Reconfiguration of Resonance Characteristics for Terahertz U-Shape Metamaterial Using MEMS Mechanism

Yu-Sheng Lin, Chia-Yi Huang, and Chengkuo Lee, Member, IEEE

Abstract—We present the design, simulation, fabrication, and characterization of an out-of-plane reconfiguration of terahertz (THz) U-shape metamaterial. The U-shape metamaterial is consisted of bilayer cantilevers with different coefficient of thermal expansion. The electromagnetic tunability of U-shape metamaterial is accomplished by using electrostatic actuation mechanism to provide higher tuning range at lower driving voltage. The bilayer cantilevers are actuated toward the substrate by gradually increasing the bias and, then, completely snapped down when the bias reached the critical pull-in voltage. Therefore, this device can control the resonant frequency actively. The experimental results indicate that the device possesses 0.51-THz tuning range with polarization dependence compared to dc bias of 0 and 12 V. Moreover, this device can be a THz switch when rotated to different angle with respect to the polarization of incident light. Hence, such adaptive metamaterial device offers significant potential in realizing the multifunctionality in optical filter, polarization controller, and optical switch applications.

Index Terms—Microelectromechanical systems (MEMS), electromagnetic propagation, tunable filters, optical switches.

I. INTRODUCTION

METAMATERIALS are artificial composites which exhibit strong electric and magnetic responses to manipulate the amplitude, direction, polarization, wavelength and phase of electromagnetic waves. The unique characteristics of electromagnetic metamaterial make diversified applications become true where these applications include cloaking devices, high-resolution superlenses, perfect absorber, security screening, medical imaging, and non-destructive testing [1]–[5], etc. Research has been actively carried out in this field to characterize how these extreme electromagnetic properties achieved through the interaction of the incident electromagnetic wave with shape and size of designed metamaterial patterns. One of the classic metamaterial structures is considered as a ring with a common split. This kind of metamaterial structure is named as split-ring resonator (SRR). An inductive effect is attributed to a current induced in the SRR ring, i.e., flowing around the ring, as well as a capacitive effect across the split. Therefore, the SRR can be described qualitatively in terms of its equivalent circuit. Among various SRR designs, there are five typical U-shape SRR configurations such as side by side [see Fig. 1(a)] [6]–[11], gap to gap [see Fig. 1(b)] [12]–[16], back to back [see Fig. 1(c)] [3], [17], [18], orthogonal U-shape [see Fig. 1(d)] [19], [20], and concentric U-shape [see Fig. 1(e)] [21]–[24] as summarized in Fig. 1. Each of U-shape SRR comprises a capacitor-like structure which is coupled to the electric field and inductance is provided in the parallel-connected circuit with the resonant frequency of \(\omega = \sqrt{1/LC} \) as shown in Fig. 1(a). Here, \(C = \varepsilon_0 \varepsilon_r w d / d \) and \(L = \mu_0 l t \) refer to the respective capacitance and inductance of SRR, where \(w \) is the width of SRR, \(d \) is the width of capacitor split, \(t \) is the metal thickness, \(l \) is
the size of the SRR, \(\varepsilon_0 \) is the free space permittivity, and \(\varepsilon_r \) is the relative permittivity of the materials in the capacitor split, respectively [8].

