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Annularly Grooved Diaphragm Pressure Sensor
With Embedded Silicon Nanowires for Low

Pressure Application
Songsong Zhang, Tao Wang, Liang Lou, Wei Mong Tsang, Member, IEEE, Renshi Sawada,

Dim-Lee Kwong, Fellow, IEEE, and Chengkuo Lee, Member, IEEE

Abstract— We present a nanoelectromechanical system
piezoresistive pressure sensor with annular grooves on the
circular diaphragm where silicon nanowires (SiNWs) are
embedded as sensing elements around the edge. In comparison
with our previous flat diaphragm pressure sensor, this new
diaphragm structure enhances the device sensitivity by 2.5 times
under pressure range of 0–120 mmHg. By leveraging SiNWs as
piezoresistors, this improvement is even remarkable in contrast
to other recently reported piezoresistive pressure sensing devices.
In addition, with the miniaturized sensing diaphragm (radius
of 100 µm), the sensor can be potentially used as implantable
device for low-pressure sensing applications. [2013-0305]

Index Terms— Piezoresistance, silicon nanowires (SiNWs),
pressure sensor, annular groove, low pressure, biomedical.

I. INTRODUCTION

P IEZORESISTIVE effects in silicon & germanium are
early reported in 1950s [1]. Unlike the resistance change

caused by the volumetric variation in metallic gauges, the large
strain induced resistivity change makes silicon as the promis-
ing sensing element in mechanical sensor design [2], [3],
which can be easily integrated with standard semiconductor
processes [4]–[9]. An enormous amount of research efforts
on piezoresistive effects has been devoted in both theoretical
[10]–[14] and experimental [3], [15]–[18] ways during past
decades. As one of the most sophisticated design utilizing the
piezoresistive transduction, pressure sensor based on piezore-
sistive mechanism has been widely adopted in many areas
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diverse from the automotive industry [19], [20] to the bio-
medical application [21], [22]. Piezoresistive pressure sensor
generally demonstrates a lower non-linearity (NL) than that
of the capacitive pressure sensing devices under a small
diaphragm deflection range [23]. However, such conclusion
does not stand in the case of low pressure sensing. For
the conventional flat diaphragm based piezoresistive pressure
sensor, when the thinner diaphragm with a large defection is
required to sustain the minimum detectable output under a low
pressure, the consequent well-known balloon effect will cause
a severe degradation in device linearity [24], [25]. In order to
solve the problem, a novel boss diaphragm structure, which is
configured with a much thicker diaphragm in the center com-
pared to the edge and fabricated based on bulk micromachin-
ing, is introduced to concentrate the stress distribution along
the beam/rib structure without reducing overall diaphragm
thickness and thus remaining a good linearity [25], [26].
Taking the advantage of surface micromachining, Bao et. al.
proposed a modified boss diaphragm by configuring those rib
and groove structures on the front side of sensing diaphragm
[27], [28] with an improved process accuracy. Further opti-
mization efforts have been made to improve the boss device
pressure sensing performance by optimizing geometry factors,
such as dimensions, shapes and the ratio between length and
width of such rib and groove structures [23], [29], [30].
Besides, the theoretical study has also been carried out
to optimize and predict the device sensitivity and linearity
[31]–[33]. Nevertheless the low pressure sensing performance
of the boss diaphragm pressure sensor has been reaching
its inherent limit with the diaphragm area in the range of
mm2 [23]. A further shrinkage in diaphragm diameter/length
will significantly reduce the sensitivity due to a lower resul-
tant resistivity change generated by the deflection induced
stress/strain, which is proportional to the square factor of the
diaphragm dimension [34]. Hence, other improvement meth-
ods have to be developed for a further sensitivity enhancement.

In the past decade, the successful demonstration of imple-
menting nano-scale techniques in both standard CMOS and
MEMS technology has been widely reported. Nano-scale
materials have been adopted not only for the transistor design
[35], [36], but also applied as new sensing element or detection
platform [37], [42] for the era of Nano - electromechan-
ical System (NEMS) technology. Among all of promising
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nano-scale sensing elements, both fundamental property and
fabrication technology of silicon nanowires (SiNWs) have
been well studied over the last decade [43]–[50]. Tremendous
experimental efforts have also been carried out for optimizing
the performance of nanowires as a piezoresistive sensing ele-
ment [51], [52]. With the proven stability [53], [54] and excel-
lent piezoresistive sensing performance reported [55], [56],
single crystal SiNWs have been successfully implemented into
NEMS sensors for various applications (e.g. tactile sensor,
mechanical switch and etc.) and resulted in remarkable out-
comes [57]–[59].

