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Abstract—We  designed a  one-mask  process for
all-molybdenum-based laterally actuated nanoelectromechanical
switches. The damascene-like process is designed to ensure
a smooth, high-aspect ratio, and metal-to-metal mechanical
contact. Based on the statistical study of 800 devices, very high
process yield can be achieved for fixed—fixed beam devices by
selecting suitable device dimensions, i.e., the beam length versus
beam width ratio should be <70 and the ratio of actuation gap
to contact gap should be >1.5. Typical failure modes are also
discussed. [2014-0391]
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systems,

I. INTRODUCTION
LECTROSTATICALLY actuated micro/nano electro-
mechanical system (M/NEMS) switches have been

attracting attention for their excellent switching properties
including zero-leakage current, abrupt switch behavior and
potential to operate in high temperature [1]-[5]. These
unique properties make NEMS switch a strong candidate for
ultra-low power electronics and harsh environment integrated
circuit (IC) [6]-[10].

On the other hand, it would be difficult for NEMS switches
to entirely replace CMOS transistors in high performance
ICs, since NEMS switches have lower a operating frequency
due to their large mechanical delay. To avoid the low speed
NEMS switches slowing down the circuit and fully utilize
their zero leakage properties, several applications have been
proposed for NEMS-CMOS integration, by using NEMS
switches to replace speed insensitive elements in field
programmable gate array [11]-[15], power gating [16]-[18]
and static random access memory [19]-[21]. Studies indicate
that introducing NEMS switches would largely reduce the
power consumption of the whole NEMS-CMOS IC. To realize
hybrid NEMS-CMOS circuit [22], [23], directly fabricating
NEMS switches on top of CMOS layer would be a realistic
and cost-effective technique. The semiconductor industry
has developed air gap back end process [24] which is most
suitable for the NEMS-CMOS hybrid circuit.
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The following requirements should be fulfilled to enforce
NEMS-CMOS integration: i) The NEMS switches should be
realized by a low temperature CMOS-compatible process for
the ease of implementing the process in a modern CMOS
foundry; ii) A simple process is desired; especially when
it can leverage the existing metallization process; iii) The
topography of the device should be small, to ensure the easy
realization of devices with multiple layers stacking and wafer
level encapsulation.

By far, most of NEMS switches are not suitable for the
NEMS-CMOS integration. Many reports lack demonstration
of repeatable on/off switch behavior [2], [6], [25], while a few
reliable prototypes still need complicated processes to achieve
robust structures. Yield of processes has not been addressed
by recent studies [26]-[28]. All-metal based NEMS switches
seem to be a reasonable choice to align with post-CMOS
process. Our preliminary study [29] shows that all-metal based
fixed-fixed beam NEMS switch has reliable performance even
under accelerated high temperature measurement.

This work focuses on developing a robust, high process
yield method for fabricating all-metal-based NEMS switch.
It targets to achieve a single mask, CMOS compatible
process for NEMS-CMOS integration applications as well as
NEMS-only logic circuits. It also includes a basic method for
NEMS switch designers to quickly identify the pull-in voltage
and suitable device dimension. Device fabrication yield and
typical failure modes are also discussed in the later section.

II. DESIGN CONSIDERATION

In this study, laterally actuated switches are chosen because
they can be fabricated with a single mask process, with
all terminals formed in a single etching step (Fig. 1(a)).
In comparison, vertically actuated mechanical switches need
4~8 masks, multiple deposition and etching steps to assemble
all terminals layer by layer. For three-dimensional integration,
laterally actuated NEMS switches appear to have a much
smaller topography, so that another layer of devices can be
conveniently stacked on the existing device layer with a
sacrificial layer and vias in between (Fig. 1(b)) [13], [30]-[34].
Since only one deposition step is involved in the laterally
actuated switch fabrication, metallic material is most favorable
for its low process temperature and low resistivity. As most
of the device failures happen in the contact area, including
welding, material transfer, delamination, and destruction [35],
metal of high hardness and high melting point are commonly
used, such as ruthenium [36]-[39], tungsten [40]-[42].

