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Abstract
The ultra-thin flexible polyimide neural probe can reduce the glial sheath growth on the probe
body while its flexibility can minimize the micromotion between the probe and brain tissue. To
provide sufficient stiffness for penetration purposes, we developed a drawing lithography
technology for uniform maltose coating to make the maltose-coated polyimide neural probe
become a stiff microneedle. The coating thicknesses under different temperature and the
corresponding stiffness are studied. It has been proven that the coated maltose is dissolved by
body fluids after implantation for a few seconds. Moreover, carbon nanotubes are coated on
the neural probe recording electrodes to improve the charge delivery ability and reduce the
impedance. Last but not least, the feasibility and recording characteristic of this ultra-thin
polyimide neural probe embedded in a maltose-coated microneedle are further demonstrated
by in vivo tests.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Implantable arrays of neural probes with microelectrodes
have drawn more and more attention for their use in
studying brain function since they can simultaneously
record signals from different groups of neurons and
gather spatiotemporal information regarding complex
neural processes. Compared with electroencephalograms or
electrocorticograms, implanted neural probes can provide
superior spatial resolution and enable recordings in deeper

5 Authors to whom any correspondence should be addressed.

brain structures [1–3]. Implantable neural probes based
on microelectromechanical systems technology have taken
significant steps forward in the last 40 years. During the 1970s,
Wise et al took advantage of selective etching technology
and reported pioneering work on the first neural probe to
interface with neural tissues [4]. Since then, a wide variety
of materials used to fabricate miniaturized neural probes
have been developed, including silicon [5–8], metals [9, 10],
glass [11] and sapphire [12]. Although neural probes with these
materials can be shaped precisely and have sufficient strength
to penetrate neural tissue, the mechanical mismatch between
these stiff substrates and soft tissue [13–15] aggravates
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micromotion at the tissue–electrode contact sites, which
induces inflammation in the tissue [16, 17]. Even though
thin film silicon probes can partially alleviate the mechanical
mismatch [18], deformation induced from the presence of
localized stress may lead to the rupture of materials. To
solve this problem, polymer materials, such as SU-8 [19–23],
parylene [24–27], polyimide [28–32], liquid crystal polymer
[33] and benzocyclobutent [34], are often employed in creating
flexible neural probes. Since these materials are a better match
mechanically to the tissue, and deforms as the tissue moves,
flexible neural probes made of these materials can prevent the
gradual decrease in the signal-to-noise ratio.

Another serious problem for conventional neural probes
is that a reactive glial sheath builds up around the probe
body after the invasive implantation process [35]. Histological
examination of intra-cortical devices has shown that the
glial sheath consists of activated microglia, hypertrophied
astrocytes [36, 37], meningeal cells and oligodendrocyte
precursors [38]. These cells produce extracellular proteins that
hinder local neuron regeneration at implantation sites [39]. In
addition, the glial sheath will encapsulate the electrodes on the
neural probe and modify the extracellular space, as proved by
impedance spectroscopy studies [40–42]. The encapsulation
will isolate electrodes from the surrounding neural tissue,
which will lead to the eventual failure of the electrode’s
recording ability in chronic recordings [43, 44]. Conventional
strategies to reduce the tissue encapsulation problem are
surface modification [45, 46] and local drug delivery [47–49].
In 2007, Seymour et al showed that modifying neural
probe geometry and shrinking the probe size will provide
an alternative to minimize the reactive cell responses [50].
The thinner probe shank can reduce microglia reactivity
and extracellular protein deposition, while at the same time
decreasing the distance to nearby neurons. However, when
the thickness of the polymer neural probe shrinks down to
diminish the encapsulation problem the neural probe will
become extremely flexible. This makes the stiffness of the
probe too low to penetrate neural tissue successfully. Stiff
backbone layers [26, 51], insertion shuttles [52, 53] and
coating biodegradable material [24] have been employed to
enhance the structural stiffness of the flexible probes. Among
them, the stiff backbone negates the flexibility of the polymer
substrate, while insertion shuttles creates a relatively large
implanted footprint and a high rupture risk. Coating with
biodegradable materials such as silk [54], poly-glycolic acid
[55], polyethelene glycol [56] and poly(lactic-co-glycolic)
[57] has become a popular approach to improve the stiffness
since it is a simple process and does not need any modification
of the probe structure.

