguide. A commercial software has been used to
performmode-solving.
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Figure 2. SEMmicrographs of (a) ribwaveguide, and (b) inverted nanotaper employed at each end of thewaveguide.

Figure 3. Schematic of the optical characterization setup.

Figure 4.The normalized transmission of (a) channel waveguides, and (b) ribwaveguidesmeasured at room temperature. The dotted
lines are a linearfit to the data in order to calculate the propagation loss.
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The propagation loss calculated for ribwaveguides usingmeasured data is 1.39±0.07 and 2.82±0.14 dB/
cm for TE andTMpolarized light, respectively. The propagation loss in our ribwaveguides is consistent with the
value of 1.46±0.2 dB/cm at 3.77 μmreported for 400 nm thick Si core and 220 nmdeep etched ribwaveguide
in [12]. Again themeasured propagation loss of 1.39±0.07 dB/cm for TE polarization is consistent with the
loss of 1.75±0.22 dB/cm reported for the samewaveguide structures on a different chip [16, 31].

The low propagation loss for TE andTMpolarizations in our case is complemented by the buried nature of
SOIwaveguides where SiO2 cladding, deposited using plasma enhanced chemical vapor deposition (PECVD),
has enabled to circumvent effective surface and sidewall roughness. These results place ourmeasured
propagation losses among the lowest reported for SOIwaveguides for 3.7–3.8 μmwavelengths.

3.Ge-on-SOImid-IRwaveguides

As stated in section 1, Ge-on-SOI is an attractive choice to realize amonolithically integratedmid-IR sensor. It
benefits from an on-chip source and photodetector in the formof epitaxially grown direct band-gapGeSn.
Secondly, it achieves better thermal and electrical isolation thanGe-on-Simaterial system. Therefore, we report
ourwork on the development of low-loss Ge-on-SOI passivewaveguides which provide optical routing in
such PICs.

Mode-solving using a commercial software has been performed to determine the singlemode condition for
Ge-on-SOI stripwaveguides. The calculated ηeff for thefirst two guidedmodes is shown infigures 5(a) and (b),
for 0.85 μmand 2 μmthickGe cores, respectively. The small index difference between the first two guided
modes TE00 andTE01 indicatesmulti-mode excitation beyond 6 μmand 3 μmwidths for 0.85 μmand 2 μm
thickGe cores, respectively. However, it has been observed inmeasurements that the onset ofmulti-mode
excitation is pushed to an increasedwidth in fabricatedGe-on-SOIwaveguides due to their relatively large
propagation loss, whichwill discussed later.

Stripwaveguides have been developed inGe-on-SOI, for which the starting SOI substrate has an overlaying
Si layer of thickness 220 nmand a buried oxide of thickness 2 μm.TheGe growth process has been reported in
[32].We have prepared two samples of Ge corewith thicknesses 0.85 μmand 2 μmin order to assess the loss
variation. Thewaveguide definition process includes patterning using direct laserwriting and etching in
SF6/C4F8 chemistry using SiO2 hardmask. The samples arefinally laser diced to the length of∼5 mm for optical
measurements. The inset infigure 6 shows the SEM image of a fabricatedwaveguide in 2 μmthickGe core.

Fabry–Perotmethod has been employed tomeasure the propagation loss inwhich the cavity oscillations
have been recorded by varying sample temperature. The characterization setup is the same as described
previously in section 2, and given infigure 3. The calculated propagation loss using thesemeasurements is
plotted infigure 6. Themeasurements show a decreasing trend in the propagation loss with an increase in
waveguidewidth. This can be explained due to the reduction inmode overlapwithwaveguide sidewalls [32].
However, an abrupt increase in the propagation loss inwider waveguides, i.e., width beyond 7 μm in 0.85 μm
thickGe core andwidth beyond 3.5 μmin 2 μmthickGe core, is attributed to themulti-mode excitation. This

Figure 5.The calculated effective refractive index ηeff for thefirst two guidedmodes TE00 andTE01 forGe core thicknesses (a)
0.85 μm, and (b) 2 μm.The small index difference indicates that the onset ofmulti-mode excitation is near 6 μmwidth for 0.85 μm
thickGe core, and 3 μmwidth for 2 μmthickGe core.
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width is slightly larger than the calculated onset of themulti-mode excitation as shown infigures 5(a) and (b) and
is attributed to a relatively large propagation loss.