As a result, molybdenum, with high melting temperature
of 2623°C and relatively high hardness, is selected as the
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Fig. 1. (a) Top view of a laterally actuated NEMS switch and vertically
actuated NEMS switch. (b) Schematic of building laterally actuated NEMS
switches above CMOS.

structural material in this study. Among the high melting
temperature metals, molybdenum has a low thermal expansion
coefficient, and thus the mechanical deformation of the
released structure would be less significant over a wide range
of operation temperature. The processes for molybdenum
deposition and dry etching are CMOS compatible.

The most critical step in the laterally actuated switches
fabrication is the formation of actuation gap. A sub 100nm
width is needed to obtain a suitable pull-in voltage. Further
scaling down the device dimension requires an even smaller
gap. Meanwhile, the etched sidewall has to be vertical
and smooth in order to achieve larger contact surface area.
Extremely clean surface is wanted, because contamination
between contact surfaces could cause high contact resistance
and localized heat flux fusing the contact. The existing metal
etching process normally has a low aspect ratio and lacks a
thorough cleaning method. Last but not the least, the metal thin
film should be thick enough to limit the deformation within
a reasonable level. To address these concerns, the fabrication
process described in the next section using single Damascene
process concept is able to provide the NEMS switches with a
clean, smooth, high aspect ratio metallic contact surface. Both
fixed-fixed beam and cantilever design have been fabricated
with various device dimensions as shown in Fig. 2.

III. FABRICATION PROCESS

The process has been briefly introduced in [29], we would
like to share some in-depth discussion and consideration.
Unlike conventional process designed for laterally actuated
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Schematic drawing of a fixed-fixed beam switch and a cantilever

NEMS switches (Fig. 3(a)), the fabrication process described
below defines the active parts of the switches, by filling metal
into a silicon dioxide mold. It starts from a Si wafer with
1 um silicon dioxide layer. Deep UV photolithography using
200 nm critical dimension mask defines the oxide features.
Then the oxide layer is etched for 400 nm with reactive-ion
etching (RIE) (Fig. 3 (b)). As a result, 600 nm oxide is left on
the bottom of the oxide trench for insulation purpose. At this
step, an oxide fin is formed, which serves as a mold for metal
structures as well as the sacrificial layer. After photoresist
strip, the surface is cleaned with Piranha solution, and then
wet etching is performed in diluted hydrofluoric acid (DHF)
to reduce the oxide fin thickness (Fig. 3(c)). Then 300 nm
molybdenum is sputtered (Fig. 3(d)), followed by 500 nm
high-density plasma chemical vapor deposition (HDP CVD)
SiO, to fill all the trenches (Fig. 3(e)). A SiO, chemical
mechanical polishing (CMP) process is performed to expose
the top molybdenum layer. The remained oxide is used to
protect the structural layer beneath (Fig. 3(f)). Afterward,
300 nm molybdenum etching is done by RIE, to ensure the
exposed top molybdenum layer is removed and only bottom
molybdenum structural layer is left (Fig. 3(g)). Thus, the
actuation gap and insulation between terminals are formed
at the same time. The devices are finally released by vapor
hydrofluoric acid (VHF) system (Fig. 3(h)). All processes are
under 400 °C.

At the DHF etching step, when minimum dimension is used
for both gap and beam width, decreased oxide fin thickness
reduces the pull-in voltage. Meanwhile, adding extra layer
of SiO, on the sidewall achieves a similar effect. However,
reducing the oxide fin thickness seems to be a better choice,
as the metal beam width is increased at the same time. Wider
beam provides better thermal conductivity to quickly conduct
the heat generated in the contact area. It has a higher resonant
frequency and switching speed. It is also more resistant to the
beam to gate pull-in failure.

