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Abstract
Viscosity and density are two important physical parameters of liquid. Such parameters are
widely used for label-free chemical detection. Conventional technologies employ acoustic
wave sensors to detect viscosity and density. In these sensors, the liquid under test directly
contacts with the surface of the sensor. The produced acoustic wave in the sensor leaks to the
adjacent liquid layer, causing a shift in the resonance frequency of the sensor. However, such
sensors are not able to separately measure the viscosity and density because these two
parameters jointly affect the shift of frequency. Although some indirect methods for
decoupling these two parameters have been investigated, either dual-device or simultaneous
measurement of frequency and attenuation is required. In this paper, a novel AlN based
acoustic wave sensor is developed for decoupling viscosity and density. Multiple higher order
modes of Lamb waves are generated in this sensor and employed to interact with the adjacent
liquid under test. The frequency change of two unique modes (mode C and mode D) has been
found in a linear relationship with viscosity and density, respectively. With this unique feature,
viscosity and density of a liquid can be distinguished by a single device, which is promising
for potential industrial applications, label-free chemical detection and clinical diagnosis.

Keywords: Lamb wave, viscosity, density, decoupling, MEMS sensor
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1. Introduction

Benefiting from advantages of high sensitivity, small size, real-
time readout capability, robustness and low cost [1–9], acoustic
wave sensors have been developed to sense liquid viscosity
(η) and density (ρ) for many years. Acoustic waves, which
are normally generated in the device, interact with an adjacent
liquid layer that is in contact with the device’s surface. Hence,
the acoustic wave sensor can sense the liquid mechanical
properties directly [10]. Various applications based on the
acoustic wave sensors have been successfully developed, such
as chemical detection, mixture solution analysis and blood
coagulation monitoring [10–15].

However, the main limitation of such acoustic wave
sensors is that they are not able to differentiate a liquid’s
viscosity and density [16, 17]. The frequency response of
the acoustic wave sensors is proportional to the square root
of viscosity density product [10, 18, 19]. Although many
devices have been claimed as viscosity sensors, they actually
assume that density is constant and overlook its influence. This
assumption may not always be true for real cases [20, 21].
To address such issue, Herrmann et al propose an approach
using dual surface acoustic wave sensors to decouple two
parameters, η and ρ [22]. One reference device with a smooth
surface is used to sense (η · ρ)1/2. The other device is corrugated
by microfabricated sagittal trenches. The frequency response
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of the corrugated sensor is proportional to ρ and nearly
non-sensitive to η. η, then can be calculated from known
(η · ρ)1/2 and ρ. The main drawback of this approach is the
employment of a dual-device, which significantly increases the
cost and complexity. Challenges also come from the indirect
differentiation method, making the signal processing difficult.
Another attempt to decouple the two parameters was reported
by Martin et al using a Lamb wave sensor [23]. Because the
frequency related phase velocity of Lamb waves is mainly
influenced by liquid density, the frequency response of this
sensor is found to be proportional to ρ in a relatively wide
range of viscosity. On the other hand, the attenuation response
of this sensor still depends on (η · ρ)1/2. With measured ρ

and (η · ρ)1/2, η hence can be derived. Although this approach
realizes the separation of η and ρ with a single device, it
is still an indirect method and the accuracy of attenuation
measurement is not guaranteed. In addition, the phase velocity
of Lamb waves is not solely determined by liquid density. This
device can only function when liquid viscosity is small and the
influence of liquid sound velocity is neglected. Zhou et al made
an improved Lamb wave sensor, which successfully decoupled
the liquid sound velocity using multi-mode Lamb waves. The
remaining problems associated with the Lamb wave sensor are
not yet addressed [24].

Another limitation is from the widely adopted delay line
configuration [24–26]. Although the Lamb wave sensor is a
powerful device for liquid sensing [27–31], the delay line
configuration has issues of low quality factor, low stability and
low reproducibility. On the contrary, a resonator configuration
provides a compact and rugged solution with a high quality
factor, which significantly reduces the complexity of signals
read out [10]. Unfortunately, studies on Lamb wave resonators
for liquid sensing are quite limited [32, 33]. In addition, most
researchers mainly focus on the lowest mode of Lamb wave
and pay no attention to the higher order modes effects on liquid
properties sensing at all.