In this paper, by leveraging the higher concentrated stress
profile contributed by annular groove structures on a thin
diaphragm (0.5 μm thick in hinge region and 3 μm thick in the
rest of the diaphragm area), we successfully demonstrate a new
annularly grooved diaphragm pressure sensor using embedded
SiNWs as piezoresistors for the low pressure application. The
reported proof-of-concept NEMS pressure sensor with minia-
turized sensing area, which suits the demands of minimum
invasive implantation, can be potentially used for bio-medical
applications under a low pressure range.

II. DESIGN CONSIDERATION

As aforementioned in the introduction, it is difficult to
obtain a good low pressure sensing characteristics by simply
reducing the diaphragm thickness of the conventional flat
diaphragm structure. A balance between excellent sensing
resolution and optimum linearity is always the key concern.
Thus, the previously reported flat pressure sensor [60] has
to be redesigned for the purpose of low pressure detection.
Rather than complicated diaphragm structures as reported [23],
[27], [29], [33], only the simple structure with annular grooves
and ribs around the diaphragm edge is chosen to simplify the
fabrication process as well as to prove the concept. The device
drawing of our annularly grooved diaphragm pressure sensor
is shown in Fig. 1(a) with the detailed groove geometry and
diaphragm cross section provided in inset I & II (In Inset II, the
top passivation layer (Si3N4) has been turned into transparent
for a clearer view). According to the previous study reported
by Yasukawa et. al. [61], the induced surface strain of the
both circular boss diaphragm (structure – B) and circular boss
diaphragm with rib (structure – B&R) can be expressed as
following:

εtotal = 3hrξ

wg
ω + π2

16(1 + β)w2
g
ω2 (1)

& β = hr wr Er + h(πa Ed − wr Er )

πawgks
(2)

Where εtotal is the total induced surface strain. hr and h are
the thickness of the rib/center boss and hinge region, which
is the remaining diaphragm portion below groove structures
and connected to the device substrate. ω is the diaphragm
deflection, wg is the width of the groove, wr is the width of rib,
and ξ is the nondimensional coordinate of the gauge position
(varies from 1 to -1). β is defined in (2), a is the radius of the
diaphragm, Ed and Er are the equivalent Young’s modulus of
the diaphragm and rib respectively. ks is the support stiffness.

In their study, the total induced strain can be treated as the
combination of rib/beam bending strain (the 1st portion of the
equation (1)) plus the diaphragm deforming strain (the 2nd

portion of equation (1)). When only structure – B is applied,
the equation can be simplified by equal h R to h. Therefore,
for structure – B&R, the sensitivity can be further improved
by reducing the thickness at the hinge region. In another word,
the thickness at the boss region is virtually increased. In order
to validate the assumption of a boss structure, the thickness
of the center boss region should be at least 6 times of the
thickness of the hinge (the remaining thickness at groove
region). Additionally, one of initial conditions for the equation
of boss structure assumes a negligible bending moment at the
center boss region under a given applied pressure. Thus, the
mechanical stiffness at the center boss has to be the much
higher than that of the hinge region. Such stiffness can be
characterized by flexural rigidity as expressed in equation (3).

D = Eh3

12(1 − ν2)
(3)

Where E is the equivalent Young’s modulus of the structure
and h is the structure thickness and ν is the Poisson’s ratio.
With a fixed equivalent Young’s modulus, the stiffness is
highly dependent on the diaphragm thickness. Therefore, the
thickness is usually above 10 μm for a good linearity accord-
ing to the literature [62], especially for those with the center
boss structure [23]. In our case, however, the initial diaphragm
does not perfectly match the boss configuration (the ratio of the
thickness between center and hinge area is only 5.5) and the
center thickness may be too thin (∼3 μm as indicated in Fig. 1
Inset II) to be considered as a rigid structure for minimizing
center deflections. Nevertheless, the analysis of equation (1)
does provide the design guideline for the reconfiguration of
original diaphragm structure and to demonstrate the concept
of the sensing capability for the SiNWs based NEMS device
under a low pressure. The location of piezoresistors (SiNWs in
our case) is usually placed along beam/rib region and buried
away from the neutral axis. In our design, SiNWs are laid
on the BOX layer (buried thermal oxide) and close to bottom
surface as shown in Fig. 1, Inset II. In addition, the thickness
of rib should be the same as that of the center diaphragm.
As indicated in the equation (3), hence, a smaller deflection
will be observed at rib region compared to the deflection
at hinge region and a resultant lower non-linearity will be
accomplished [27].