During the signal recording or stimulation process, the
impedance must be lowered to increase electrode sensitivity or
to facilitate electric discharge. This step generally increases the
dimension of the electrodes as well as the neural probe body,
which leads to the loss of signal selectivity and increases tissue
damage during insertion. The typical approach of inducing
a colloidal metal layer to increase the surface area for a
certain geometric area can encounter stability problems. For
instance, platinum black when electrodeposited is a porous

(a) (b)

(c)

Figure 1. Schematic illustration of the neural probe design.

structure and has low impedance, but it is mechanically
fragile and degrades over time [58]. Activated iridium oxide
demonstrates excellent charge transfer properties, but its
surface is chemically unstable [59]. However, the technique
of coating carbon nanotubes (CNTs) on electrodes has been
demonstrated to not only decrease impedance and increase
charge transfer, but also offer satisfactory stability for long-
term brain–machine interface devices [60–62].

In this study, we have developed a fabrication
process for ultra-thin flexible polyimide neural probes. Its
remarkable flexibility contributes to reduce the stiffness
difference between brain tissue and electrodes and minimize
the micromotion after implantation. In addition, the whole
thickness for the neural probe is only 10 μm. The ultra-thin
size prevents growth of the glial sheath on the neural
probe body [50]. Moreover, maltose, a biodegradable and
biocompatible material, is first employed to be coated
on the neural probe to promote its stiffness. To achieve
favorable coating uniformity, appropriate stiffness and high
reproducibility, we adopt an innovative drawing lithography
technology to coat the maltose on the neural probe surface.
The coating thickness can be controlled by regulating the
temperature. This coated maltose layer transforms the flexible
neural probe into a stiff microneedle for successful penetration.
It can be dissolved by body fluids several seconds after
implantation. In addition, CNT-Au nano-composites are
integrated into the ultra-thin flexible neural probe to minimize
the interface impedance for better signal quality.

2. Design and fabrication

2.1. Fabrication process

The design of the flexible neural probe is shown in figure 1.
The neural probe can be divided into three different sections
(figure 1(a)). At the widest part, a 2.5 mm × 2.5 mm area
allows for easy handling and packaging. This is where the
external contact electrodes are located. There are four electrode
pads, each with an area of 500 μm × 300 μm (figure 1(c)).
These dimensions ensure easy connection of the neural probe
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Figure 2. Fabrication process for the ultra-thin flexible polyimide
neural probe.

to the flexible printed circuit (FPC) connectors. Then, a 1.5 mm
long path is designed to gradually reduce the probe size. The
portion of the probe that will be inserted into the tissue is
3.5 mm long in order to reach certain brain areas, with a width
of 200 μm and a thickness of 10 μm (figure 1(b)). To our
knowledge, this 10 μm neural probe is the thinnest polyimide
neural probe reported in the literature. This small dimension is
expected to alleviate encapsulation problems (caused by scar
tissue). At the tip of the neural probe, four round recording
contacts with a diameter of 30 μm are placed. The spacing
between each two electrodes is 100 μm.

The fabrication procedure follows standard
photolithographic and clean room procedures. The
detailed process is shown in figure 2. Firstly, a 1 μm
thick aluminum (Al) layer was evaporated onto the silicon
substrate by physical vapor deposition (figure 2(a)). It acted
as a sacrificial layer to release the final device from the
substrate. Then a 5 μm base layer of polyimide (HD 4110,
HD microsystem GmbH, Germany) was spun onto the Si
substrate. The base polyimide layer was cured at 300 ◦C in
N2 for 0.5 h. This baking process is designed to only partially