The lowest propagation loss achieved is∼8 dB/cm in ourGe-on-SOIwaveguides which is an improvement
over 14 dB/cmpropagation loss achieved inGeOIwaveguides [30]. Secondly, the propagation loss achieved in
our case is comparable to∼7 dB/cm reported earlier in [22] forGe-on-SOIwaveguides. Dislocation defects
which developed duringGe growth on SOI have been identified as themain reason for a relatively large
propagation loss in our case, and it has been confirmed by performing transmission electronmicroscopy (TEM),
as shown infigure 7.

Mid-IRwaveguides and devices developed inGe-on-Si have been reported to achieve superior performance
due to the techniques employed to significantly suppress the growth defects which occur atGe/Si interface. One
suchmethod is to anneal the substrate at 850 °C [25]. Althoughwe have reported that post-growth rapid thermal
annealing inGe-on-SOI has been able to improve the propagation loss up to 3.5 dB/cm [33], however achieving
the loss performance comparable with that of Ge-on-Si is still a challenge.

Having said that, the propagation loss of∼8 dB/cmmakes ourGe-on-SOIwaveguides useful for high power
mid-IR sensing applications due to their large footprint. Ge-on-SOI has been used previously to demonstrate
high responsivitymonolithically integrated near-IR photodetector inwhichGe acts as an absorption layer and Si
provides waveguide core [34]. Similarly, a proposedmonolithically integratedGe-on-SOImid-IR sensor
benefits from low-loss propagation provided byGe core and the optical absorption in epitaxially grownGeSn

Figure 6.Propagation loss ofGe-on-SOIwaveguides. (dotted lines are a linear fit to the data).

Figure 7.The cross-sectional view of transmission electronmicrograph of Ge-on-SOIwaveguide. Dislocation defects, which occur
duringmaterial growth, have been identified as themain cause of propagation loss.

6

J. Phys. Commun. 2 (2018) 045029 UYounis et al



layer at the top, as shown infigure 8. GeSnwith 9%–10%Sn concentration is able to achieve photodetection in
2.2–2.4 μmwavelengths [19, 20]. The large refractive index ofGeSn provides vertical coupling of light from
waveguide core into the active layer. A possibility also exists to realize on-chip light source in the formofGeSn
injection laser.

4. Conclusions

To conclude, we have developed singlemodewaveguides in SOI andGe-on-SOI formid-IRwavelengths. The
propagation loss of 1.44 dB/cm and 1.2 dB/cmhas beenmeasured near 3.7 μmusing cut-backmethod for TE
andTMpolarizations in channel waveguides, respectively. Similarly, propagation loss of 1.39 dB/cm and
2.82 dB/cmhas beenmeasured for TE andTMpolarizations in ribwaveguides. These values are comparable
with the lowest propagation loss reported for SOIwaveguides in 3.7–3.8 μmwavelengths [9, 12]. However, we
have employed a thinner Si core to achieve tightly confined singlemode in channel and ribwaveguides, therefore
our loss performance could be considered as a relative improvement. Secondly, we have achieved aminimum
loss of∼8 dB/cm in ourGe-on-SOIwaveguides. This performance is comparable with the propagation loss of
∼7 dB/cm reported for Ge-on-SOIwaveguides [22], and a definite improvement over the propagation loss of
14 dB/cm reported forGeOIwaveguides [30]. This demonstrates a feasibility to employGe-on-SOI in order to
achievemonolithically integratedmid-IR sensors inwhich active regions can be realized inGeSn grown
epitaxially onGe core.
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