In this paper, we propose a novel AlN based MEMS Lamb
wave sensor, which is able to directly measure a liquid’s η and
ρ by using higher order modes of Lamb wave. This unique
feature realizes the easy separation of η and ρ by a single
device for the first time. A resonator configuration is utilized
to guarantee stable and easy-readout signals. Experimental
results prove the sensor’s capability of differentiating liquids
like DI water and ethanol, which are likely to be mixed up
when using a conventional method.

2. Design of the viscosity and density decoupled
sensor

When a Lamb wave sensor is loaded with a liquid, the phase
velocity of its lowest asymmetric mode A0, which is commonly
employed for liquid sensing by conventional sensors, is given
by [26]:

Vph = 2π

λ

√
B

Meff
(1)

where λ is the wavelength of the acoustic wave, B the bending
stiffness of the plate (B = d3E/[12(1 − υ2)]), d is the plate

thickness, E is the Young’s modulus, υ is the Poisson ratio.
Meff is the effective mass:

Meff = Mplate + Mden + Mvis (2)

Mplate is the unit plate mass, Mden is the mass loading due
to liquid density, and Mvis is the viscous loading of the liquid.
The corresponding frequency is expressed as:

f = vph

λ
. (3)

The A0 wave is a combination of longitudinal and
transverse waves, where the motion of the particles on the
plate is elliptical, having components both perpendicular
and parallel to the plate plane. The normal component
along y-direction generates an evanescent pressure wave that
displaces the liquid in the skin depth, and liquid mass loading
Mden lowers the phase velocity. Meanwhile, the in-plane
component along x-direction generates shear waves in liquid.
The viscous loading contributes to the Mvis and lowers the
phase velocity as well [23].

According to [34], the relative magnitude of the two
components is a function of frequency–thickness product. At
a certain product value, one of the components becomes zero
and the motion of the particles is either entirely perpendicular
or parallel to the plate plane. Especially for the higher order
modes of Lamb wave, at nascent frequencies of some particular
modes, the motion of the particles at the backside surface is
either entirely perpendicular or parallel to the plate plane. The
mode with perpendicular motion should thus be only sensitive
to ρ, while the mode with parallel motion should respond to
η. η and therefore ρ can be separately determined by using the
two unique modes.

However, the frequency of higher order modes may be
extremely high. In [35], authors reported the first four modes
with frequencies up to 4 GHz. Such high frequency will cause
extra issues for signal readout and processing. In addition, high
frequency is not preferred for viscosity sensing, as liquids
are more likely to become viscoelastic at a high frequency
range. The viscoelastic effect will be discussed in section 4.3.2.
According to the velocity dispersion curves, the phase velocity
of the Lamb wave decreases on increasing the plate thickness,
which leads to a lower frequency. Therefore, a relatively thick
plate is usually adopted to decrease the frequency of the higher
order modes.

A schematic drawing of the viscosity and density
decoupled sensor is shown in figure 1. A 2 μm AlN layer
is adopted as the piezoelectric material due to its CMOS
compatible process. This material has been well studied
and widely utilized in acoustic wave resonators because
of its efficient electromechanical transaction [36]. A set of
interdigital transducer (IDT) electrodes made of 0.6 μm Al
with 10 μm periodicity ( = λ/2) is used for Lamb wave
generation. Since the plate is not infinite, propagating Lamb
waves will be reflected back at the lateral extremities, giving
rise to resonant modes [37]. It is significant that a 30 μm Si
layer and a 1.4 μm SiO2 layer are attached below the AlN layer.
This AlN/Si/SiO2 composite plate has a thickness of 33.4 μm
in total, which is about 1.5 times the Lamb wavelength 20 μm.
Equation (1) is no longer valid for such situation because it
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(a)

(b)

Figure 1. Schematic drawing of the directly decoupled viscosity and
density sensor: (a) bird’s view and (b) cross-sectional view. The IDT
electrodes induce the Lamb wave within the plate. Relatively thick
device silicon (30 μm) is employed for the plate to lower the
frequency of higher order modes.