evaporate the water in the polyimide layer. In this way, it
would bring a chemically and physically stable surface for
further processing, while still leaving some unterminated
bonds to attach the top polyimide layer (figure 2(b)) [63].
After that, a 7 μm thick layer of photoresist (ma-N 1440,
microsystem GmbH, Germany) was spun on the polyimide
coated substrate. The photoresist layer was exposed under
ultraviolet (UV) light and the electrodes traces were patterned
(figure 2(c)). A layer of 20 nm titanium (Ti) was deposited
by an electron beam evaporator to improve the adhesion
of the following metal layers. Then, a 200 nm thick gold
conduction layer and a 20 nm thick titanium protection layer
were deposited. The electrode pads and contacts could be
patterned by a liftoff process in acetone (figure 2(d)). Another
5 μm top layer of polyimide was spun onto the processed
metal layer. The whole sandwich structure was then cured at
350 ◦C in N2 for 0.5 h to complete the imidization process
(figure 2(e)). Next, a 200 nm thick Al layer was deposited and
patterned by using the same liftoff process (figures 2( f ), (g)).
This Al layer would be used as a hard mask for the final device
etching process. The shape of the electrode pads, contacts and
device body were defined by O2/CF4 plasma. In the etching
process, the undesired polyimide portions were removed
by the plasma. The Au electrodes pads and contacts were
protected by the top titanium layer while the useful polyimide
portions were protected by the Al hard mask (figure 2(h)).
The plasma etching process was performed by using an
electron cyclotron resonance-enhanced reactive ion etcher
(gas flows of 10 sccm for O2 and 10 sccm for CF4, RF source
power of 300 W, with a chamber base pressure of 100 mTorr,
resulting in a polyimide etching grate of ∼0.1 μm min−1).
Then, the Al hard mask and Ti protection layer were removed
by Al etchant and Ti etchant respectively (figure 2(i)). Since
the first Al sacrificial layer was much thicker than the Al
hard mask (1 μm for Al sacrificial layer and 200 nm for
the Al hard mask), the Al etching time was controlled to
only remove Al hard mask. In this way, the whole device
was still on the substrate. Then, an anodic dissolution was
employed to remove the Al sacrificial layer to release the final
devices (figure 2( j)). The conventional approach to remove
the sacrificial layer is wet etching. However, the residue
stress leads to the released thin film structure being deformed
[64]. The anodic metal dissolution not only can ensure a
flat released planar structure but also is significantly faster
than the traditional wet etching approach [65]. The detailed
releasing process is shown here. The wafer was immersed in
a 2 M NaCl solution and connected to an external positive
terminal of a voltage source at 1 V. A platinum (Pt) mesh
electrode was connected to the negative terminal. A magnetic
stir bar was also put inside the solution to keep a uniform NaCl
concentration. After around 20 min, the exposed portions of
the Al sacrificial layer were removed and only the covered
portions of the Al sacrificial layer were left. Since the contact
area between the Al sacrificial layer and the NaCl solution
has decreased, the current dropped and the Al etching rate
was greatly reduced. Thus, the voltage was then increased
to 20 V to speed up the releasing process. After around 1 h,
the whole Al sacrificial layer could be removed and the final
device could be released (figure 3).
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Figure 3. Released ultra-thin flexible neural probe.

(a)

(b) (c)

Figure 4. Illustration of the packaging for the probe.

2.2. Assembling

In order to perform the characterization of the neural probe
to obtain data from in vitro and in vivo tests, electrical
interconnections need to be set up between the electrode pads
on the flexible substrate and terminals on the measurement
equipment. However, it has been reported that there are
serious implementation problems if conventional wire bonding
technology is to be used [66]. Generally, during the bonding
process, the electrodes pads on the flexible substrate will
delaminate due to the poor metal/polymer adhesion strength
[67]. To solve the problem, isotropic conductive glue and
anisotropic conductive films are normally adopted to create
the electrical interconnections [68]. However, these processes
are time consuming, need precise alignment, and are thus not
effective.

In this study, we used a simple FPC connector (FH19SC-
6S-0.5SH. Hirose Electric Co. Ltd Japan) to package the
final device. Figure 4(a) shows a schematic overview of the
packaging method. Firstly, the FPC connector was integrated
with a flexible cable by the normal soldering approach. Then,
the rear of the neural probe was inserted into the groove on
the FPC connector. Since the geometry and dimension of our
neural probe was specially designed to match the connector,
the probe body would be fixed in the horizontal direction.
Moreover, electrode pads on the probe could align perfectly

(a)

(b) (d )

(c)

Figure 5. (a) Schematic of the setup for the CNT coating. (b) Au
recording contacts without CNT coating (scale bar is 10 μm). (c) Au
recording contacts with CNT coating (scale bar is 10 μm). (d)
Zoomed-in image to show electroplated CNTs and Au particles on
the contacts (scale bar is 500 nm).

with the electrode pins on the FPC connector. After that, a
300 μm thick spacer, which had the same thickness as the
vertical spacing in the FPC connector groove, was loaded on
top of the probe. Since the total thickness of the inserted spacer
and probe body was a little bit larger than the spacing in the
groove, when the top cap was flipped over to clamp the spacer,
a tiny spring inside the FPC connector would be compressed
and the probe could be locked in the perpendicular direction
(figure 4(c)). Meanwhile, the electrode pads on the flexible
probe would make contact with the electrode pins on the FPC
connector to achieve the electrical interconnection. The final
package is shown in figure 4(b).

