Lecture 2: Electrostatics – Part I

- Maxwell’s Equations
- Charge and Current Distributions
 - Charge Density
 - Current Density
- Coulomb’s Law
 - Multiple Point Charges
 - Charge Distribution
- Gauss’s Law
- Electric Scalar Potential
 - Electric Potential as a Function of E-Field
 - Electric Potential due to Point Charge
 - Electric Potential due to Continuous Distributions
 - E-Field as a Function of Electrical Potential
 - Poisson’s Equation
Lecture 3: Electrostatics – Part II

- **Electrical Properties of Materials**
- **Conductors**
 - Resistance
 - Joule’s Law
- **Dielectrics**
- **Electric Boundary Conditions**
 - Dielectric-Conductor Boundary
 - Conductor-Conductor Boundary
- **Capacitance**
- **Electrostatic Potential Energy**
- **Image Theory**

(* Optional contents for knowledge enrichment)
Maxwell’s Equations

- Maxwell’s Equations

![Maxwell's Equations](image)

Maxwell equations in time- & spectral-domains

<table>
<thead>
<tr>
<th>Time-domain</th>
<th>Relation</th>
<th>Spectral-domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} - \mathbf{M})</td>
<td>(A = \text{Re} \left[Ae^{j\omega t} \right]) in time/spectral-domains.</td>
<td>(\nabla \times \mathbf{E} = -j\omega \mathbf{B} - \mathbf{M})</td>
</tr>
<tr>
<td>(\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J})</td>
<td>(\nabla \times \mathbf{H} = j\omega \mathbf{D} + \mathbf{J})</td>
<td></td>
</tr>
<tr>
<td>(\nabla \cdot \mathbf{D} = \rho(t))</td>
<td>(\nabla \cdot \mathbf{D} = \rho)</td>
<td></td>
</tr>
<tr>
<td>(\nabla \cdot \mathbf{B} = m(t))</td>
<td>(\nabla \cdot \mathbf{B} = m)</td>
<td></td>
</tr>
<tr>
<td>(\nabla \cdot \mathbf{J} = -\frac{\partial \rho(t)}{\partial t})</td>
<td>(\nabla \cdot \mathbf{J} = -j\omega \rho)</td>
<td></td>
</tr>
<tr>
<td>(\nabla \cdot \mathbf{M} = -\frac{\partial m(t)}{\partial t})</td>
<td>(\nabla \cdot \mathbf{M} = -j\omega m)</td>
<td></td>
</tr>
</tbody>
</table>
Maxwell’s Equations

- **Physical Quantities**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{E}, (\vec{E})</td>
<td>Electric field strength</td>
<td>Volts/m</td>
</tr>
<tr>
<td>\mathcal{H}, (\vec{H})</td>
<td>Magnetic field strength</td>
<td>Amperes/m</td>
</tr>
<tr>
<td>\mathcal{D}, (\vec{D})</td>
<td>Electric current</td>
<td>Coulombs/m²</td>
</tr>
<tr>
<td>\mathcal{J}, (\vec{J})</td>
<td>Electric current density</td>
<td>Amperes/m²</td>
</tr>
<tr>
<td>\mathcal{B}, (\vec{B})</td>
<td>Magnetic flux density</td>
<td>Webers/m²</td>
</tr>
<tr>
<td>\mathcal{M}, (\vec{M})</td>
<td>Impressed magnetic current density</td>
<td>Volts/m²</td>
</tr>
<tr>
<td>$\rho(t)$, ρ</td>
<td>Electric charge density</td>
<td>Coulombs/m³</td>
</tr>
<tr>
<td>$m(t)$, m</td>
<td>Impressed magnetic charge density</td>
<td>Webers/m³</td>
</tr>
</tbody>
</table>
Maxwell’s Equations