(a)

(c)(b)

Figure 2. Simulation results of mode 1: (a) mode shape; (b) velocity
vectors on backside surface and; (c) zoom-in view of velocity
vectors. Motion of the particles on the backside surface is entirely
in-plane, generating shear waves in liquid.

is only valid when d � λ [26]. A 2D finite element model
therefore is employed for analysis in this work.

Admittance and resonance mode shapes of higher
order modes are simulated using COMSOL multi-physics
software. Only those modes which can be excited are
considered. Two noteworthy modes are found in the

(a)

(c)(b)

Figure 3. Simulation results of mode 2: (a) mode shape; (b) velocity
vectors on backside surface and; (c) zoom-in view of the velocity
vectors. Motion of the particles on the backside surface is
out-of-plane, generating longitudinal waves in liquid.

simulation, denoted as mode 1 and mode 2. The shape
of mode 1 is shown in figure 2(a) (see supplementary
data available at stacks.iop.org/JMM/24/075002/mmedia) and
the velocity vectors of the backside surface are shown in
figures 2(b) and (c). The motion of the backside surface
is in-plane and velocity vectors are entirely parallel to
the plate plane without any normal components. For mode
2, the motion of the backside surface is out-of-plane, as
shown in figure 3(a) (see supplementary data available
at stacks.iop.org/JMM/24/075002/mmedia). As can be seen
from figures 3(b) and (c), most of the velocity vectors are
perpendicular to the plate plane. Non-perpendicular vectors
are rare and weak, and their influence is quite limited. As
aforementioned, mode 1 with parallel motion can be used to
sense viscosity, while mode 2 with perpendicular motion can
be used to sense the density of a liquid.

To further study the two modes, a layer of fluid is defined at
the bottom of the device. The interface ‘acoustic–piezoelectric
interaction’ with frequency domain study is employed to
simulate the interaction between the device and fluid. It is
worth noting that the fluid is modeled as ‘viscous’, which
takes both the fluid’s density and viscosity into consideration.
However, due to software limitations, viscosity lowers the peak
amplitude but does not influence the frequency at all. Only
the density contributes to the frequency shift of the device.
Simulated frequency responses to change in density of mode
1 and 2 are shown in figure 4. Behaviors of these two modes
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(a)

(b)

Figure 4. Simulated relative frequency shifts to the density of
(a) mode 1 and (b) mode 2. Frequency of mode 1 does not shift due
to density at all, which can be used for viscosity sensing.

are much different. The frequency of mode 1 does not shift at
all, while the frequency of mode 2 decreases with a sensitivity
of − 2478 ppm g−1 cm−3. Such simulation results prove that
liquid density has no influence on the frequency shift of mode
1, thus any frequency shift of mode 1 should be contributed
by viscosity.

3. Device fabrication

The fabrication process sequence of the Lamb wave viscosity
and density sensor is illustrated in figure 5. Fabrication starts
from an 8′′ silicon-on-insulator (SOI) (1 0 0) wafer with a
30 μm silicon device layer, a 1.4 μm buried oxide (BOX)
layer and a 600 μm thickness handle silicon layer. Initially
physical vapor deposition (PVD) is used to grow a 2 μm AlN
piezoelectric layer on the SOI wafer at a deposition rate of
500 Å min−1. Then a 600 nm Al layer is deposited by e-beam
evaporation and patterned to form IDT electrodes by reactive-
ion etching (RIE) with an etching rate of 7200 Å min−1.

(a) (d )

(b) (e)

(c) (f )

Figure 5. Fabrication process flow of the device: (a) SOI substrate
with 30 μm device silicon layer; (b) deposition of 2 μm AlN layer
using PVD; (c) Al metal deposition and pattering to form IDT
electrodes; (d) wafer thinning to 600 μm, followed by 1.5 SiO2 hard
mask deposition and pattering on backside; (e) backside Si DRIE
release; ( f ) SiO2 hard mask removal by wet etching.