Scanning electron microscope (SEM) photos are taken
during critical fabrication steps. Fig. 4(a) shows the oxide fin
after wet etching with 100 nm thickness and straight sidewall
profile. Fig. 4(b) shows the fully-covered oxide layer and
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Fig. 4. SEM photos of devices near the contact region after (a) wet etch,
(b) Mo deposition, (c) oxide CMP and (d) Mo RIE. (¢) Whole device after
release. (f) Fixed-fixed beam pull-in by electron charging. (g) Test structure
of a single beam. (h) Test structure of contact surface.

large grains on the surface after molybdenum PVD. Fig. 4(c)
shows molybdenum on top of the oxide fin can be successfully
exposed after the oxide CMP step across the whole wafer.
Fig. 4(d) shows the top molybdenum layer is etched away,
and the upper edge of the oxide fin is exposed. Fig. 4(e)
shows a released fixed-fixed beam device. Fig. 4(f) shows
the zoomed-in view of the contact area, where the beam
is attracted to the drain terminal by accumulated electron
charges. The cantilever test structure (Fig. 4(g)) shows the
molybdenum sidewall on the edges of the bottom molybdenum
layer is almost etched away. The smooth molybdenum sidewall
profile is shown in Fig. 4(h), where no visible grain can be
found.

The differences between the proposed process above and
conventional process are shown in table I. SiO; insulation
layer and molybdenum structural layer are used in both cases.

TABLE I
PROCESS DIFFERENCES BETWEEN THIS WORK
AND CONVENTIONAL WORK

Item This work Conventional process
SiO, CVD951Q2 Etching Si0, CVD Mo
Process =>Mo PVD=>Si0, CVD PVD= Mo Etchin
Sequence =>Si0, CMP=>Mo Etching SVHF g
= VHF

Although a few more steps are added, the proposed process
shifts the formation of contact surface from molybdenum
etching to deposition. The contact surface is not exposed
until VHF release, which ensures etching residual do not
contaminate the surface. The back end process in CMOS
foundry could adapt this process easily with conventional
dual-Damascene process.

IV. ELECTRICAL MEASUREMENT OF A TYPICAL DEVICE

A typical fixed-fixed beam device is picked first to verify
the electrical performance. The measurement is conducted in a
vacuum wafer probing system (Cascade Microtech, PMV200,
vacuum level: 5.4E-6 mbar) using a semiconductor parameter
analyzer (Agilent Technology, B1500A). It is first tested for
double side I-V sweep with 500 nA current compliance.
General NEMS switch behaviors, including abrupt switching,
zero off-state current and hysteresis behavior can be found
in Fig. 5(a). Afterward, higher current in the drain terminal
is tested, and an exceptionally high current of 1 mA is
applied with a Ss interval. The device shows a stable electrical
performance in Fig. 5(b) with an on/off ratio of 103.

The contact resistance of this device is also measured
with 0.1V constant voltage at the drain terminal. The small
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Fig. 5. Electrical tests for a fixed-fixed beam device with dimension of Lp = 28 um, t = 700 nm and ggp = 150 nm (a) I-V sweep with 500 nA current
compliance. (b) Cycling test with 1 mA current applied on drain terminal. (c) Cycling test to obtain contact resistance. (d) Contact resistance change over

the cycling test.

drain voltage value is set to prevent the excessive current
to damage the contact. The current compliance is removed
from this cycling test. Fig. 5(c) shows that in the initial
cycle, the contact resistance is around 2.5 k€, indicating a
good metal to metal contact. Fig. 5(d) reflects the contact
resistance measured at every cycle. For the first 100 cycles,
the gate voltage is set to be 28.5 V, the same as the measure-
ment in Fig. 5(b) and (c). The contact resistance gradually
increases and suddenly drops in the 56th cycle, and again
the resistance increases afterward. Then the gate voltage is
increased to 29.5V and 30.5V. The contact resistance has
a drop after voltage increases, and stabilizes at 5~20 kQ.
After increasing the voltage to 31.5V, the beam collapses on
the gate terminal, causing the gate to beam shortage which
cannot be recovered afterward. The measurement indicates
that a higher gate voltage helps to stabilize the contact
resistance, but further improvement should be done by proper
surface coating [43]-[45]. A long time accelerated reliability
measurement can be found in [29]. A 28 um long device
is cycled for 28 hours under a 300°C environment without
obvious performance degradation.