• Physical Significance - I

- The 1st equation: the differential form of Faraday’s law of induction,
- The 2nd equation: a generalization of Ampère’s circuital law (also referred to as the law of Biot-Savart),
- The 3rd equation: the differential form of Gauss’ law,
Maxwell’s Equations

- Physical Significance - II

- The 4th equation: the magnetic lines of flux form a system of closed loops and nowhere terminate on “magnetic” charge,
- The 5th equation: the equation of conservation of electric charge,
- The 6th equation: the equation of conservation of magnetic charge.
Maxwell’s Equations

• Some Notes

- The introducing of the magnetic current distribution does not make any speculations about the existence of magnetic monopoles.
- Physically, there does not exist an magnetic source. The magnetic source, first introduced by Heaviside in 1885, is considered as an equivalent source adopted for convenience.
Maxwell’s Equations

• Independence of Equations

The above 6 equations are not all independent.

From $\nabla \times \mathcal{E} = -\frac{\partial \mathcal{B}}{\partial t} - \mathcal{M}$, and $\nabla \times \mathcal{H} = \frac{\partial \mathcal{D}}{\partial t} + \mathcal{J}$,

we have $\nabla \cdot \frac{\partial \mathcal{B}}{\partial t} + \nabla \cdot \mathcal{M} = 0$, and

$\nabla \cdot \frac{\partial \mathcal{D}}{\partial t} + \nabla \cdot \mathcal{J} = 0$, because $\nabla \cdot (\nabla \times \mathbf{A}) = 0$.

Using the 3rd and 4th equations

$\nabla \cdot \mathcal{D} = \rho(t)$, \hspace{0.2cm} $\nabla \cdot \mathcal{B} = m(t)$, we readily obtain

the last two equations after the substitution, i.e.,

$\nabla \cdot \mathcal{J} = -\frac{\partial \rho(t)}{\partial t}$ and $\nabla \cdot \mathcal{M} = -\frac{\partial m(t)}{\partial t}$.
Maxwell’s Equations

- Special Cases of Maxwell’s Equations

<table>
<thead>
<tr>
<th>Electric source</th>
<th>Magnetic source</th>
<th>Static fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\overrightarrow{M} = 0, m = 0)</td>
<td>(\overrightarrow{J} = 0, \rho = 0)</td>
<td>(\partial / (\partial t) = 0)</td>
</tr>
<tr>
<td>(\nabla \times \overrightarrow{E} = -j\omega \overrightarrow{B})</td>
<td>(\nabla \times \overrightarrow{E} = -j\omega \overrightarrow{B} - \overrightarrow{M})</td>
<td>(\nabla \times \overrightarrow{E} = -\overrightarrow{M})</td>
</tr>
<tr>
<td>(\nabla \times \overrightarrow{H} = j\omega \overrightarrow{D} + \overrightarrow{J})</td>
<td>(\nabla \times \overrightarrow{H} = j\omega \overrightarrow{D})</td>
<td>(\nabla \times \overrightarrow{H} = \overrightarrow{J})</td>
</tr>
<tr>
<td>(\nabla \cdot \overrightarrow{D} = \rho)</td>
<td>(\nabla \cdot \overrightarrow{D} = 0)</td>
<td>(\nabla \cdot \overrightarrow{D} = \rho)</td>
</tr>
<tr>
<td>(\nabla \cdot \overrightarrow{B} = 0)</td>
<td>(\nabla \cdot \overrightarrow{B} = m)</td>
<td>(\nabla \cdot \overrightarrow{B} = m)</td>
</tr>
<tr>
<td>(\nabla \cdot \overrightarrow{J} = -j\omega \rho)</td>
<td>(\nabla \cdot \overrightarrow{J} = 0)</td>
<td>(\nabla \cdot \overrightarrow{J} = 0)</td>
</tr>
<tr>
<td>(\nabla \cdot \overrightarrow{M} = 0)</td>
<td>(\nabla \cdot \overrightarrow{M} = -j\omega m)</td>
<td>(\nabla \cdot \overrightarrow{M} = 0)</td>
</tr>
</tbody>
</table>
Maxwell’s Equations

- Maxwell’s Equations
 \[
 \begin{align*}
 \nabla \cdot \mathbf{D} &= \rho_v \\
 \nabla \cdot \mathbf{B} &= 0 \\
 \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\
 \nabla \times \mathbf{H} &= \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}
 \end{align*}
 \]

 Static case happens when all charges are permanently fixed in space, or, if they move, they do so at a steady rate so that \(\rho_v\) and \(\mathbf{J}\) are constant in time.