After the front side process, the wafer is thinned down to
a thickness of 400 μm by mechanical grinding. Next, a 1.5 μm
PECVD SiO2 layer is deposited on the backside of the wafer
as a hard mask for the release process, which is patterned by
RIE. The Si substrate is etched by deep RIE down to the BOX
layer to release the membrane structure. Finally, the SiO2 hard
mask is removed using wet etching.

The fabricated device is shown in figure 6. Both optical
microscope and scanning electron microscope (SEM) images
indicate the well patterned electrodes. The bright regions
between electrodes in figure 6(b) are probably due to electrons
charging on the AlN dielectric layer. A cross-sectional SEM
image of the device is given in figure 6(c).

4. Experimental results and discussions

4.1. Testing setup

The fabricated device is mounted on a PCB with a through
hole (3 mm in diameter) in the center, as shown in figures 7(a)
and (c). This hole enables the backside surface of the released
membrane to be exposed to the environment. Liquid under
test is injected through the hole and contacts with the bottom
surface. All the bonding wires are sealed and protected by
silicone, as illustrated in figure 7(b). Silicone sealing prevents
bonding wires from the possible influences of splashed liquid
or external materials. Even a small amount of liquid on bonding
wires can result in a significant signal fluctuation due to
the perturbation on parasitic parameters such as capacitance.
Hence, silicone sealing is a key step to ensure the stable signals.
Furthermore, to eliminate the parasitic effects brought by PCB
package and cables, a PCB calibration kit with open, short,
through and load (50 �) configurations is fabricated as well,
as shown in figure 7(d). These configurations have exactly the
same layout as the test PCB package.

The testing is conducted by measuring the S11 parameter
in the range of 400 to 550 MHz using an Agilent E5071B
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(c)(b)(a)

Figure 6. The fabricated decoupled viscosity and density sensor: (a) optical microscope photograph; (b) scanning electron microscope
(SEM) photograph; and (c) cross-sectional SEM photograph.

(a)

(b) (d )

(c)

Figure 7. (a) Schematic drawing of packaged sensor with loaded
liquid under test; sensor mounted on the holed PCB with sealed
bonding wires by silicone (b) front side and (c) backside; (d) PCB
calibration kit for eliminating the interferences from cables and PCB
package.

network analyzer under a fixed room temperature of 24 ◦C. The
maximum sweeping points of this instrument is 16001, which
implies that the frequency resolution is limited to about 10 kHz.
Calibration is first performed with the kit mentioned above.
The open circuits S11 after calibration is greater than −5 dB.
This indicates that most of signals are reflected back and
interference from PCB and cables is minimized.

4.2. Device testing in air

The S11 parameter in air is first recorded as in figure 8 for the
reference, and all shifted frequencies are compared with this.
Benefitting from a thick stack plate, five higher order Lamb
wave modes are generated within the 150 MHz bandwidth.
In addition, high quality factors improve the accuracy of the
frequency shift measurement and make easy-readout possible.

Figure 8. S11 parameter in the range of 400 to 600 MHz, measured
in air using an Agilent E5071B network analyzer. The signal is quite
stable while the high Q-factor makes easy and accurate frequency
determination possible.

Table 1. Summary of the mechanical properties of air, DI water,
acetone, ethanol and IPA.

Samples η (mPa s) ρ ( × 103 kg m−3) (η · ρ)1/2 (kg m−2 s−1/2)

Air 0.019 0.001 0.005
DI water 0.894 1.000 0.946
Acetone 0.306 0.791 0.492
Ethanol 1.070 0.789 0.921
IPA 1.960 0.786 1.241

4.3. Liquid testing

4.3.1. Liquid testing using DI water, acetone ethanol and IPA.
Four liquid samples are adopted for the testing: DI water,
acetone, ethanol and IPA. Mechanical properties (viscosity η,
density ρ and square root viscosity–density product (η · ρ)1/2)
of the four liquids are summarized in table 1. Each liquid is
dripped into the PCB hole (shown in figure 7(c)) and directly
contacts the backside surface of the sensor. When the signal
is stable with no fluctuation, the S11 parameter is recorded.
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Figure 9. Relative frequency shifts to the square root of
viscosity-density product of mode A in DI water, acetone, ethanol
and IPA. DI water and ethanol share the same frequency response.