V. STATISTICAL STUDY ON PULL-IN VOLTAGE AND YEILD

After single device study, statistical measurement of pull-in
voltage and process yield have been carried by measuring
800 devices, which includes 500 fixed-fixed beam NEMS
switches (50 different dimensions) and 300 cantilever beam
switches (30 different dimensions). These 800 devices are
picked from 5 different positions across the same wafer. Every
chip contains two devices with identical dimension. Only two
most important factors, beam length and beam thickness vary,
while other parameters are fixed. All parameter combinations
shown in table II are studied. Furthermore, for the fixed-fixed
beam, two addition parameters, the actuation gap, ggp, and
the contact gap, gpg, are also studied with two combinations.

Before electrical measurement, analytical solution and finite
element modeling are performed to estimate the pull-in voltage
for each dimension. With simple parallel-plate model, pull-in
voltage of NEMS switch in vacuum is:

|8kerr 8
Vi = | =268
27¢oL pw

Where w is the thickness of the beam, ¢g is the permittivity
of vacuum, k.rr is the effective spring constant of the beam,

ey

TABLE I
DESIGN PARAMETER

Quantity Design Value
Beam length, Z; 28 pm, 32 um, Tgnpm, 60 pm, 100
Fixed-fixed Beam width, ¢ 300 nm, 400 nm, 500 nm, 600 nm,
beam 700 nm
(150 nm,100 nm),
Gap, (g5, &on) (200 nm,150 nm)
12 pm, 14 pm, 16 pm, 20 pm,
Beam length, Lg 30 um, 50 um
cantilever . 300 nm, 400 nm, 500 nm, 600 nm,
Beam width, ¢
700 nm
Gap, (gps, £65) (150 nm,100 nm)

which is related to beam type and the electrostatic force
distribution along the beam. For a more accurate kerr, we
consider the drain voltage is normally much smaller than the
gate voltage, with no electrostatics force from drain terminal
contributed to the pull-in. For fixed-fixed beam cases, the
electrostatic force is missing in the middle of the beam.
Thereby, the effective spring constant of the fixed-fixed beam
is given by:

_ 4Ewe3
L%L(Lg — Lg)

Where E is the young’s modulus of molybdenum.
The pull-in voltage of the fixed-fixed beam is given by:

kerf )

3.3
v, — 32E1°gsp
P 27e0L% Ly(Lp — Lg)

Similarly, for cantilever case, we consider no electrostatic
force at the tip of the beam:

3)

orr — 2Ewt3 @
T L2l - Lg)
The pull-in voltage is given by:
16E13g}
Vpi = ;568 5)
278()LGLB(4LB — Lg)

Notice the structure layer thickness has been cancelled dur-
ing the calculation, therefore it does not have an impact on the
pull-in voltage in this model. There are a lot of assumptions for
the parallel-plate model: a linear spring constant of the beam,
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Fig. 6. Pull-in voltage summary of fixed-fixed beam devices with
gGB = 150 nm, and gpp = 100 nm, with beam length Lp, beam width
t varies.

a piston-like motion where pull-in always occurs when
deformation reaches one-third of the actuation gap, no fringing
field taken into account. 2D and 3D simulations are performed
for higher accuracy, using COMSOL Multiphysics tool [46].
The 2D model covers a very wide range of dimension, and we
only did 3D simulations of the dimensions shown in Table II.
The simulation sweeps the voltage from a smaller guessed
value until convergence failure near the pull-in, and then this
voltage is recorded as pull-in voltage. The simulation generally
takes quite a lot computational cost: one 2D simulation takes a
few minutes, while 3D simulation needs tens of minutes using
a state-of-art workstation.

The simulation results have been plotted in Fig. 6-8.
Where Fig 6 is fixed-fixed beam device with gpp=100 nm,
g6=150 nm. Fig 7 is also fixed-fixed beam device, but with
gpp=150 nm, g5p=200 nm, Fig 8 is the cantilever device
with gpp=100 nm, ggp=150 nm. The 3D simulation results
are typically 10% lower than the 2D simulation, which is
most likely caused by the fringing field out-of-plane. Although
so many assumptions are applied to the analytical solution,
it appears that by simply adding a constant coefficient to
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equation (3) and (5), the analytical solution would fit the
2D simulation very well.
For fixed-fixed beam:

32Er3g}
Vpi = agy - GB (6)
2780LGLB(LB — Lg)
For cantilever beam:
16E3g3
Vpi = ac > e @)
2780LGLB(4LB — Lg)