Besides the sensitivity and linearity improvement for struc-
ture – B&R, another advantage of such structure is to minimize
the fabrication variation due to the front to back side mis-
alignment. As a result of the front side fabrication, the groove
can be patterned with a relatively higher accuracy compared
with the result based on backside alignments. Moreover, the
well aligned groove re-defines the original stress distribution
profile confined by the edge of the conventional flat diaphragm
structure, which is released by the back side process. Such
stress re-distribution is realized by concentrating the stress
along the rib region [29]. Consequently, less performance
variations among each individual die is ensured during the
final device characterization. The detailed experimental result
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Fig. 1. (a) The schematic of SiNWs embedded pressure with groove and rib structures on the circular sensing diaphragm (released from the back side);
(b) The spot view in the location of SiNWs after etching back top passivation layers (2.5 μm Si3N4 and 0.4 μm SiO2). SiNWs are patterned along [110]
direction as indicated by white arrow. Inset I: the close-up view of the micro-groove; Inset II: the cross-section view of the multilayer diaphragm. Inset III: a
TEM image for the cross-section of the nanowire.

for minimizing the device variation will be elucidated in
section IV. Additionally, to achieve a better sensitivity and
optimum non-linearity, both groove and rib width should be
kept as narrow as possible [27], [29]. However, the practical
consideration limits the minimization of both groove and rib
width in our case. As shown in Fig. 1(b), the width of the
paddle connecting two nanowires is around 5 μm. To tolerance
alignment errors and etching processes, the width of rib and
groove are set to be 10 μm and 4 μm respectively (Shown in
Fig. 1 Inset I).

Apart from diaphragm geometry parameters, the nanowire
itself also needs to be optimized for better sensing perfor-
mances. The p-type impurity concentration is firstly designed
within the range of 1 to 3 × 1018 cm−3. This is to make
sure the optimization of piezoresistive effects, which have
to be balanced between a reasonably large piezoresistive
coefficient (lower the impurity higher the value) and a rela-
tively acceptable temperature dependency of the piezoresistor
(higher the impurity less the temperature induced variation)
[12], [16], [18]. It has also been reported that the non-linearity
component of piezoresistance is also related to the impurity
concentration [25], [31] due to the non-proportional relation-
ship between the splitting of valence band states caused by the
energy band shift between heavy and light hole [63]. Details on
temperature effects will be discussed in the following chapter.
In addition, the cross-section geometry is another important
factor to maximize the piezoresistance effect of SiNWs [56].
The ideal cross section view of SiNWs should be a square
shape such that the plasma induced damage to the nanowire
sidewall can be minimized. However, due to the imperfection
of photolithography process, the practical shape of the cross
section is always trapezoidal (as shown in Fig. 1 Inset III).
Furthermore, the resistance change due to the longitudinal
[defined by L in Fig. 1 (b)] stress component should be
maximized and the resistance change caused by transverse
[defined by T in Fig. 1 (b)] stress component has to be kept
as minimum for a better overall performance under a given
applied normal pressure. The expression of total resistance

changes is shown as below:

�R

R
= πLσL + πT σT (4)

Where πL and πT are the piezoresistance coefficients along
longitudinal and transverse direction, respectively, which for
silicon in this orientation have opposite polarities. σL and σT

are the stress components along each direction. As explored
by T. Toriyama et. al. [56], the longitudinal piezoresistance
effect can be enhanced by reducing the cross section area of
the silicon nanowire. On the other hand, the effect of transverse
piezoresistance can be minimized by proper design of the
aspect ratio, which is defined as the nanowire thickness divided
by its mean width. With the aspect ratio close to 1 (thickness ≈
width), the stress transmission ratio = (σT /σ) along the
transverse direction can ideally approximate to 1, therefore,
maximizing the transformation of stress component in the
longitudinal direction. Here, σ is the normal stress applied to
the substrate. Meanwhile, the change of aspect ratio does not
affect the stress component along the longitudinal direction.
The detailed process for the optimization of the SiNWs cross
section geometry will be described in the next chapter.