Figure 10. Relative frequency shifts to the viscosity of mode C in DI
water, acetone, ethanol and IPA. DI water and ethanol are
discriminated due to their different viscosities.

Frequency responses of all five modes are studied, and four of
them are noteworthy, denoted as modes A to D.

The frequency responses of modes A and B behave
similarly, and a linear correlation between frequency and
(η · ρ)1/2 is revealed. Such behavior is similar to the
conventional sensors. The frequency response of mode A
is plotted in figure 9 as an example. These two modes are
not able to differentiate the coupled influence of viscosity
and density. Although DI water and ethanol have different
viscosities and densities, their products are very close to
each other (as shown in figure 9). The two liquids therefore
can hardly be differentiated using these conventional modes.
Figure 10 shows the frequency response of mode C, which
behaves like mode 1 in simulation (see figure 2). This mode
reveals an almost linear frequency shift relationship with
the η of liquids, without the influence of density change.
Thus, DI water and ethanol are clearly distinguished due

Figure 11. Relative frequency shifts to the density of mode D in DI
water, acetone, ethanol and IPA. Acetone, ethanol and IPA cannot be
differentiated because of the almost same density, indicating that the
frequency response of mode D is not influenced by viscosity.

Table 2. Summary of the mechanical properties of glycerol–water
mixtures.

Glycerol
volume η ρ (η · ρ)1/2

concentration (%) (mPa s) ( × 103 kg m−3) (kg m−2 s−1/2)

0 0.894 1.000 0.946
10 1.221 1.029 1.121
20 1.732 1.060 1.354
30 2.575 1.089 1.673
40 4.058 1.118 2.130
50 6.879 1.144 2.806

to the viscosity difference. On the contrary, the frequency
response of mode D seems sensitive to ρ only, corresponding
to mode 2 in simulation (see figure 3). Acetone, ethanol
and IPA have almost the same ρ but largely different η.
As is demonstrated in figure 11, the frequency responses
these three liquids overlap, indicating that mode D is non-
sensitive to η. As a result, viscosity and density of a liquid
are separately detected by using modes C and D, while the
corresponding viscosity and density sensitivity are calculated
as −569 ppm mPa s−1 and − 748 ppm g−1 cm−3, respectively.

4.3.2. Liquids testing using glycerol–water mixtures. To
further characterize the sensor performance in the high-
viscosity range, glycerol–water mixtures are utilized.
Glycerol–water solutions, as standard Newtonian liquids, are
widely used for viscosity sensor testing. By changing the
glycerol/water ratio, the viscosity of these solutions ranges
from 1 to 1500 mPa s at room temperature, while the density
only changes from 1 to 1.29 g cm−1 [38]. Mixtures with
glycerol volume concentration from 0 to 50% are made for
testing, using G5516 glycerol (�99%) from Sigma-Aldrich R©.
Viscosity η, density ρ and square root viscosity–density
product (η · ρ)1/2 of the glycerol–water mixtures are calculated
and summarized in table 2.

6
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Table 3. Summary of the mechanical properties of NaCl solutions.

NaCl
mass η ρ (η · ρ)1/2

concentration (%) (mPa s) ( × 103 kg m−3) (kg m−2 s−1/2)

0 0.894 1.000 0.946
4.76 0.959 1.040 0.998
9.09 1.042 1.068 1.055

13.04 1.142 1.095 1.119
16.67 1.260 1.132 1.195
20.00 1.396 1.157 1.271

Highly viscous liquids like glycerol–water mixtures tend
to deviate from Newtonian behavior, becoming viscoelastic.
The response of most viscosity sensors departs from the
linear dependence when liquid viscosity goes beyond a certain
value due to the viscoelastic effect [39]. For example, the
response of the device reported in [40] starts becoming
nonlinear from about 3.6 mPa s. This turning point is related
to the device operating frequency, which becomes higher for
lower frequency. In terms of the current work, a fully linear
correlation of mode C is observed in figure 12(b), with liquid
viscosity up to 7 mPa s. Such linear behavior may be partially
due to the moderate operating frequency. Further investigation
will be conducted in our future work. It is also worth noting
that although the liquid viscosity changes a great deal, the
frequency shift of mode D is very small and proportional to
the slightly changed density, as shown in figure 12(c). No
deviation from the linear dependence is observed, implying
that mode D is highly independent of liquid viscosity.

