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Abstract. We present the design and the characterization of a polycrystalline silicon (Si)-based
photonic crystal (PhC)-suspended membrane, working in the mid-infrared wavelengths. In order
to facilitate transmission measurement, the PhC membrane is released by removing the under-
neath Si substrate. Around 97% reflection and 3% transmission at 3.58-μm wavelength are mea-
sured at room temperature. Characterization is also done at 450°C and it reveals that the peak
reflection of the PhC membrane shifts by 75 nm to higher wavelengths. This corresponds to a
linear wavelength shift of 0.174 nm∕°C and the thermo-optic coefficient is calculated to be
þ1.70 × 10−4 K−1. By altering the dimension of the PhC air holes, it is also shown that
such a thermo-optic effect is compensated. © 2014 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JNP.8.084096]
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1 Introduction

Two-dimensional (2-D) photonic crystal (PhC) reflectors have been attracting great research
interest due to their exceptional optical performance.1,2 2-D PhC has been shown to display
much lower intrinsic losses,3–13 and high reflection in PhC can be realized through the use of
only a single layer of dielectric. This reduces residual stress with the deposited films especially
when working in long wavelengths such as the mid-infrared (MIR) region. In view of these ben-
efits, a 2-D PhC reflector has been proposed to be integrated with optoelectronics devices. One
important application of a 2-D PhC reflector is in the realization of a Fabry–Perot interferometer
(FPI), which has been used as an optical filter. By arranging two highly reflective mirrors in
parallel and separated by a gap distance of nλ∕2, where n is an integer and λ is the desired filtered
wavelength, high transmission of only the desired wavelength can be achieved.

Tunability of the output wavelength can be obtained by incorporating microelectromechan-
ical systems technology to change the gap distance.14 Current methods to form the highly reflec-
tive mirror typically employ the use of multilayered structures,15–18 which require high actuation
voltage and the deposition of thicker layers for the FPI to work in the MIR regions for gas
sensing. This leads to complicated fabrication. Hence, the use of a 2-D PhC as the reflective
mirror is a very viable option to mitigate the difficulties faced in multilayered structures.19,20 One
important application that such FPIs can be used for is in gas sensing, where the identification of
gas composition is needed in many industrial processes.21–24 Methane is an explosive gas and is a

†Current address: Excelitas Technologies, 8 Tractor Road, Singapore 627969, Singapore.

*Address all correspondence to: Chengkuo Lee, E-mail: elelc@nus.edu.sg

0091-3286/2014/$25.00 © 2014 SPIE

Journal of Nanophotonics 084096-1 Vol. 8, 2014

http://dx.doi.org/10.1117/1.JNP.8.084096
http://dx.doi.org/10.1117/1.JNP.8.084096
http://dx.doi.org/10.1117/1.JNP.8.084096
http://dx.doi.org/10.1117/1.JNP.8.084096
http://dx.doi.org/10.1117/1.JNP.8.084096


primary gas ingredient in mining.25 In industrial applications such as down-hole oil drilling,
detection of methane gas provides information for the drilling process and hence determines
the stop point where the drilling is completely exhausted. It is expected that the gas detector
will be required to work in a high temperature harsh environment in such an application.

The thermo-optic effect is a well-known phenomenon where the optical property, namely the
refractive index, of a material varies with temperature change. In the case of down-hole oil drill-
ing where a high operation temperature is expected, the thermo-optic effect has to be taken into
account for design optimization. Numerous works have recently been done to characterize the
impact of temperature change on the optical performance of photonic devices.26–29 Through
greater understanding of the thermo-optic effect, efforts are also being made to harness the effect
for applications such as optical switches, optical filters, and temperature sensors.30–39 However,
in applications where the thermo-optic effect is undesirable, the temperature effect on the optical
performance has to be compensated.40,41

In this work, we present the design and the characterization of a polycrystalline Si-based PhC-
suspended membrane, working in the MIR wavelengths. In our previous effort, the Si substrate
underneath the PhC layer was not removed and this will pose problems when integrating a PhC
reflector in FPI.20 In this work,we demonstrate a free-standing polycrystalline Si-based PhCmem-
brane where the Si substrate is removed. In particular, the high reflection wavelength is desired to
be around 3.55 μm, which is the absorption wavelength range of methane gas. Characterization of
both the reflection and the transmission is done at room temperature. Experimental measurements
show that around 97% reflection and 3% transmission at a 3.58-μm wavelength are obtained for
the PhC membrane. In order to show the feasibility of such a PhC membrane in applications such
as down-hole oil drilling, characterization is also done up to 450°C. Due to the high temperature,
the peak reflection of the PhCmembrane shifts by 75 nm to higher wavelengths. This corresponds
to a linear wavelength shift of 0.174 nm∕°C. In order to ensure that the peak reflection of the PhC
membrane remains around 3.55-μm wavelength, we have demonstrated that the thermo-optic
effect can be compensated by altering the dimension of the PhC air holes.