2.3. CNT deposition and maltose coating

A layer of CNTs was coated on the recording contacts
to increase the effective surface area and improve charge
transfer at the electrode–tissue interface. The electrophoretic
deposition technique was employed to deposit the CNT film
since it is an automated and high-throughput process that in
general produces films with good homogeneity and packing
density [69]. The detailed process is shown in figure 5. The
multiwall CNTs (Cheap Tubes Inc., US) were first dispersed
in a Au electrolyte bath TSG-250 (Transene, US) to form
a 1 mg mL−1 aqueous solution. Then, the whole solution
was sonicated for 2 h to make the CNTs fully suspended in
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(a) (b)

(c) (d )

(e) (f )

Figure 6. Fabrication process to coat maltose on the flexible neural
probe surface by drawing lithography.

the solution. After that, the packaged neural probe and Au
wire were connected to the negative and positive terminals
of the power supply, respectively. Both the probe tip and the
Au wire were then inserted into the solution. A monophasic
voltage pulse with 1 V amplitude and 50% duty cycle was
applied to the power source. Au ions in the solution, as
well as CNTs which absorbed Au ions, migrated to the
negative terminals. After absorbing the electrons from the
probe contacts, the Au ions were subsequently deposited onto
the surface of the recording contacts. The CNTs with a length
of 0.5–2 μm and a diameter less than 8 μm could thus be
made to adhere to the Au electrode contacts by these ions
(figure 5(a)). The comparison of an Au electrode contact and
a CNT coated contact is shown in figures 5(b) and (c).

Maltose, a natural biocompatible and biodissolvable
material [70], was employed to coat the flexible neural
probe surface to form a stiff microneedle. To achieve
favorable coating uniformity, appropriate stiffness and
high reproducibility, we leveraged an innovative drawing
lithography technology to perform the coating process.
Drawing lithography technology is a maskless fabrication
approach to build 3D structures based on the polymers’

Figure 7. Impedance testing results of Au recording contacts and
CNT coated Au recording contacts.

different viscosities under different temperatures [71, 72].
Here, it is applied to coat polymers on the surface of the
flexible probes.

As shown in figure 6, the surface maltose coating process
was divided into four steps. Firstly, concentrated maltose
solution containing methylene blue, which was used for better
visibility during the penetration process, was dripped into a
small metal container. The container was kept on a hotplate at
140 ◦C until the water inside vaporized and the maltose turned
into the liquid state. The neural probe with an FPC connector
was fixed on a precision stage which could control the position
of the attached device in three-dimensions. Then, the whole
neural probe was immersed into the maltose reservoir by
adjusting the precision stage (figure 6(a)). In the second step,
the neural probe was drawn up and the adhesive maltose
was coated on the probe surface (figure 6(b)). Thirdly, the
temperature of liquid maltose was gradually increased and
the neural probe tip was dawn away from the interface between
the liquid maltose and air (figure 6(c)). Since the maltose liquid
is less viscous at higher temperature, the adhesion between the
maltose on the probe tip and the surface of the liquid maltose
became an individual maltose bridge and shrunk gradually
(figure 6(d)). Finally, when the temperature rose up to 160 ◦C,
the drawing speed was increased. The end of the shrunk
maltose bridge collapsed and formed a sharp tip (figures 6(e),
( f )). In this way, the maltose could be successfully coated on
the ultra-thin flexible probe and made into a stiff microneedle
for penetration.

3. Characterization

3.1. Impedance spectroscopy

One of the most important considerations of neural recording
devices is that the electrodes should be small enough
to ensure high selectivity for signals from individual
neurons. Impedance measurements were conducted in order
to characterize the electrode–electrolyte interface. Two-
wire electrochemical impedance spectroscopy measurements
were performed with each of the four electrodes versus a
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(a) (b) (c)

(d ) (e) (f )

Figure 8. Demonstration of different thickness of maltose coated on the neural probe surface (scale bar is 500 μm).