III. DEVICE FABRICATION

As shown in Fig. 2(a), the device fabrication starts on (100)
plane single crystal SOI wafer with the device layer of 117 nm
and BOX layer (buried thermal oxide) of 145 nm. The global
implantation with a boron dosage of 1 × 1014 ion/cm2 is
conducted followed by a 30 seconds rapid thermal annealing
(RTA) process at 1050 °C for dopant activation. The resul-
tant final impurity concentration of SiNWs is around 3.5 ×
1018 cm−3 [64]. The focus exposure matrix process is carried
out on test wafers to optimize the exposure recipe prior to the
photolithography process. The first photolithography is then
performed using the stepper mask (feature projection) based
on the result from the focus exposure matrix with the critical
dimension ∼150 nm after developments. The photoresist is
then trimmed for 60 seconds by plasma-induced feeding gas
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Fig. 2. Device process flows of SiNWs embedded pressure sensor with grooves on the front diaphragm. (a) the starting (100) plane SOI wafer; (b) the
formation of SiNWs along 〈110〉 direction; (c)-(d) Deposition of 1st passivation layer (400 nm PECVD SiO2) and metallization; (e) Deposition of 2nd

passivation layer (2.5 μm PECVD Si3N4) and bond pad opening; (f) backside DRIE for the diaphragm release; (g) the pattern of grooves by etching away
Si3N4 on the front side diaphragm.

(He/O2 + N2) and result in the minimum feature size of
110 nm in final. The plasma etching is processed to form
the SiNWs along <110> direction as shown in Fig. 2(b). This
orientation of SiNWs is chosen to maximize the piezoresistive
effect of p-type SiNWs on (100) plane [65]. With further
thermal dry oxidation at 875 °C for 2 hours, SiNWs with an
average cross section of 90 nm × 90 nm (resultant aspect
ratio ≈ 1 as shown in inset III of Fig. 1) and various
lengths (1 μm, 2 μm, 5 μm and 10 μm) are fabricated. The
2nd implantation with a boron dosage of 1 × 1015 ion/cm2

is conducted at only the contact and paddle region. After
deposition of 1st passivation layer (400 nm of SiO2), via is
drilled through top SiO2 layer to the bottom highly doped
silicon layer [Fig. 2(c)]. A 750 nm Al plus another 25 nm
TaN layer (serving as adhesion layer between Si and Al)
are sputtered and patterned to form the electrical connection
[Fig. 2(d)]. Sequentially, A 2.5 μm thick low stress (∼84 MPa)
Si3N4 is then coated by using plasma-enhanced chemical
vapor deposition (PECVD) to compensate the residual stress
from beneath oxide layers. As a result, the flat diaphragm
with initial deflection less than 100 nm is targeted [60]. After
bond pad opening shown in Fig. 2(e), the front side sensing
diaphragm is successfully defined through the back-side deep
reactive-ion etch (DRIE) with the BOX layer (buried thermal
oxide) as an etching stopper shown in Fig. 2(f). However, due
to the non-uniformity of inductively coupled plasma etching,
the deviation of final released diaphragm is as large as 12 %
[as shown in Fig. 7(a)] from the target diaphragm (diameter
of 200 μm), especially at the center and edge ring shaped
area around the 8-inch wafer. Finally the front side annular
groove is defined with a contact glass mask and patterned
through the etching process on the 2.5 μm Si3N4 cladding
layer in an annular region along the diaphragm edge. The
beneath SiO2 layer (∼500 nm thick) is used as the etching
stopper [Fig. 2(g)].

Fig. 3. The plot for the initial deflection of the annularly grooved diaphragm.
The diaphragm deforms downward and forms a concave shape. Inset shows
the optical image of the pressure diaphragm and a zoom-in view of the groove.