Recently, the electromagnetic tunability of metamaterial has attracted intense research interest, since the electromagnetic response of the metamaterial can be actively controlled through external stimulus, which is of great significance in real time applications [24]–[26], [28], [29]. Such active control of metamaterial characteristics is crucial in order to provide a flexible and versatile platform for mimicking fundamental physical effects. To realize the electromagnetic tunability, various approaches have been demonstrated based on the U-shape patterns to increase the flexibility in applications, such as changing the effective electromagnetic properties via dielectric layers [16], [21], semiconductor diodes [7], thermal control [9], [17], [24], liquid crystals [11], laser light illuminating [10], [14], [19] and magnetic field [23], etc. Alternatively, microelectromechanical systems (MEMS) based techniques are well developed for the realization of movable microstructures. The structural reconfiguration is a straightforward way to control the electromagnetic properties including amplitude, polarization, and directionality for the metamaterial structures. The metamaterial properties can be directly modified by reconfiguring the unit cell which is the fundamental building block of metamaterials. Among these MEMS approaches, electrostatic comb drive actuator has been utilized to change the in-plane spacing of metamaterial unit cell [15], [30]–[32], while surface-micromachined out-of-plane stress beams in each metamaterial unit cell can be deformed toward the substrate due to the attractive force from a parallel-plate electrostatic actuator [33]–[38]. On the other hand, the electrothermal actuation mechanisms have been reported as well [27], [39]. Therefore, MEMS-based metamaterials are not only promising in tunability but also good at widespread applications [30]–[39].

To increase the tuning range of metamaterial resonance, our previous report [34] has demonstrated the concentric U-shape metamaterial using out-of-plane actuation [see Fig. 1(e)] with larger tuning range (0.50 THz) than above-mentioned data. However, there is no literature demonstrated the SRR offering multi-functionality in optical filter, polarization controller, and optical switch simultaneously. In this study, we explore and demonstrate a reconfiguration of U-shape metamaterial with a comparable tuning range to reference [34] by using an out-of-plane MEMS mechanism. Herein, the proposed U-shape metamaterial design is demonstrated to possess the multi-functionality simultaneously. This design exhibits not only increasing the tuning range of resonant frequency, but also having the polarization dependence property. Furthermore, this device can be used as an optical switch when the device is rotated to different angle with respect to the TE polarized incidence, hence allowing this device to be effectively used for optical switches and filters applications.

II. DESIGN OF U-SHAPE METAMATERIAL

The most effective way of adjusting metamaterial unit cell is making MEMS actuation structures as the U-shape metamaterial itself. Fig. 2(a) shows the schematic drawing of the proposed U-shape metamaterial unit cell without driving voltage, where the U-shape metamaterial unit cell has four bilayer cantilevers. The composition of each bilayer cantilever is Al/Al\(_2\)O\(_3\)/SiO\(_2\) multilayers with 500/20/100-nm thickness on an n-type silicon wafer. The SiO\(_2\) layer was patterned as anchors for four bilayer cantilevers. In order to create the upward-bending structures, vaporized hydrofluoric acid was used to etch SiO\(_2\) layer and then release the bilayer cantilevers so as to create out-of-plane bending cantilevers for U-shape metamaterial unit cell because of residual stress owing to the different coefficient of thermal expansion (CTE) of Al and Al\(_2\)O\(_3\) film. The detailed fabrication process flow can be referred to our previous results [34], [35]. The electromagnetic tunability of metamaterial device is achieved by changing the air gap between the flexible bilayer cantilevers of metamaterial and the substrate. This gap is changed due to the electrostatic force by applying a dc voltage on the bilayer cantilevers and the substrate. The series capacitance of the U-shape metamaterial device depends on the position or bending degree of the bilayer cantilevers. Regarding an intermediate state, the deformation of the bilayer cantilevers is determined by the balance between the electrostatic force and the restoring force of cantilever. When the dc voltage between the cantilevers and the substrate exceeds the critical pull-in voltage \(V_{pi} \), the cantilevers become unstable and will be pulling down to the substrate as shown in Fig. 2(b). Hence, the electrostatic tunability of U-shape metamaterial device can be actively and continuously controlled via a driving voltage less than \(V_{pi} \). Here, the geometry parameters of U-shape metamaterial unit cell are shown in Fig. 3(a). The unit cell is a square with an edge length of 104 \(\mu \)m. An inductive effect is introduced when the current induced in the connected U-shape flows around as well as a capacitive effect across the split. Therefore, the U-shape metamaterial device can be described qualitatively in terms of an equivalent circuit of a capacitor-like structure coupled to the electric field and connected in parallel providing inductance as shown in Fig. 3(b). Fig. 3(c) shows the SEM image of the
U-shape metamaterial array after the bilayer cantilevers were released, the curve was calculated with an initial height of 15 μm. This gap between the metamaterial and substrate is an important tuning parameter, since different configurations of the unit cell can be obtained by simply adjusting the value of initial gap.