Figure 9. The means and standard errors of the thickness of maltose
coated onto the probe under different temperatures.

platinum reference electrode by Metrohm Autolab PG Stat
12 Electrochem System (Metrohm Autolab PG. UK). The
impedance of both Au recording contacts and CNT coated
contacts were checked by measuring the impedance versus
frequency from 10 Hz to 100 kHz in a physiological saline
solution. Figure 7 shows the testing results. The impedance
of both Au contacts and CNT coated contacts showed
a considerable dependence on frequency. Meanwhile, the
impedance spectroscopy scan showed that the CNT coated
electrode contacts exhibited reduced impedances at all the
measured frequencies. At the biologically relevant frequency
of 1 kHz, the impedance of the Au electrode and the CNT
coated electrode were 1.09 M� and 59.02 k�, respectively.
This demonstrated that the interfacial properties of the probes
were significantly improved by the CNT. Tsang et al attributed

Figure 10. Means and standard errors of the buckling force for
microneedles of different thicknesses.

this enhancement to the nano-protrusions induced by the
coated CNTs [73]. The standard equivalent circuit model for
the electrode–electrolyte interface is also shown in figure 7.
A constant phase element (for an ideal capacitor n = 1)
represented the interface between the probe and saline. Rf

was regarded as Faradaic impedance while Rs was taken as
the spreading resistance of the solution. When the frequency
increased from 10 Hz to 100 kHz, the constant phase element
decreased as well as the total impedance. Compared with
normal Au contacts, the charge injection capability increased
on the CNT coated contacts due to the induced nano-
protrusions. Since the value Cdl was proportional to the
charge injection capability, the total impedance of the CNT
coated contacts at any frequency was smaller than that of the
Au contacts. Thus, this CNT coating technique substantially
improved the interfacial properties.
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(a) (b)

(c) (d )

Figure 11. Demonstration that the maltose coated ultra-thin flexible neural probe can successfully penetrate the brain. After the maltose is
dissolved by the body fluids, the rigid microneedle becomes a flexible neural probe.

3.2. Thickness of maltose coating

The ultra-thin flexible probe was coated with a layer of maltose
to transform it into a stiff microneedle that could be used to
penetrate the brain successfully. Maltose was demonstrated to
become a liquid at temperatures over its melting point, and the
viscosity of this liquid maltose progressively increased with
cooling until the glass transition temperature. Further cooling
past this temperature causes it to enter the solid state [74]. In
this study, by controlling the temperature, we regulated the
maltose viscosity to coat a desired thickness of maltose on
the ultra-thin flexible probe surface (figure 8). The thickness
was measured under various baking temperatures and is
shown in figure 9. In general, the microneedle’s thickness
decreased continuously when the temperature increased. If
the baking temperature was less than 130 ◦C or larger than
160 ◦C, the coating thickness changed only slightly based on
the temperature. It had a more obvious difference when the
temperature changed between 130 and 160 ◦C. This was due
to the fact that the viscosity of the maltose solution changed
more dramatically in its glass state (between 130 and 160 ◦C)
than in the solid or liquid state. Thus, we can control the
thickness of the maltose coating simply by adjusting the baking
temperature.

3.3. Mechanical testing

The buckling force of the microneedle was studied by
using an ALGOL advanced precision instrument (Japan
Instrumentation System Co., Ltd, Japan). The force sensor was
vertically mounted on a stationary platform while the maltose
coated microneedle was perpendicularly attached to a 3D
micromanipulator. Bending force was applied in the vertical
direction by adjusting the height of the micromanipulator
to make the microneedle tip contact the force sensor. A 3D
microscope was used to monitor and capture the deformation
and breakage of the microneedles. The vertical displacement of

the microneedle tip and the buckling force could be recorded
from the precision instrument. Microneedles with the same
length of 3.5 mm but different coating thickness were tested.
Figure 10 shows the results of the buckling force when
microneedles break at the various coating thickness. The
thicker the acting of maltose, the stronger the microneedle
will be. When the coated thickness is less than 100 μm,
all the buckling forces are smaller than 0.5 N. In this
regime, the buckling force increases a little when we coat
thicker maltose. However, when the microneedle thickness
is larger than 120 μm, the buckling force increases sharply.
From Euler’s equation, F = π2EI

(KL)2 , the buckling force is
proportional to the area moment of inertia, I. In our device,
the cross section of the microneedle is approximately a
rectangle. Thus its area moment of inertia has an exponential
growth with the microneedle thickness, which was why the
microneedle’s buckling force changed rapidly based on its
thickness. However, an overly thick microneedle can cause
extensive damage to brain tissue. As a result, a 120 μm thick
maltose layer was coated on the surface to increase the stiffness
and reduce the invasiveness of the insertion.