2 Design and Simulation of Polycrystalline Si-Based Photonic Crystal
Membrane

As the intrinsic absorption wavelength of methane is around 3.55 μm, the output wavelength of
the FPI is designed to be at 3.55 μm. This means that the design of the PhC membrane reflector
should display high reflection at 3.55 μm as well. The design of the polycrystalline Si-based
PhC-suspended membrane is shown in Fig. 1(a). In order to examine the reflection and the trans-
mission characteristics of the PhC membrane, the Si substrate is removed. For high reflection and
low transmission at 3.55 μm, the thickness, t, the radius, r, and lattice constant, a, are designed to
be 1 μm, 760 nm, and 1.95 μm, respectively, as shown in Fig. 1(b).

Fabrication of the PhC-suspended membrane begins with growing a 1-μm thermal SiO2 at
1050°C on a bare 8′′ Si wafer. The device layer of 1-μm-thick polycrystalline Si is then deposited
using low pressure chemical vapor deposition (LPCVD). This is followed by a thermal anneal at

Fig. 1 (a) Schematic of fully released photonic crystal (PhC) membrane with etched air holes. The
Si substrate and BOX SiO2 are removed using deep reactive ion etching and the vapor hydro-
fluoric acid. (b) Top view of the PhC membrane with the radius of the air holes defined as r , the
period as a and the thickness of the polycrystalline Si as t .
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1000°C for 30 min to reduce the residual stress within the device layer. The air holes are then
patterned using deep-UV lithography and etched using deep reactive ion etching (DRIE). Before
proceeding to release the PhC membrane from the Si substrate, the front of the wafer is covered
with 1-μm-thick plasma-enhanced chemical vapor deposition (PECVD) SiO2. The back of the
wafer is then patterned using photolithography and DRIE is used to etch the Si substrate. Finally,
the whole PhC membrane is released using vapor hydrofluoric acid. The fabricated PhC mem-
brane is shown in Fig. 2. The radius of the air holes and the lattice constant of the PhC structure
are observed as 760 nm and 1.95 μm, respectively, with little variation along the PhC membrane.

Simulations of the optical performance of the PhC-suspended membrane are done using finite
difference time domain methodology. The permittivity of the polycrystalline Si is set to 12, and
periodic boundary conditions are used on the sides of the unit cell.20 The incidence angle of the
input light beam is set to 45 deg, which is consistent with the experimental setup that is used for
measurement. The simulated reflection result is overlaid with themeasurement results as shown in
Fig. 3(a). Generally, the simulated result agrees with the measurement data and both show high
reflection around 3.58 μm. A sharp dip in reflection is also found at 3.47 μm, and such a dip in
reflection is attributed to the nonzero angle of incidence according to Crozier et al.43 In this case,
the incidence angle is set to 45 deg. In Fig. 3(b), the transmission characteristic of the PhC mem-
brane is examined. A similar spike is also observed in the transmission spectrum at 3.47 μm and
this can also be attributed to the incidence angle of 45 deg. In both the simulation and the meas-
urement, low transmission is shown in wavelength regions that exhibit high reflection.

3 Measurement of Polycrystalline Si-Based Photonic Crystal-Suspended
Membrane

The Agilent (Santa Clara, California) Cary 620 Fourier transform infrared spectroscopy (FTIR)
microscope equipped with a mercury cadmium telluride (MCT) detector is used to measure both
reflection and transmission spectra from 2 to 8 μm. Figure 4(a) shows the schematic of the PhC
membrane with the incident MIR light. The incidence angle, θ, is set to 45 deg and the incident
beam plane angle, φ, is 0 deg. Figure 4(b) shows the measured reflection spectrum normalized
against a gold sample, which has around 97% reflection in the MIR region.44 As r increases, it
can be seen that the wavelength of the peak reflection decreases due to the lower refractive index
of the PhCmembrane. With the radius of the air hole at 760 nm, the peak reflection wavelength is
at 3.58 μm, which makes these design parameters suitable for the formation of the highly reflec-
tive mirror to be used in the FPI for the detection of methane. The dips that appear in the mea-
sured reflection are, as mentioned above, due to the 45-deg angle of incidence of the FTIR
microscope used. The inset of Fig. 4(b) indicates the IR image of the PhC membrane at
3.58 μm during measurement. From the diagram, it is conclusive that the peak reflection
shown at 3.58-μm wavelength is only due to the PhC-suspended membrane. After the Si sub-
strate is removed, the transmission spectra of the PhC membranes are measured and shown in
Fig. 4(c). Again, the measured results are normalized against air and no object is placed along the
light path of the source to the MCT detector. Similar to the reflection spectrum, when r is fixed at

Fig. 2 Scanning electron microscope (SEM) image of the fabricated device with r fixed at 760 nm.
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760 nm, the transmission drops to the lowest value at around 3.58 μm. As r increases, the wave-
lengths at which low transmission is measured also display the tendency to shift to lower wave-
lengths. As low transmission wavelengths in the spectrum show high reflection as well, this
indicates that there is low loss within the PhC membrane structure.