III. Simulation and Experiment Results of U-shape Metamaterial

The correlation between the carrier excitations and incident electromagnetic waves of proposed U-shape metamaterial unit cell structure was used a commercial finite-difference time domain solver, CST Microwave Studio. The finite element simulations were performed using the material parameters listed in Table I. The program simulates a single unit cell shown in Fig. 3(a) with appropriate boundary conditions, i.e., perfect electric boundary condition in the yz plane and perfect magnetic boundary condition in the xz plane. Fig. 4 shows the simulation results of U-shape metamaterial at TE and TM polarized incidence, respectively, and with cantilevers under different bending states owing to different driving voltages. The TE polarization state represents the case in which the electric field is perpendicular to the split side of the ring, while TM occurs as the electric field is parallel to the split side. When we gradually shrink down the gap between U-shape metamaterial and substrate, the resonances are shifted. At TE polarized incidence, there are two resonant frequencies as shown in Fig. 4(a). The lower resonance is the inductive-capacitive (LC) resonance, where oscillating charges generate circulating currents throughout the entire structure and results in a pure electric response. The surface current and electric field distributions are shown in Fig. 5(a) and (c), respectively. There is no significant electric field distribution along the connecting metal lines between U-shape metamaterial at the fundamental resonant frequency. It indicates that the U-shape metamaterial operates in the LC resonance. This resonance shifts from 0.64 to 0.11 THz in comparison with the initial state (cantilevers at an initial height of 15 μm) to the snap-down

TABLE I

<table>
<thead>
<tr>
<th>Materials</th>
<th>Young’s Modulus (GPa)</th>
<th>Poisson’s Ratio</th>
<th>CTE ($\times 10^{-6} K^{-1}$)</th>
<th>Electrical Conductivity ($\times 10^6 S m^{-1}$)</th>
<th>Density (g cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon</td>
<td>169</td>
<td>0.30</td>
<td>2.568</td>
<td>0.025</td>
<td>2.33</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>530</td>
<td>0.30</td>
<td>8.10</td>
<td>–</td>
<td>3.95</td>
</tr>
<tr>
<td>Al</td>
<td>70</td>
<td>0.30</td>
<td>23.1</td>
<td>35.5</td>
<td>2.70</td>
</tr>
</tbody>
</table>
The electrostatic force acting on the cantilever is given by \(F = (\varepsilon AV^2) / 2g^2 \), where \(\varepsilon \) is the permittivity of the medium, \(A \) is the area of the electrodes, \(V \) is the driving voltage, \(g \) is the gap distance between the cantilever and substrate. This force equation equals to the sum of initial gap distance \(D(x) \) and displacement \(y \). We consider the force per unit length along the cantilever for a given bias voltage:

\[
EI \frac{d^4 y}{dx^4} = f(x, V) = -\frac{\varepsilon_0 wV^2}{2[D(x) + y]^2}
\]

where \(f(x, V) \) denotes the static electrostatic force per unit cantilever length as a function of the position \(x \) and the driving voltage \(V \). \(\varepsilon_0 \) is the permittivity of free space. The electrostatic force per unit length along the cantilever is inversely proportional to the square of gap between metamaterial and substrate. The capacitance between the metamaterial and substrate can be expressed as

\[
C(x) = \int_0^L \frac{\varepsilon_0 wdx}{|D(x) + (1/k)t_2|}
\]

where \(L \) is cantilever length and \(k \) is the relative permittivity of Al\(_2\)O\(_3\) layer. This stress-induced cantilever exhibits a very small change in radius of curvature is expressed as

\[
\frac{1}{\rho} - \frac{1}{\rho_0} = \frac{2\Delta \alpha \Delta T}{t_1 C}
\]

where

\[
C = \frac{\left(1 + \frac{t_2}{t_1}\right)\left(1 + \frac{t_3}{t_4}\right)}{6\rho_0 t_1^2 t_2} + \left(1 + \frac{t_2}{t_1}\right).
\]