3.4. Maltose dissolution testing

After achieving sufficient stiffness for tissue penetration, the
next step is to ensure that the maltose on the microneedle
surface can be successfully dissolved by body fluids in the
tissue to expose the CNT coated contacts. As shown in
figure 11, the maltose coated microneedle was capable of
being inserted into a rat’s brain without any deformation.
After several minutes, the maltose was dissolved and cleared
by the body fluids. The stiff microneedle transformed back
into an ultra-thin neural probe with excellent flexibility.
We subsequently studied the time taken to dissolve maltose
coatings of different thickness. The testing was divided into
different batches. In each batch, microneedles with the same
coating thickness were inserted into a rat’s brain at the same
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Figure 12. Means and standard error of the dissolution time for
different maltose thicknesses.

(a)

(b)

Figure 13. Neural activity recorded from the rat’s dorsal
hippocampus CA1 area.

time. Then these microneedles were taken out of the brain one
by one with 5 s intervals. Since the maltose was mixed with
methylene blue, it was straightforward to check how much
of the maltose had dissolved on each of the microneedles by
inspecting the color variation. The dissolution time was then
determined and recorded. Thus, the approximate dissolution
time for microneedles of different thicknesses was obtained

(figure 12). In the figure, for thicknesses less than 180 μm,
the maltose was totally dissolved in less than 20 s. However,
when the thicknesses were larger than 180 μm, the dissolution
time increased dramatically. It only took around 15 s for the
120 μm thick maltose coating to be dissolved. We believe
that this short time period will not adversely affect a normal
neurophysiology experiment.

3.5. In vivo measurements

The probe’s functionality in neural recordings was tested
by implanting the neural probe in the CA1 of a rat’s
dorsal hippocampus (2.2 mm deep). All procedures were
performed under protocol 095/12(A3)13 and approved by the
Institutional Animal Care and Use Committee at the National
University of Singapore.

Male Sprague Dawley rats were anesthetized with
pentobarbital sodium (50 mg kg−1) and immobilized
in a stereotaxic apparatus. A supplementary dose of
15 mg kg−1 h−1 was applied to maintain the animal under
anesthesia. A craniotomy was performed posterior to the
lambda landmark and a stainless steel screw was inserted to
act as the ground electrode. According to [75], the position for
the dorsal hippocampus CA1 area (2.0 mm lateral and 2.3 mm
posterior to the bregma landmark) was located and marked.
Two additional craniotomies were performed for the recording
and reference electrodes. A tungsten microwire was positioned
on the cortical surface to be used as the reference electrode.
The maltose coated microneedle was then vertically attached
to a micromanipulator located over the exposed neural tissue.
Next, the probe was lowered down slowly to the CA1 area
by adjusting the micromanipulator. Signals were amplified
and acquired by using an RZ5D BioAmp Processor (Tucker-
Davis Technologies, USA). Figure 13 shows a 1 s segment
from the continuous recordings on a representative electrode
contact. It showed that the spontaneous neural activity in the
rat’s hippocampus was successfully recorded.

4. Conclusions

This work successfully demonstrates a fabrication process
to make an ultra-thin flexible polyimide neural probe. Its
flexibility can minimize the problems caused by micromotion
between the probe and the brain tissue. Moreover, the ultra-
thin characteristic allows it to reduce the growth of the glial
sheath on the body of the neural probe. In addition, maltose is
first demonstrated to be suitable to coat the probe surface to
transform it into a stiff microneedle temporarily during tissue
penetration. The innovative drawing lithography technology
is employed to provide appropriate coating uniformity and
thickness. After the microneedle is implanted for several
seconds, the maltose coating is shown to be dissolved by body
fluids and the exposed CNT coated contacts on the neural
probe are demonstrated to successfully acquire neural signals
from brain tissue.
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