4.3.3. Liquids testing using NaCl solutions. NaCl solutions
with different concentrations are also made for testing, by
dissolving 0.5–2.5 g NaCl into 10 ml DI water. Volume
changes due to dissolved NaCl are considered for calculation
as well. Both viscosity and density of NaCl solution slightly
increase with NaCl concentration, summarized in table 3
[41]. NaCl solutions are mainly used to study the minimum
detection limit of this decoupled viscosity and density sensor.
The frequency shifts due to NaCl solutions are extremely
small. Such small shifted frequency already approaches to
the frequency resolution of network analyzer, illustrated in
figure 13. Minimum detectable viscosity and density changes
of this sensor are 0.065 mPa s and 0.025 g cm−3, respectively.

4.4. Potential applications as a label-free liquid sensor

As mentioned above, conventional acoustic wave sensors have
many limitations when used as label-free liquid sensors. The
frequency responses to liquids like DI water and ethanol
probably overlap, as shown in figure 9. Such liquids may be
determined as being the same one by conventional sensors.
Whereas, with the decoupled viscosity and density sensor, a
novel 2D method for label-free liquid detection is available
by plotting the frequency response of mode C versus that
of mode D, as demonstrated in figure 14. In this plot, DI
water and ethanol can be easily differentiated because of their
different viscosities and densities. Acetone, ethanol and IPA
share almost the same density and form a horizontal line in

Figure 12. Relative frequency shifts in glycerol–water solutions
with volume concentration from 0% to 50%: (a) mode A to the
square root of viscosity-density product; (b) mode C to the viscosity
and; (c) mode D to the density.
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Figure 13. Relative frequency shifts in NaCl–water solutions with
mass concentration from 0% to 20%: (a) mode A to the square root
of viscosity-density product; (b) mode C to the viscosity and;
(c) mode D to the density.

the plot. This 2D method may have wide applications in the
oil industry. Diesel fuels with different cetane numbers have
relatively constant density but varying viscosity likewise [22].

Figure 14. A novel 2D method for label-free liquid detection.
Frequency responses of mode C and mode D are plotted in X-axis
and Y-axis, respectively. Liquids with the same viscosity–density
product or the same density can be easily discriminated by this
method.

The cetane number thus can be determined by measuring the
viscosity. Meanwhile, if diesel fuel is unexpectedly mixed into
water, it should be detected due to the density difference. By
using this 2D method, cetane number and water percentage
may be obtained simultaneously. Other applications of the 2D
method in the oil industry will be further explored in the future.

5. Conclusion

In this paper, a directly decoupled viscosity and density
sensor using a Lamb wave resonator is proposed. The AlN
MEMS resonator based sensor is capable of generating
stable signals with high quality factor. Higher-order modes of
Lamb wave are utilized for viscosity and density detection.
Two unique modes (mode C and mode D) are found
with backside surface particle motion either parallel (mode
C) or perpendicular (mode D) to the plate plane. The
frequency response of mode C is dominated by viscosity
with a sensitivity of −569 ppm mPa s−1, while that of
mode D is solely determined by density with a sensitivity
of −748 ppm g−1 cm−3. Decoupled viscosity and density
sensing is achieved by single device. Without suffering from
viscoelastic effects, the viscosity dependence of this sensor
remains linear with liquid viscosity up to 7 mPa s. The
minimum detectable changes of viscosity (0.065 mPa s) and
density (0.025 g cm−3) are quite small. A novel 2D liquid
detecting method based on the sensor is proposed. DI water
and ethanol are clearly differentiated by this method. Potential
applications of such a 2D method in the oil industry are shown
as well.
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