IV. EXPERIMENT RESULT AND DISCUSSION

A. Sensitivity and Linearity

The optical image of the release diaphragm with groove
and rib structures is given in the inset of Fig. 3. The zoom-in
image on the groove region indicates a successful etching stop
on beneath SiO2 layers and this is further verified by capturing
the diaphragm topography using white light interferometer
(WYKO NT3300). With the depth of groove about 2.57 μm,
the over etch of SiO2 layer (∼70 nm) is about 12% of
the total thickness of SiO2 layers (400 nm PECVD SiO2
layer plus 145 nm thermal SiO2 layer). However, it is also
plotted as the trade-off of a significantly reduction in the hinge
region (thus the reduction of the flexural rigidity), the initial
diaphragm deflection of 0.72 μm is found and it is about a
quarter of the total diaphragm thickness (∼3 μm). To further
understand the initial diaphragm deflection, the simulation on
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Fig. 4. (a) The surface profile captured by Wyko white light system and
(b) the simulated relationship between the nitride layer thickness and the
initial diaphragm deflection. The inset shows the simulated diaphragm shape
(concave) when a 2.5 μm thick nitride is used as the cladding layer.

the effect of residual stresses contributed by the multi-layered
diaphragm (named in the sequence from bottom to top: buried
thermal oxide layer, PECVD oxide layer and PECVD low
stress nitride layer) is conducted. The simulation is conducted
by using Abaqus 6.10 and all parameters used in simulation
are listed in Table I. The result of diaphragm deflections with
respect to different thicknesses of nitride layer is plotted in
Fig. 4(b) and it reveals the inverse proportionality between the
diaphragm deflection and the cladding nitride layer thickness.
In addition, both the simulation result [inset of Fig. 4(b)] and
the measurement data [Fig. 4(a)] indicate a concave shape
diaphragm. The value of the simulated deflection (∼0.67 μm)
is very close to the experimental data (∼0.72 μm) captured
by Wyko white light system. As a rule of thumb, a deflection
less than 10 % of the total diaphragm thickness will introduce
a mechanical non-linearity of 0.2 % and a deflection less
than 30 % of the total thickness will cause a non-linearity
component as large as 2 %. For a deflection large than 30%
of the diaphragm thickness, this assumption of the small
deflection principle is no longer valid [66].

To verify the performance difference of the SiNWs based
pressure sensor with the new annularly grooved diaphragm
in contrast to the previously reported flat diaphragm coun-
terpart, the percentage of resistance changes over the ini-
tial resistance (when no pressure is applied) are measured
in the form of �R/R (%) by varying pressure changes on
X-axis. The testing is firstly conducted under room temper-
ature (25 °C) with supply voltage of 0.5 V. The resistance
change is measured by the semiconductor characterization

Fig. 5. Plots of the percentage changes of resistance (�R/R (%)) with respect
to pressure changes for (a) the conventional flat diaphragm SiNWs pressure
sensor and (b) the annularly grooved diaphragm SiNWs pressure sensor. The
calculated nonlinearity for pressure sensors with different lengths of SiNWs
(1 μm, 2 μm, 5 μm and 10 μm) is given in insets.

TABLE I

MATERIAL PROPERTIES APPLIED IN THE

FINITE ELEMENT METHOD (FEM)

system (Keithley 4200-SCS) with the compressed air source
applied by the pressure regulator (ALICAT PCD Series)
from the backside of the device (please refer to [60] for
more detailed testing setups). As a result, piezoresistors will
experience a uniform tensile stress. Fig. 5(a) illustrates the
resistance change of the traditional flat diaphragm pressure
sensor, the maximum average percentage change (∼0.6 %)



ZHANG et al.: ANNULARLY GROOVED DIAPHRAGM PRESSURE SENSOR WITH EMBEDDED SILICON NANOWIRES 1401

Fig. 6. (a) Illustration of high stress region captured from FEM, (b) - (c) zoom-in optical images of rib region for 1 and 5 μm SiNWs designs respectively.
Simulation results of (d) - (e) extracted stress distributions for both longitudinal and transverse stress component along L-direction of the grooved diaphragm
pressure sensor, (f) – (g) extracted stress distributions for both longitudinal and transverse stress component along L-direction of the conventional flat diaphragm
pressure sensor.

occurs for the 1 μm SiNWs embedded pressure sensor among
other designs with longer length of embedded SiNWs. The
reasonable explanation has been addressed based on changes
of stress distribution profiles along the radial direction of the
diaphragm [60]. When SiNWs are located away from the
diaphragm edge, the average longitudinal stress experienced
along the nanowires gradually decays as the stress distribution
profile shown in Fig. 6(f). In the case of the grooved diaphragm
pressure sensor, the maximum average percentage change
of 1.07 % for 5 μm SiNWs pressure sensor is observed
[Fig. 5(b)]. In contrast to the 5 μm SiNWs embedded flat
diaphragm pressure sensor, the improvement of percentage
changes is about 2.5 times and this change is in a good agree-
ment with the finding of the increment of the average stress
distribution along longitudinal direction from the simulation.

