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Abstract—Free-standing polycrystalline silicon (Si) based pho-
tonic crystal (PhC) membranes with etched circular and square
holes are developed to display high reflectivity in the mid-infrared
(MIR) region. Greater than 90% reflection was measured in the
MIR wavelengths around 3.58 μm. By using square air holes in the
PhC membrane, the mechanical strength of the polycrystalline Si
membrane can be enhanced as square air holes have a lower filling
factor of 36% of air holes, compared to 49% in circular air holes
while keeping the reflectance around 3.45 μm more than 90%. Such
Si PhC membranes offer opportunities for specific applications like
filters. To illustrate the feasibility of such devices, simulation works
are done by configuring two Si PhC membranes to create a Fabry–
Perot interferometer operating in MIR region. The filtered peak
shows a full width half maximum of 0.08 nm which corresponds to
a quality factor of around 43800, thus demonstrating the possibility
of high-resolution applications such as gas sensing and hyperspec-
tral imaging.

Index Terms—Fabry–Perot, optical properties, photonic crys-
tals, thin films.

I. INTRODUCTION

O PTICAL reflectors play an important role in the real-
ization of many optoelectronic devices and photonic ele-

ments such as mirrors, sensors and interferometers. Such feature
of high reflectivity has been demonstrated by various methods
as research in the field gained pace. Sub-wavelength metal grat-
ings have been shown to produce broadband reflection over a
large bandwidth but are hindered due to its high intrinsic ab-
sorption losses [1]–[6]. Multi-stacked dielectric Bragg reflector
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is another common method used to produce highly reflective
surface [7]–[10]. Alternating thin film of contrasting refractive
index is deposited to produce a multi-layered structure which
has displayed very low loss. However, the choice of the materials
for the individual layers is limited due to the stringent require-
ment of the refractive index. In addition, the thickness of the
layers has little tolerances and this poses a significant challenge
in fabrication. These problems are more compounded when re-
alizing such multi-layered structures to work in the mid-infrared
(MIR), far-infrared (FIR) and THz regions as the thicker layers
have more residual stress.

Recently, silicon (Si) photonic crystal (PhC) has attracted
much attention due to its small size and exceptional optical
performance. In particular, two dimensional (2-D) PhC has
been shown to display Fano resonance [11]–[14] which is a
characteristic of extremely high reflection. With properly de-
signed parameters, high reflection can practically be achieved
across different frequencies region. 2-D PhC based single layer
membrane devices have been reported by various groups for
their high reflectivity in the optical communication applica-
tions, i.e., relevant wavelength of about 1550 nm [15]–[20], as
well as in the MIR and FIR wavelength region [11], [21]–[24].
These reports show the potential of PhC membranes in practical
applications.

There is however a lack of the investigation in using poly-
crystalline Si for the formation for such PhC membrane. This is
mainly due to the challenge of the stress present in the membrane
which usually causes buckling [25], [26] and even cracking. An
attempt to achieve a free-standing polycrystalline Si PhC mem-
brane was done by Kim et al. in the NIR range [27]. In order
to alleviate the stress present in the polycrystalline Si mem-
brane, the authors used tensile stressed silicon nitride for stress
compensation. However, such techniques require good match-
ing between the stress in the PhC membrane and silicon nitride,
which is difficult in typical deposition processes.

One major application of highly reflective surfaces is in the
formation of Fabry–Perot interferometer (FPI) where two highly
reflective surfaces are placed parallel to each other. The gap be-
tween the mirrors is designed to be nλ/2, where n is an integer
and λ is the desired filtered wavelength, in order to achieve
constructive interference of the desired wavelength. The gap
between the two highly reflective surfaces can be tuned by in-
corporating microelectromechanical systems (MEMS) technol-
ogy. Such tunable filters are extremely important in applications
like gas sensing [28], [29] and hyperspectral imaging [30], [31].
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Fig. 1. (a) Schematic of the structure with circle air holes and (b) SEM image
of the fabricated device.

Many attempts in recent works use multi-layered structure to
achieve high reflectivity [29], [30], [32]–[34]. However, multi-
layered structures are typically heavy and require high actua-
tion voltage to achieve tunability. In addition, when working
at longer wavelengths, the thickness of the layers has to be in-
creased and this complicates fabrication. Suh et al. introduced
the idea of using 2-D PhC as the reflective mirror and proved
theoretically the high performance of such FPI [35].