 The electric and magnetic fields are no longer interconnected in the static case.

- Electrostatics
 \[
 \begin{align*}
 \nabla \cdot \mathbf{D} &= \rho_v \\
 \nabla \times \mathbf{E} &= 0.
 \end{align*}
 \]

- Magnetostatics
 \[
 \begin{align*}
 \nabla \cdot \mathbf{B} &= 0 \\
 \nabla \times \mathbf{H} &= \mathbf{J}.
 \end{align*}
 \]

- Constitutive Relations
 \[
 \begin{align*}
 \mathbf{D} &= \varepsilon \mathbf{E} \\
 \mathbf{B} &= \mu \mathbf{H}.
 \end{align*}
 \]
• Charge and Current

 – In electromagnetics, we encounter various forms of electric charge distributions;

 – If the charges are in motion, they constitute current distributions;

 – Charge may be distributed over a volume of space, across a surface, or along a line.
Charge and Current Distributions

Charge Density

- **Volume Charge Density**
 \[
 \rho_v = \lim_{\Delta v \to 0} \frac{\Delta q}{\Delta v} = \frac{dq}{dv} \quad \text{(C/m}^3\text{)}
 \]

- **Surface Charge Density**
 \[
 \rho_s = \lim_{\Delta s \to 0} \frac{\Delta q}{\Delta s} = \frac{dq}{ds} \quad \text{(C/m}^2\text{)}
 \]

- **Line Charge Density**
 \[
 \rho_l = \lim_{\Delta l \to 0} \frac{\Delta q}{\Delta l} = \frac{dq}{dl} \quad \text{(C/m)}
 \]

\[
Q = \iiint \rho_v dv \quad \text{or} \quad \iint \rho_s ds \quad \text{or} \quad \int \rho_l dl.
\]
Charge and Current Distributions

Example 1

Exercise 3.1 A square plate in the x–y plane is situated in the space defined by $-3 \text{ m} \leq x \leq 3 \text{ m}$ and $-3 \text{ m} \leq y \leq 3 \text{ m}$. Find the total charge on the plate if the surface charge density is given by $\rho_s = 2y^2 \text{ (C/m}^2\text{)}$.

Solution:

\[
\rho_s = 2y^2
\]

\[
Q = \int_S \rho_s \, ds
\]

\[
= \int_{-3}^{3} \int_{-3}^{3} 2y^2 \, dx \, dy
\]

\[
= \frac{2y^3x}{3} \bigg|_{-3}^{3} \bigg|_{-3}^{3} = 216 \mu\text{C} = 0.216 \text{ (mC)}.
\]
Example 2

Exercise 3.2 A spherical shell centered at the origin extends between $R = 2 \text{ cm}$ and $R = 3 \text{ cm}$. If the volume charge density is given by $\rho_v = 6R \times 10^{-4} \text{ (C/m}^3\text{)}$, find the total charge contained in the shell.