4 Effect of Temperature on the Performance of PhC Membrane

The change in peak reflection wavelength of the PhC membrane due to thermo-optic effect of
polycrystalline Si is quantified by

Fig. 3 (a) Simulated reflection (dashed) being overlaid onto the measurement result (solid) show-
ing the high reflection around 3.55-μm wavelength. (b) Simulated transmission (dashed) being
overlaid onto the measurement result (solid) showing the low transmission around 3.55-μm
wavelength.

Fig. 4 (a) Schematic of the PhC membrane with the incident mid-infrared light, with the incident
angle θ and incident beam plane angle φ. (b) Measured reflection of PhCmembranes with different
air hole radius, r . The inset is the IR image of the sample taken at 3.58 μm of the sample when r is
760 nm. (c) Measured transmission of PhC membranes with various air hole radii.
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Δλ ¼ ΔT
�
λ0
n0

��
Δn
ΔT

�
; (1)

where n0 is the refractive index at 25°C, Δn∕ΔT is the thermo-optic coefficient, and ΔT is the
temperature change. The n0 is taken to be 3.464 in this work. The PhC-suspended membrane is
placed on a heating stage, which is capable of heating up to 450°C. The temperature within the
stage is controlled by a temperature controller with a variation of less than �5%. The meas-
urement results of the PhC membrane with r at 760 nm are shown in Fig. 5(a). At a room temper-
ature of 25°C, the peak reflection is around 3.58 μm which is the intended operating wavelength.
As temperature increases, the refractive index of the polycrystalline Si in the PhC-suspended
membrane increases. As predicted by Eq. (1), it induces a redshift in the peak reflection. At
450°C, the reflection is located at 3.65 μm and also experiences a drop in maximum intensity.
The relationship between the shifts in the peak reflection wavelength is plotted in Fig. 5(b). The
shift in the wavelength as temperature increases is 75 nm at 450°C. From the linear fit line of the
measurement results, it is measured that the thermo-optic effect induces a shift of 0.174 nm∕°C
temperature change. Using Eq. (1), the thermo-optic coefficient can be calculated to be þ1.70 ×
10−4 K−1 which is near to the value quoted by other works, where Δn∕ΔT ¼ þ1.86 × 10−4 K−1

(Ref. 42) and Δn∕ΔT ¼ þ1.80 × 10−4 K−1 (Ref. 31).
In order to compensate the thermo-optic effect, a simple methodology is to alter the air hole

dimensions when designing the device. Based on the measured data, in order to achieve a
maximum reflection at 3.55 μm at 450°C, the PhC membrane should show maximum reflection
at a 3.47-μm wavelength at room temperature. This coincides with the performance of the
PhC-suspended membrane with an r of 780 nm. The measurements of the devices are
shown in Fig. 6. As expected, the reflection displayed by the PhC-suspended membrane
with r at 780 nm shows a peak reflection at around 3.56 μm. This shows that the thermo-
optic effect which causes the reflection to redshift has been compensated through simple alter-
ation of the dimensions of the air holes. Based on this methodology of optimizing the air hole

Fig. 5 (a) Measured reflection of PhC membranes at various temperatures up to 450°C. (b) The
relationship between the shift in the peak reflection wavelength against temperature and its
corresponding linear fit line.

Fig. 6 Measurement of PhC membrane with r at 760 and 780 nm at 450°C.
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radius of the PhC-suspended membrane, the desired optical performance can be achieved at
various temperatures. This is important for industrial applications such as gas sensing in the
down-hole oil drilling process where high temperatures are expected.

5 Conclusion

We have shown the design and characterization of a polycrystalline Si-based PhC-suspended mem-
brane reflector to be used in the MIR wavelengths. As the intended application is for the sensing of
hydrocarbons, the design wavelength is fixed at 3.55 μm. The measured reflection and transmis-
sion spectra of the PhC-suspended membrane indicate that around 97% reflection and 3% trans-
mission at a 3.58-μm wavelength are obtained at room temperature. Measurements done at 450°C
reveal that the thermo-optic effect induces a linear shift of 0.174 nm∕°C temperature change. The
thermo-optic coefficient is calculated asþ1.70 × 10−4 K−1. In order to compensate the redshift of
75 nm induced by the thermo-optic effect, a simple methodology of changing the air hole dimen-
sion is feasible. Measured data of the PhC-suspended membrane with an r of 780 nm at 450°C
support the fact that such a thermo-optic effect is compensated. Based on this methodology of
optimizing the air hole radius, the use of PhC-suspended membrane for applications involving
high operating temperatures such as gas sensing in the down-hole oil drilling process can be
designed and achieved with the desired optical characteristics.
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