In this paper, we report the design, fabrication and charac-
terization of ultra-compact polycrystalline Si based 2-D PhC
membranes working in the MIR range. Two designs of the PhC
membranes with circular and square air holes were investigated
and characterized to show greater than 90% reflectivity in the
MIR wavelength range around 3.45 μm, which is an important
wavelength for application of detection of gases with hydrocar-
bons. To the best of our knowledge, this is the first demonstration
of a free-standing polycrystalline Si PhC membrane to be used
in MIR region. High annealing temperature is used to reduce
the residual stress in the membrane. In order to further reinforce
the mechanical strength of the PhC membrane, PhC with square
air holes was developed. Compared to circular air holes, PhC
with square air holes maintains high reflectivity in MIR region.
However, square air holes when compared to circular air holes,
have a lower filling factor, which is defined as the volume of
air holes over the volume of Si within a unit cell. This makes
the membrane less brittle while keeping the reflectance around
3.45 μm more than 90%. To illustrate the feasibility of imple-
menting such 2-D PhC mirrors in FPI, simulations based on
the fabricated dimensions as well as optimized values are done.
The filtered peak shows a full width half maximum (FWHM)
of 0.08 nm which corresponds to a quality factor (Q-factor) of
around 43800.

II. DESIGN, MODELING, AND FABRICATION

The schematic of the design with air holes is shown in
Fig. 1(a). The radius of the air hole is indicated as r, the lattice
constant is defined as a and the thickness of the PhC membrane
is t. In our proposed PhC device, the ratio of r/a and t/a are set
to be 0.395(2πc/a) and 0.513(2πc/a) respectively.

Fig. 2 shows the corresponding band structure of the PhC
design that was calculated based on plane wave expansion [36].
As can be seen, a band gap (shaded in red) is found from
0.528(2πc/a) to 0.587(2πc/a). In order to have a high reflectivity
at 3.45 μm, the lattice constant is determined to be 1.92 μm. The
radius is calculated to be 0.758 μm and the thickness of the Si

Fig. 2. Band structure of the propose PhC with circle air holes with the band
gap region shaded in red.

Fig. 3. Simulation of the reflectance based on the fabricated PhC with circle
air holes overlaid with the measurement result.

membrane is 0.985 um. Fabrication of the PhC began with a bare
Si wafer and a 1 μm thick silicon oxide (BOX) was grown using
thermal oxidation. This was followed by a 1 μm thick PECVD
Si layer which acts as the device layer. In order to ensure that
the Si device layer is polycrystalline and to reduce the residual
stress of the eventual suspended membrane, a high temperature
anneal of 1000 ◦C was done for 30 min. The surface was then
patterned by using deep-UV lithography and deep reactive ion
etching (DRIE). In Fig. 1(b), the scanning electron microscope
(SEM) photograph is shown. Due to fabrication uncertainties,
the radius of the air holes is 0.77 μm and the lattice constant is
1.95 μm. The thickness of the device layer is measured as 1 μm.

Simulation is done using finite difference time domain
(FDTD) methodology to examine the performance of the PhC
membranes. The refractive index of the Si is assumed to be
3.464 and the boundary conditions of the unit cell is set to pe-
riodic. As shown in Fig. 3, the simulated reflectivity displays
a peak around 3.60 μm and more than 90% reflectivity over a
286 nm range. In addition, it also matches well with the band gap
region from the band structure calculated in Fig. 2, where the
reflectance is high within the band gap region and experiences a
drop once outside it. Generally, the simulated result agrees well
with measurement result expect for two dips in reflectivity at
3.31 μm and 3.45 μm which will be accounted later in the paper.
The higher reflectivity measured after 3.70 μm wavelength is
due to the reflection caused by the presence of the substrate.
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Fig. 4. (a) Schematic of the structure with square air holes and (b) SEM image
of the fabricated device and (d) simulation of the reflectance.

Fig. 5. Band structure of the propose PhC with square air holes with the band
gap region shaded in red.

Similar approach is adopted for the design of the square air
holes in Fig. 4(a). The length of the square air hole, L, is de-
signed to be 0.618 a and the thickness, t, is set to be 0.588 a.
Based on the band gap region from 0.488(2πc/a) to 0.501(2πc/a)
in Fig. 5, the lattice constant is determined to be 1.70 μm. This
equates to an L of 1.05 μm and t of 1 μm. The SEM photograph
of the fabricated PhC membrane is shown in Fig. 4(b). Simi-
lar to the circle air holes, fabrication uncertainties caused the
measured length of the square air holes to be 1.05 μm and the
lattice constant to be 1.75 μm. The device layer of the square
air holes is still 1 μm. It can be observed that the square air
holes are rounded and the radius of the curvature of the edges
is estimated to be around 200 nm. Based on FDTD simulation
on the effect of rounded edges, this is within the tolerance that
is allowed for a high reflectance. From the fabricated param-
eters, it can be calculated that the filling factor of the square
air holes in the membrane is 36%. In contrast, the filling factor
for circular air holes is 49%. The lower filling factor allows
the membrane to be mechanical stronger and hence less brittle.
This allows more flexibility in design and fabrication especially
in MEMS application where such membranes are released and
free-standing, as demonstrated in our PhC design. Simulation is
also performed using FDTD calculation. The simulated result
shows a high peak around 3.55 μm in Fig. 6 and this match well
with the measurement data.