Solution:

\[
\rho_v = 6R \times 10^{-4}
\]

\[
Q = \int \rho_v \, dV
\]

\[
= \int_{R=2 \text{ cm}}^{R=3 \text{ cm}} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} 6R \times 10^{-4} \cdot R^2 \sin \theta \, dR \, d\theta \, d\phi
\]

\[
= \frac{6R^4}{4} \times 10^{-4} \left[\frac{3 \text{ cm}}{2 \text{ cm}} \right] \times 2 \times 2\pi
\]

\[
= 6\pi \times 10^{-4} \left[(3 \times 10^{-2})^4 - (2 \times 10^{-2})^4 \right] = 1.22 \text{ (nC)}.
\]
Charge and Current Distributions

- **Current Density**

\[\Delta q' = \rho_v u \Delta s' \Delta t \]

\[\Delta q = \rho_v u \varepsilon \Delta s \Delta t \]

\[\Delta q = \rho_v u \Delta s \Delta t \cos \theta \]

\[\Delta I = \frac{\Delta q}{\Delta t} = \rho_v u \cdot \Delta s = J \cdot \Delta s \]
Charge and Current Distributions

(a) Orbiting electron (b) Spinning electron

Current Density
- Convection Current Density and Electric Current
- Difference Between Convection and Conduction Currents

Conduction current obeys Ohms Law
- move of some of outermost electrons
- atom, but atoms of the conducting medium do not move (atomic nuclei–still and electron shells of atom ––moving, in a metal wire).

Convection
- flow of charges or electrons (charged cloud, cathode–ray tubes of TVs, etc)
Coulomb’s Law

- **Coulomb’s Law**
 - An isolated charge \(q \) induces an electric field \(\mathbf{E} \) at every point in space, and at any specific point \(P \), \(\mathbf{E} \) is given by

\[
\mathbf{E} = \hat{\mathbf{R}} \frac{q}{4\pi\varepsilon R^2}, \quad \text{(V/m)}
\]

where \(\hat{\mathbf{R}} \) is a unit vector point from \(q \) to \(P \), \(R \) is the distance between them, and \(\varepsilon \) is the electric permittivity of the medium containing \(P \) point.
Coulomb’s Law

Coulomb’s Law

- In the presence of an electric field \(\mathbf{E} \) at a given point in space, which may be due to a single charge or a distribution of many charges, the force acting on a test charge \(q' \), when the charge is placed at that point, is given by

\[
F = q' \mathbf{E}, \quad (N); \quad D = \varepsilon \mathbf{E} = \varepsilon_0 \varepsilon_r \mathbf{E};
\]

where \(F \) measured in Newtons (N) and \(q' \) in Coulombs (C), the unit of \(\mathbf{E} \) is N/C shown to be volt per meter (V/m) later on.
Coulomb’s Law

- **Coulomb’s Law** ❌ Skip this slide
Coulomb’s Law

- **Multiple Point Charges**
 - **Point Charge Q1**
 \[E_1 = \frac{q_1 (R - R_1)}{4\pi \varepsilon |R - R_1|^3}, \text{ (V/m)} \]
 - **Point Charge Q2**
 \[E_2 = \frac{q_2 (R - R_2)}{4\pi \varepsilon |R - R_2|^3}, \text{ (V/m)} \]
 - **Superposition Principle**
 \[E = E_1 + E_2 = \frac{q_1 (R - R_1)}{4\pi \varepsilon |R - R_1|^3} + \frac{q_2 (R - R_2)}{4\pi \varepsilon |R - R_2|^3}, \text{ (V/m)} \]
 - **Multiple Point Charges**
 \[E = \frac{1}{4\pi \varepsilon} \sum_{i=1}^{N} \frac{q_i (R - R_i)}{|R - R_i|^3}, \text{ (V/m)} \]
Coulomb’s Law

Example 3

Exercise 3.3 Four charges of 10 μC each are located in free space at (−3, 0, 0), (3, 0, 0), (0, −3, 0), and (0, 3, 0) in a Cartesian coordinate system. Find the force on a 40-μC charge located at (0, 0, 4). All distances are in meters.