The initial deflection of the cantilever beam along the length, \(D(x) \) is given by

\[
D(x) = \frac{x^2}{2} \left(\frac{1}{\rho} - \frac{1}{\rho_0}\right).
\]
using a bare silicon substrate as the reference. All the measurements were done at room temperature and in a dry atmosphere to mitigate water vapor absorption. Fig. 7(a) and (b) show the measurement results of U-shape metamaterial device operating at TE and TM polarized incidence, respectively. The polarization of the incident wave is indicated in Fig. 2(a). The TE and TM polarization states represent the case in which the electric field is perpendicular and parallel to the split side of the U-shape, respectively. For TE polarized incidence, there are two distinct resonances in the spectrum as shown in Fig. 7(a). The resonant frequencies are shifted by 0.51 THz for LC and dipolar resonances, respectively in comparison to the device without driving voltage and it is snapped down to substrate at 12 V dc bias. In Fig. 7(b), it is because the electric field is oriented along an entire U-shape structures, the resonance is purely due to the electrical response. By applying dc bias on device, the transmission dip is shifted from 0.86 to 0.31 THz at 12 V dc bias, resulting in a tuning range of 0.55 THz. It evidently shows the U-shape metamaterial device is polarization dependent for TE and TM polarized incidence, while a large tuning range of 0.51 and 0.55 THz for TE and TM mode, respectively, compared the device without dc bias to snap-down state. For easy comparison, the measured resonant frequencies of U-shape metamaterial device are further summarized in the inset table of Fig. 7. These results are comparable with the simulation results of TE and TM polarized incidence in Fig. 4. The experimental results of U-shape metamaterial device indicate that the U-shape metamaterial is not only polarization-dependent but providing larger tuning range as well. It demonstrates the unique potential of out-of-plane movable metamaterials in filter with large tuning range for electromagnetic response.

IV. CHARACTERIZATIONS OF U-SHAPE METAMATERIAL

To characterize the polarization dependent characteristic of the U-shape metamaterial device, another chip is released and its transmission spectra were measured with no input dc bias using a THz-TDS system. The device was oriented vertically along the z-axis with a normal TE polarized incidence as shown in Fig. 8(a). The transmitted light was then measured along the x and y axes with respect to θ = 0° or θ = 90°, respectively. In Fig. 8(b), the black curve shows the resonance frequency is 0.65 and 1.29 THz for LC and dipolar mode, respectively, when the device is not rotated. This result is identical with that of measurement at TE polarized incidence as shown in Fig. 7(a). At a rotation angle of 45°, the resonances are shifted to 0.39 and 0.91 THz for LC and dipolar mode, respectively. When continuously rotated the device to 90° with respect to the z-axis in the xy plane, the device loses the resonance of TE polarized incidence characteristic and approaches to the resonance at TM polarized incidence, where the resonance is 0.84 THz comparable to the results of Fig. 7(b). In Fig. 8(b), the resonances of U-shape metamaterial device are similar at a rotation angle of 0°, 180°, and 360°, that resonant behavior is comparable to the TE resonances in Fig. 7(a). While the device was rotated to 45°, 315°, 225°, and 315°, those TE resonances loss gradually, and then transmission characteristic approaches to TM resonances.
with 90° and 270°. Notably, the optical behavior of U-shape metamaterial has a switch function at a gray-shaded region in Fig. 8(b) by rotating the device with 0° to 90°, or 90° to 180°, individually, i.e. the amplitude transmission is switched from 1 (0°) to 0 (90°) and 0 (90°) to 1 (180°) at 0.8–0.9 THz frequency range.