The non-linearity (NL) for both the flat diaphragm
and the grooved diaphragm pressure sensor with different

lengths of SiNWs over full-scale span (FSS) are also
calculated based on equation (5) [63] and provided in
insets.

N L = R(T) − {[R(Tm) − R(0)](T/Tm) + R(0)}
R(Tm) − R(0)

(5)

Where, R(0) & R(T) are output resistance values at the
initial condition (pressure = 0) and a given pressure status
(pressure = T), respectively. The pressure varies from 0 to
Tm (maximum pressure applied). As predicted from the initial
deflection profile plotted in Fig. 3, a larger non-linearity is
introduced after reconfigurations of the original flat diaphragm
structure. Beside an extra increment of non-linearity, an
obvious sensitivity shift from the previously reported flat
diaphragm with 1 μm SiNWs to the currently reported grooved
diaphragm with 5 μm SiNWs is observed. To understand
this shift, the FEM is conducted and zoom-in views of the
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beam/rib structure are also provided in Fig. 6(b) and (c)
with a reference image showing the high stress distribution
region from FEM [Fig. 6(a)]. As depicted in Fig. 6(a), the
highest stress region is located slightly behind (around 2 μm
behind) where groove structures are fabricated along the rib.
The location of 1 μm SiNWs [shown in Fig. 6(b)] is out of
the high stress region, whereas, 75∼80% portion of 5 μm
nanowire [shown in Fig. 6(c)] is completely merged within
such high stress region. The detailed stress distribution profiles
along the rib [L-direction defined in Fig. 1(b)] under three
different external pressures are plotted in Fig. 6(d). The point
(0, 0) [indicated in Fig. 1(b)] is defined as the origin for
the X-axis (distance). With the same explanation, the average
stress distributed along 2 μm SiNWs is higher than that of
1 μm SiNWs design but lower than the average stress of
5 μm SiNWs design. For the 10 μm SiNWs, however, it
is too long to be entirely confined within the high stress
region, thus, experiencing a lower average stress. In addition,
the transverse stress distribution profile with the same origin,
span and direction are plotted in Fig. 6(e) as well. Unlike the
linearly decayed stress distribution from edge (tensile stress)
to the center (compressive stress) in the case of flat diaphragm
pressure sensor [indicated in Fig. 6(g)], it is worth noting
that the stress distribution profile is no longer linear after
fabrication with grooves. The stress profile ramps from the
small tensile down to relatively larger compressive region and
reaches its maximum (compressive) at distance about 7 μm
away from the origin. It then ramps up again to tensile stress
region. Although this stress change does not dominate the
difference in the final resistance value, it theoretically reduces
the average transverse resistance changes by approximate 10%,
if the same length (7 μm) of the nanowires is allocated
within exact the compressive stress region. Hence it leads
to improvement of the total resistance change as defined in
equation (4). However, the larger transverse stress will also
cause an increased non-linearity component regardless of the
stress polarity (both compressive and tensile) [63], therefore,
such compressive stress profile may also provide a negative
contribution to the device linearity. To further understand the
non-linearity component, a more closed-from expression of
non-linearity between an applied pressure and the final resis-
tance change of a given piezoresistor can be described as the
following [61]:

N L p−R = N Lε−R + N Lω−ε + N L p−ω (6)

Where NL p−R is the total non-linearity component between
applied pressure and final resistance changes; NL p-R is non-
linearity component introduced between strain/stress and resis-
tance changes; NLω-ε is non-linearity component introduced
between deflection and strain changes; NL p-ω is non-linearity
component introduced between applied pressure and mechan-
ical deflection changes. We have examined non-linearity com-
ponents contributed by both NL p-ω (∼2 % due to the initial
diaphragm deflection) and NLε-R . The NLω-ε is usually small
and can be removed by an external circuit. For instance, by
applying the Wheatstone bridge structure, NLω-ε can be further
minimized [61].

Fig. 7. (a) Optical images of over-release diaphragm (top) and targeted
diaphragm (bottom) with embedded 5 μm SiNWs, (b) Simulation results
of extracted average stress along 5 μm SiNWs for both grooved and flat
diaphragm pressure sensor with respect to the diaphragm diameter variation.