By assigning ayr = 1.26 and a. = 1.4, the deviation
between analytical solution and 2D simulation is only £2%
for fixed-fixed beam and £4.5% for cantilever across the
whole simulation range. For 3D simulation cases, assigning
agr = 1.2 and a. = 1.3, the deviation still reaches 10% in
some cases. The accuracy of the analytical model is higher
when Lp/t is smaller than 70, with 4% for fixed-fixed beam
and £5% for cantilevers. Although the equation is constrained
to a limited range, it is still acceptable as very high beam
length to width ratio is not desired in actual design, which
will be discussed later.
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With the prediction of the pull-in voltage, 800 devices
are measured individually. The procedures are as follows:
an [-V sweep starts from OV with 0.1V step. 10 nA compliance
is given to each terminal. Current from every terminal is
monitored. Once pull-in phenomenon is observed, the I-V
sweep would be terminated manually, and typically the device
would be overdriven for 1V. Based on the measurement, we
can classify the 800 measurements into 6 different categories
below:

i. Repeatable devices: after the I-V sweep, a repeatable
device shows beam current and drain current in the opposite
direction. The gate current keeps at noise level as shown
in Fig. 9(a). A quick cycling test (for around 100 cycles) shown
in Fig. 9(b) verifies the repeatability. ii. Gate to beam pull-in:
in I-V sweep, the gate current raises at the same time with the
beam current or drain current as shown in Fig. 9(c), no cycling
behavior can be observed in these devices. iii. Secondary
pull-in: in the I-V sweep, the devices behave like the repeatable
devices at first, but they quickly show the gate to beam pull-in
right after the first pull-in as shown in Fig. 9(d). iv. Stiction:
in I-V sweep, the signal is identical to the repeatable devices
shown in Fig. 9(e). But in the following cycling measurement
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and I-V sweep as shown in Fig. 9(f), the devices have constant
current between drain and beam even with OV gate voltage
applied. v. Short circuit: in I-V sweep, the drain current
and beam current appear from the beginning of the sweep.
vi. No signal: even after very large voltage overdrive, there is
no current observed in any of the terminals.

Detailed causes of the failure will be discussed later.
We focus on the pull-in voltage analysis first. In the above
6 cases, pull-in voltage can be obtained from case 1 to case 4.
All pull-in voltage data have been plotted in Fig 6~8, the
number besides the measurement data show the quantity of
the data.

Generally the measured pull-in voltages for fixed-fixed
beam NEMS switches are smaller than simulation when beam
length is smaller than 60 um. In Fig 4(f), (g) and (h),
an extra sidewall exists on every edge, which will induce an
extra electrostatic force. On the other hand, when the beam
length is larger than 60 xm, the pull-in voltage is much
higher than expected. The test structure is checked under
a holographic microscope (Lyncee Tec, DHM-R2200). For
a 60 um fixed-fixed beam, the maximum deflection in the
middle is about 200 nm as shown in Fig. 10(a), therefore, the
effective capacitance between gate terminal and beam terminal
is much smaller.

For cantilever case, the problem becomes severe, as the test
structure has a deflection of more than 300 nm at the point,
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12 um from the anchor, as shown in Fig. 10(b). As a result,
only the first 12 um near the anchor is effectively used for
electrostatic actuation, and thus the mean value of the pull-in
voltage does not decrease when the beam length increases
from 12 xum to 50 gm. The pull-in voltages cover quite a wide
range as the beam deflection varies across different positions
of the wafer. We do observe that some devices have drain to
beam contact even when the beam length is very long, which
indicates in some area the bending is much smaller.

The deflection is induced by the stress gradient of the
film deposited. We found no uniform control effect on the
deflection is achieved even after thermal annealing, excimer
laser annealing and Ar plasma treating. Nonetheless, if we can
maintain the film thickness and keep scaling down all the other
dimensions, the deformation can be confined to an acceptable
level. Fixed-fixed beam with less than 40 gm beam length
is preferable. For cantilever, the length should be smaller than
3 um when targeting to achieve tip bending of less than 50 nm.