V. CONCLUSION

In conclusion, a U-shape metamaterial using out-of-plane MEMS actuation mechanism is developed and characterized. Such an out-of-plane motion of cantilevers enables the control of resonant frequency by changing the gap between the bilayer cantilevers of metamaterial and the substrate. The experimental results show that the U-shape metamaterial device is a THz tunable filter and a polarization controller. The polarization dependent results of U-shape metamaterial demonstrate a tuning range of 0.51 and 0.55 THz with respect to resonances of TE and TM mode, respectively. Furthermore, the U-shape metamaterial device can be an optical switch at THz frequency range when operated without dc bias and with a different rotation angle. This U-shape metamaterial device does not only promise in polarization control of light, but also creates inspirations in active switching and optical filters applications.

REFERENCES

Yu-Sheng Lin received the Ph.D. degree from the Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan, in 2011. His current research interests include metamaterial, nanofabrication techniques, and optical microelectromechanical systems.

Chia-Yi Huang received the Ph.D. degree from the Department of Photonics, National Cheng Kung University, Tainan, Taiwan, in 2010. He was employed as a Research Fellow at the Department of Electrical and Computer Engineering, National University of Singapore, Singapore. He is currently an Assistant Professor at Tunghai University, Taichung, Taiwan. His research interests include liquid crystal-based electro-optic devices, physics of metamaterials, and terahertz optics.

Chengkuo Lee (S’93–M’96) received the M.S. degree in materials science and engineering from the National Tsing Hua University, Hsinchu, Taiwan, in 1991, the M.S. degree in industrial and system engineering from Rutgers University, New Brunswick, NJ, USA, in 1993, and the Ph.D. degree in precision engineering from the University of Tokyo, Tokyo, Japan, in 1996.

He was a Foreign Researcher at the Nanometerscale Manufacturing Science Laboratory, Research Center for Advanced Science and Technology, University of Tokyo from 1993 to 1996. He had also worked with the Technical Engineering Laboratory, Advanced Industrial Science and Technology, Ministry of International Trade and Industry of Japan, as a Japan Science and Technology Research Fellow in 1996. Thereafter, he was a Senior Research Staff Member at the Microsystems Laboratory, Industrial Technology Research Institute, Hsinchu. In September 1997, he joined the Metodyne Microsystems Corporation, Hsinchu, and established the Microelectromechanical Systems (MEMS) Device Division and the first micromachining laboratory for commercial purposes in Taiwan.

Dr. Lee was the Manager of the MEMS Device Division between 1997 and 2000. He was an Adjunct Assistant Professor at the Department of Electro-physics, National Chiao Tung University, Hsinchu, in 1998, and an Adjunct Assistant Professor at the Institute of Precision Engineering, National Chung Hsing University, Taichung, Taiwan, from 2001 to 2005. He cofounded Asia Pacific Microsystems, Inc. (APM), Hsinchu, in August 2001, and he became the Vice President of R&D; then, later till the end of 2005, he became the Vice President of the optical communication business unit and the Special Assistant to the Chief Executive Officer in charge of international business and technical marketing for MEMS foundry service at APM, Inc., one of the top 30 MEMS manufacturers in the world in 2004. From 2006 to 2009, he was a Senior Member of Technical Staff at the Institute of Microelectronics, A-Star, Singapore. He is currently an Associate Professor at the Department of Electrical and Computer Engineering, National University of Singapore, Singapore. He is the coauthor of the book Advanced MEMS Packaging (McGraw-Hill, 2010). He has contributed more than 230 international conference papers and extended abstracts, 170 peer-reviewed international journal articles, and nine U.S. patents in the MEMS, NEMS, metamaterials, nanophotonics, and nanotechnology fields.