III. DEVICE CHARACTERIZATION

The fabricated devices are characterized using Agilent Cary
620 FTIR Microscope where input wavelengths ranging from
around 2 μm to 8 μm are incident perpendicularly onto the
designed PhC. The reflected light from the membrane is then

Fig. 6. Simulation of the reflectance based on the fabricated PhC with square
air holes overlaid with the measurement result.

Fig. 7. Experimental results of stationary circle air holes design (with BOX).

collected by the mercury cadmium telluride detector. The mea-
sured reflectance is normalized against a gold sample which is
assumed to have an almost perfect reflectance across the in-
terested wavelengths [37]. The membrane size of the PhC is
designed to be 300 by 300 μm2 and the beam emitted by the
FTIR microscope is 250 by 250 μm2 . This ensures that the
illuminated beam is shone entirely on the patterned region in
order to achieve maximum accuracy of the measurement. The
experimental results of circle air holes are shown in Fig. 7. The
measured reflectance of the circle air holes of radius 770 nm
shows a peak of 95.5% at wavelengths around 3.61 μm and
reflectance greater than 90% spans from 3.56 μm to 3.68 μm.
As the radius of the circle air holes changes, it is observed that
the reflected bandwidth experiences a blueshift as the radius in-
creases. This can be attributed to the slight shift in the band gap
region towards higher frequencies as the ratio of r/a increases.
Outside the band gap region, low reflectance values are mea-
sured. It is expected as the light enters one of the propagation
modes sandwiching the band gap region.

For an increased performance of the PhC membrane with
circle air holes, the BOX layer is removed by isotropic etching
using vapour hydrofluoric acid (VHF). The schematic of the
released structure is shown in the inset of Fig. 8. The measured
reflectance of the PhC membrane with different radius of the
circle air holes is shown as well. A peak of 96.5% reflectance
is observed at 3.58 μm for circular air holes with radius of
770 nm. Generally, the spectra measured for the released PhC
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Fig. 8. Experimental results of released cicle air holes design (without BOX).

Fig. 9. Experimental results of stationary square air holes design (with BOX).

membrane with circle air holes shows a distinct blueshift when
compared to the unreleased circle air holes design. As the BOX
layer is removed, the refractive index of the cladding below
the PhC membrane decreased from 1.44 (silicon oxide) to 1
(air). This reduces the effective refractive index which leads to
the movement of the spectra towards lower wavelengths. Two
reflectivity dips are also observed at 3.31 μm and 3.45 μm. As
mentioned, reflection from the Si substrate causes increase in
reflectance. However, destructive interference occurs at these
two wavelengths and this causes the reflectance to display dips
in the spectrum.

Fig. 9 shows the experimental results of 300 by 300 μm2 unre-
leased PhC membrane with square air holes. For square air holes
with length of 1035 nm, a reflectance peak of 92.0% is present at
3.60 μm wavelength. The high reflectance region spans across
a much smaller bandwidth from 3.58 μm to 3.61 μm. Similar to
the PhC membrane with circle air holes, when the length of the
square air holes increases, the reflectance peak shows blueshift
because more area within the membrane becomes air which has
a lower refractive index. This causes the band gap region mov-
ing towards higher frequencies. After the BOX layer is removed
using isotropic etching by VHF, the reflectance is enhanced as
shown in Fig. 10. The measured reflectance for the square air
holes with length 1035 nm is 97.2% at 3.59 μm wavelength.
Similar blueshift can be seen when the length of the square air
holes is increased.

In summary, the measurement results of both PhC with cir-
cular air holes and square air holes verify that PhC with square
air holes shows high reflectivity that is comparable to PhC with
circular air holes. While not sacrificing optical performance,

Fig. 10. Experimental results of released square air holes design (without
BOX).