Next, we investigate the failure mode and process yield for
different dimensions. Fig. 11~13 show the count of different
failure modes referring to the devices from Fig. 6~8. For the
above mentioned failure modes, it is difficult to confirm them
in the SEM directly, as a beam to gate shortage normally leads
to device melting.

In Fig. 11, the devices generally show very good repeata-
bility with the beam width of # >500 nm and beam length of
Lp <40 pum. All 60 devices fabricated in the six groups show
good repeatability and it indicates all groups have a perfect
process yield. Overall, the predominant failure mode is the
gate to beam pull-in, in which the beam cannot withstand the
excessive electrostatic force and collapses on the gate terminal,
after the beam touches the drain. Meanwhile, the secondary
pull-in effect can be treated as a special case of gate to beam
pull-in, as after a successful drain to beam touch, a small
extra voltage makes the beam collapse on the gate. A few
stiction cases can also be observed when the beam is too long,
when the elastic force is not high enough to detach the beam
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from the drain terminal. The stiction mode is good for non-
volatile memory application, but we fail to observe consistent
stiction phenomena in all switches of certain dimensions,
indicating that the van de Waals force on the contact surface
varies from device to device. Thus, a wider drain terminal
should be used for non-volatile memory devices.

Another major failure mode in this group is short circuit, it
is understandable that very long and thin beams will touch the
other terminal when the stress is high. However, the 300 nm
wide beam group has a lot of short circuit devices. The main
reason is that the etching step between Fig 3(f) and Fig 3(g)
cannot fully etch away unwanted molybdenum, because the
lithography condition is a bit different in the case of 100nm
wide gap and 300 nm wide beam. This problem can be
easily avoided by adding etching time. In logic circuit appli-
cations where the devices have similar gap and beam width.
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The similar reason, why some devices in that group have no
signal when the gap opens on the actuation side, is that the
beam is fixed on the other side caused by incomplete etching.

Most failures are closely related to the stiffness of the beam,
the effective spring constant is antiproportional to (Lg/t) 3.
The process yield drops quickly with L/t >70 as shown
in Fig. 14. As mentioned, in the fabrication process after the
oxide mold is prepared, decreasing or increasing the oxide fin
thickness has the similar effect on reducing the pull-in voltage.
So reducing the oxide fin thickness is more favorable as it will
also decrease the beam length to width ratio and improve the
device yield as shown above.

For fixed-fixed beam with ggp = 200 nm and
gpp = 150 nm shown in Fig 12, the dominant failure mode
is the gate to beam pull-in. Compared to the previous group,
all the dimensions are the same except for the gap width. The
actuation gap to the contact gap ratio, gg/gps, is only 1.33,
where the previous group has a ratio of 1.5. The ggp/gpB
ratio determine how close between the beam and the gate
terminal after pulling-in comparing to the whole actuation gap.
A low ggp to gpp ratio means the beam is closer to the gate
terminal and more likely to collapse. Therefore, the difference
between actuation gap and contact gap is a very sensitive factor
for device yield, and maintaining a 1.5 ratio is a reasonable
requirement.

Lastly, the cantilever failure modes are shown in Fig. 13.
From previous discussion on pull-in voltage of the cantilever
(Fig. 8), they suffer severe bending and the curvature varies
from device to device. In the statistical measurement, most
devices experience a direct beam to gate touch.

VI. CONCLUSION

In conclusion, we have reported all-molybdenum based
NEMS switches fabricated by a one mask Damascene-like
process. The low temperature process provides metal-based
laterally actuated NEMS switches of 100 nm wide gap with
smooth contact surface. A comprehensive statistical study of
800 fabricated devices lead to guidelines for high-yield NEMS
switch design. Important factors of laterally actuated NEMS
switch design are summarized below. Firstly, the deformation
of the metal film needs to be carefully considered. Lack of
method to eliminate the stress gradient, the only effective
way is to maintain the metal film thickness and reduce the
beam length simultaneously. For 300nm thick molybdenum

1885

film, maximum length of fixed-fixed beam and cantilever is
40 um and 3 um respectively. For certain critical dimension
and pull-in voltage, a low beam length to width ratio is
preferable to obtain a very high process yield. Actuation
gap to contact gap ratio is also critical and should be no
smaller than 1.5.
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