B. Improvement on Process Variations

Another aforementioned advantage of the groove structure
is the reconfiguration of the stress distribution. As illustrated
in Fig. 7(a), the backside release process has introduced large
fabrication variations and the over-release of the diaphragm
can be up to 12% of the targeted dimension (diameter of
200 μm). As a consequence, the performance of the released
device varies significantly from die to die. The average stress
distributed along 5 μm SiNWs with respect to the diaphragm
size variation for both the flat and the grooved diaphragm pres-
sure sensor is extracted by using FEM [plotted in Fig. 7(b)].
For a flat diaphragm structure, the amount of average stress
drops more than 45 % by varying the diaphragm diameter from
200 μm up to 225 μm. In case of the grooved diaphragm,
such diameter variation affects the average stress change up
to only 18 %. The FEM is conducted based on a linear
perturbation model. For further verification, the experiment is
conducted on different pressure sensor samples (n = 10) with
various diaphragm diameters. Output resistance variations for
5 μm SiNWs embedded in both flat and groove diaphragm
pressure sensor are shown in Fig. 8. The blue curve with
error bars reflects results for the flat diaphragm pressure sensor
(referring to bottom X and left Y -axis) with the deviation of
resistance changes up to 33% of its mean value at pressure of
120 mmHg. On the other hand, as plotted in red curve with
error bars (referring to top X and right Y -axis), the variation
of diaphragm size only introduces 14 % of performance
differences to the annularly grooved pressure sensor within the
same pressure range. The obvious improvement of the device
sensing performance over process variations is hereby reported
and it is contributed by the groove structure, which forces the
stress distribution along the rib.

Here, the reported device is just the proof-of-concept for
the sensing capability of SiNWs embedded sensor under a low
pressure and the design has not been completely optimized yet.
Further sensitivity improvement can be realized by changing
circular diaphragm to a square shape. This change may lead to
the sensitivity improvement up to 60% base on flat plate design
theory [66]. Additionally, the optimum location of SiNWs
with respect to the annular groove has not been determined.
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Fig. 8. Plot of output resistance variations with the blue curve and error bars
for the flat diaphragm pressure sensor (refer to bottom X-and left Y -axis) and
the red curve and error bars (refer to top X-and right Y -axis) for the grooved
diaphragm pressure sensor with 5 μm SiNWs embedded in both cases.

The location of 1 μm SiNWs can be re-adjusted to completely
within the high stress region. This will further improve the
piezoresistance changes by ∼40 % due to the reported higher
gauge factor (G) of 1 μm SiNWs (G ∼100) over that of
5 μm design (G ∼ 65) [60]. The orientation of shorter
SiNWs can also be re-aligned along the tangential direction
[T -direction as defined in Fig. 1 (b)] without increasing the
width of rib. As a result, further sensitivity enhancement will
be achieved due to a relatively uniform average stress along the
tangential direction at the narrow rib. In addition, non-linearity
components will also be compensated among piezoresistors,
when they are subjected to lateral stress [67]. Furthermore,
the dimension and thickness of both rib and groove can
be refined for a higher stress distribution profile and lower
non-linearity.

C. Temperature Effects

Temperature variation is another key factor, which affects
several parameters like material property, feature geometry and
mostly importantly the piezoresistive effect [2], [11], [12].
The contribution from other temperature dependent factors
varies and is relatively smaller compared with that from
the piezoresistor itself [30]. For the p-type piezoresistor, the
reported experimental result reveals the dependency of shear
piezoresistance coefficient on both impurity concentrations and
temperature variations [16], [18]. A more general expression
for the relationship between the pieozresistance and its tem-
perature dependency is defined by Y. Kanda [65] as:

∏
(N, T ) = P(N, T ) ∗

∏
(300) (7)

Where 
(N, T ) is the piezoresistance coefficient with an
impurity concentration N at a temperature T . 
(300) is the
piezoresistance coefficient at temperature of 300 K. P(N, T )
is the piezoresistance factor and can be expressed as:

P(N, T ) = 300

T ln(1 + eE f /kT )(1 + e−E f /kT )
(8)

Fig. 9. Illustration of setups for the temperature response test of the reported
pressure sensor.