Fig. 11. (a) Schematic of FPI using PhCs as mirrors and (b) model of PhC
membrane used in simulation programme, CST MWS.

square air holes offers better mechanical strength due to its
lower filling factor of 36%. In contrast, circular air holes are
larger in size and hence have a higher filling factor of 49%. This
makes square air holes a more attractive candidate especially in
MEMS applications.

IV. SIMULATION OF FPI

In this section, the feasibility of implementing 2-D PhC de-
signs as high reflectivity mirror in FPI is explored using sim-
ulations done by computer simulation technology microwave
studio (CST MWS). As discussed previously, such high re-
flectivity mirrors are commonly implemented using multi-layer
structures which faces the problem of high residual stress in the
layers. In contrast, 2-D PhC designs are able to achieve high
reflectivity using a thin Si membrane which is light weight and
easy to fabricate.

The schematic of the FPI is shown in Fig. 11(a). The PhC
membranes are used as the mirrors and the top Si PhC mem-
brane is supported using springs. The cavity length can be made
tunable by using MEMS techniques like applying a voltage dif-
ference between the top and bottom Si slab. This induces an
attractive electrostatic force which will pull the top and bottom
slabs towards each other, hence reducing the gap between them.
The transmission output of the FPI as the cavity length changes
is simulated using CST MWS. The simulation model is shown
in Fig. 11(b). Only the unit cell indicated by the red box is sim-
ulated and periodic boundary condition is set on all four sides.
This helps to reduce computation time while maintaining high
accuracy in the simulated output. In order to show the feasibility
of using square air holes to be used in FPI, we will compare its
performance with that of circular air holes.
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Fig. 12. Simulated transmittance of the FPI with various cavity length using
square air holes.

Fig. 13. Simulated transmittance of the FPI with various cavity length using
circle air holes.

In Fig. 12, the simulated spectrum of the FPI using square
air holes is presented. In the simulations, the inputted light
is propagating along the z direction and the electric field is
along the x direction. The values of L, a and t are 1.05 μm,
1.70 μm and 1 μm respectively. The FPI shows a tuning range
of 25 nm from 3.497 μm to 3.522 μm when the cavity length
is changed 1.675 μm to 1.775 μm. When the cavity length is
1.725 μm, the FWHM of the simulated peak is 0.08 nm which
corresponds to a Q-factor of 43800. This is around an order
of magnitudes higher than the simulated Q-factor of FPI using
multi-layered structures [29], [32], [34]. The enhanced Q-factor
is attributed to the dual filtering effect of the PhC membrane. The
first filtering effect is due to the destructive interference of the
undesired wavelength within the Fabry–Perot cavity. The second
filtering effect is due to the wavelength selective reflectivity
that is intrinsic in the PhC design. In order to fully assess the
practicability of using square air holes in FPI, FPI with circular
air holes mirrors are also simulated for comparison using similar
method mentioned above. The radius of the circular air hole
is 770 nm and the lattice constant is 1.95 μm. The top and
bottom Si slabs are maintained at 1 μm. The simulated results
are presented in Fig. 13. The FWHM of the transmittance peak
corresponding to a cavity length of 2 μm is 0.07 nm which
equates to a Q-factor of about 52000. The tuning range of the
FPI is 28 nm from 3.681 μm to 3.709 μm when the cavity length
is changed 1.950 μm to 2.050 μm.

Based on the simulations of the FPI using both circle air
holes and square air holes, it has been shown the proposed

PhC designs are ideal candidates for the realization of the high
reflectivity mirrors. At the same time, the use of PhC with square
air holes in FPI also displays good optical performance which
is comparable to PhC with circle air holes. As described in
pervious section, using PhC with square air holes offers higher
mechanical strength which is vital in applications such as FPI
where the PhC mirrors are free-standing.

V. CONCLUSION

In conclusion, two designs of 2-D PhC based polycrystalline
Si membranes have been demonstrated as ultra-compact Si
based reflector. Both the circle air holes and square air holes
designs were measured to show 96.5% and 97.2% reflectance
around 3.58 μm, which is an important wavelength for hydrocar-
bon gas sensing in the MIR region. While not sacrificing optical
performance, PhC with square air holes offers more mechanical
strength due to its lower filling factor of 36%. The feasibility
of implementing such 2-D PhC design as mirrors in FPI was
also explored. It was shown through simulations that by using
PhC with square air holes as mirrors in the FPI, the output peak
has a FWHM of 0.08 nm and a Q-factor of around 43800. This
demonstrates clearly the potential of using such 2-D PhC mir-
rors to form compact FPI for high resolution applications such
as gas sensing and hyperspectral imaging.
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