Fig. 10. Output resistance changes under different ambient temperatures
(27 °C to 70 °C). The plotted data is measured from reported groove
diaphragm pressure sensors with 5μm long SiNWs as piezoresistors. Insets
show the non-linearity (NL) component with respect to outputs at different
temperatures.

Where, the E f is the Fermi energy and it is related to the
impurity concentration. It has been reported that equation (7)
may be suitable for the first-order approximation and the
simulated result matches the experimental data in case of pure
circular and square diaphragm based pressure sensors [30].
In order to explore the temperature response of our device,
the hot plate is used as the heat source. Temperature changes
are monitored by thermocouple with accuracy around ±2 °C
of its display value. The device is assembled on top of an
aluminum block by an acrylic plate. The gasket is used to
surround the testing sample for air sealing purpose. The air
pressure is applied from the backside of the test sample by a
pressure regulator (The similar Al sealing block has also been
reported in [64]). The electrical path is established by probing
bonding pads through a small opening window on the acrylic
plate and resistance changes are recorded by the parametric
analyzer. The detailed setup is shown in Fig. 9.

The response of the device is examined within temperatures
varying from 27 °C (room temperature) to 70 °C, which is
a reasonable temperature range for most bio-medical related
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TABLE II

THE COMPARISON OF BIO-MEDICAL PIEZORESISTIVE PRESSURE SENSING DEVICES BETWEEN THIS WORK AND OTHER REPORTED DESIGN

applications. The tip portion of the thermocouple is closely
attached on the top surface of the aluminum block (just beside
the test sample). Once the reading from the thermocouple
is stabilized, another 20 minutes interval is spent before
tightening the acrylic plate by screws. This minimizes any
testing errors introduced by the setup. Additionally, the entire
hot plate is covered with aluminum foils, which is connected
to the common ground, to reduce the noise signal generated
from the testing instrument. The temperature testing result of
the grooved pressure sensor with 5 μm SiNWs is plotted
in Fig. 10. The obvious sensitivity drop over temperature
increment is reported. Compared with the output resistance
change at room temperature (27 °C), this drop of output
performance is as large as 23% at 70 °C. Contrary to the
sensitivity degradation, the linearity component improves at
higher temperature. Based on equation (5), the non-linearity
under the full scale span is around 3% (shown in the set of
Fig. 10) at 70 °C. Such temperature dependent linearity change
is in a good agreement with the literature [25].

V. CONCLUSION

To provide a clearer view for the performance of the
grooved diaphragm based SiNWs sensing device under a low
pressure, especially for bio-medical applications, a comparison
is tabulated in Table II with all references reported for different
bio-medical applications except our previous work. It is shown
in Table II that our reported SiNWs based devices demonstrate
the great scalability (indicated in column 4). The sensitivity
((�R/R)/mmHg) for all devices is also summarized in column
5. It seems that the performance is highly dependent on the
area of sensing diaphragm. In fact, the relationship between
the effective sensing area and the device sensitivity should
be linearly proportional as predicted by the plate theory [34].
Thus, a fair sensitivity comparison among all types of pressure
sensing devices is listed in the last column of the table.
After normalizations of variations in the effective sensing

area, the sensitivity improvement of the previously reported
flat diaphragm based SiNWs pressure sensor is almost an
order over other literature reports. With a further improvement
benefited by the groove structure, the currently reported device
boosts up the sensitivity by at least 17 times compared with
results reported by other groups. Such significant improvement
proves the feasibility for implementing SiNWs based device
for low pressure sensing applications by simply reconfiguring
the device diaphragm.

In summary, the new annularly grooved diaphragm pres-
sure sensor with SiNWs embedded as a piezoresistor is
reported here. Various design considerations for both sen-
sitivity improvement and minimization of nonlinearity have
been discussed in detail. Experimental results are summarized
and analyzed with respect to results from the previous flat
diaphragm based SiNWs pressure sensor. Both FEM and
measurement data explain the benefit of the groove structure
that forces the stress to be concentrated around the rib region
and results in a greater resistance change. The performance
variation of the device over a reasonable temperature range is
examined. A table is also summarized with an explicit indica-
tion for the enhancement of SiNWs based devices over other
reported traditional piezoresistive pressure sensors. Benefiting
by the superiority of SiNWs, the reported proof-of-concept
device with the groove diaphragm structure further enhances
the sensing capability and fulfills the demand for working
under the low pressure range required by implantable bio-
medical applications.
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