Solution:

\[\mathbf{R}_1 = -\hat{x}3 \]
\[\mathbf{R}_2 = \hat{x}3 \]
\[\mathbf{R}_3 = -\hat{y}3 \]
\[\mathbf{R}_4 = \hat{y}3 \]
\[\mathbf{R} = \hat{z}4 \]

\[\mathbf{F}_1 = \frac{QQ_1}{4\pi\varepsilon_0} \frac{\mathbf{R} - \mathbf{R}_1}{|\mathbf{R} - \mathbf{R}_1|^3} = \frac{QQ_1}{4\pi\varepsilon_0} \frac{\hat{z}4 + \hat{x}3}{125} = \frac{QQ_1}{500\pi\varepsilon_0} (\hat{z}4 + \hat{x}3) \]

\[\mathbf{F}_2 = \frac{QQ_2}{4\pi\varepsilon_0} \frac{\mathbf{R} - \mathbf{R}_2}{|\mathbf{R} - \mathbf{R}_2|^3} = \frac{QQ_2}{4\pi\varepsilon_0} \frac{\hat{z}4 - \hat{x}3}{125} = \frac{QQ_2}{500\pi\varepsilon_0} (\hat{z}4 - \hat{x}3) \]

\[\mathbf{F}_3 = \frac{QQ_3}{4\pi\varepsilon_0} \frac{\mathbf{R} - \mathbf{R}_3}{|\mathbf{R} - \mathbf{R}_3|^3} = \frac{QQ_3}{4\pi\varepsilon_0} \frac{\hat{z}4 + \hat{y}3}{125} = \frac{QQ_3}{500\pi\varepsilon_0} (\hat{z}4 + \hat{y}3) \]

\[\mathbf{F}_4 = \frac{QQ_4}{4\pi\varepsilon_0} \frac{\mathbf{R} - \mathbf{R}_4}{|\mathbf{R} - \mathbf{R}_4|^3} = \frac{QQ_4}{4\pi\varepsilon_0} \frac{\hat{z}4 - \hat{y}3}{125} = \frac{QQ_4}{500\pi\varepsilon_0} (\hat{z}4 - \hat{y}3) \]

\[\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 + \mathbf{F}_4 \]

\[= \frac{400 \times 10^{-12}}{500\pi\varepsilon_0} (\hat{z}16) = \frac{64 \times 10^{-12}}{5\pi \times 8.85 \times 10^{-12}} = \hat{z}0.46 \quad \text{(N)} \]
Coulomb’s Law

- **Examples 4 and 5**

 Exercise 3.4 Two identical charges are located on the x-axis at \(x = 3 \) and \(x = 7 \). At what point in space is the net electric field zero?

 Solution: Since both charges are on the x-axis, the point at which the fields due to the two charges can cancel has to lie on the x-axis also. Intuitively, since the two charges are identical, that point is midway between them at \((5,0,0)\).

 Exercise 3.5 In a hydrogen atom the electron and proton are separated by an average distance of \(5.3 \times 10^{-11}\) m. Find the magnitude of the electrical force \(F_e\) between the two particles, and compare it with the gravitational force \(F_g\) between them.

 Solution:

 \[
 F_e = \frac{q_e q_p}{4\pi \varepsilon_0 R^2} = \frac{(1.6 \times 10^{-19})^2}{4\pi \times 8.85 \times 10^{-12}(5.3 \times 10^{-11})^2} = 8.2 \times 10^{-8}\ N.
 \]

 \[
 F_g = \frac{Gm_e m_p}{R^2} = \frac{6.67 \times 10^{-11} \times 9.11 \times 10^{-31} \times 1.67 \times 10^{-27}}{(5.3 \times 10^{-11})^2} = 3.6 \times 10^{-47}\ N.
 \]
Coulomb’s Law

- **Charge Distribution**
 - Differential Charge $dq = \rho_v \, dv$
 \[
 dE = \hat{R}' \frac{dq}{4\pi\varepsilon R'^2} = \hat{R}' \frac{\rho_v \, dv'}{4\pi\varepsilon R'^2}, \quad (V/m).
 \]
 - Electric Field
 \[
 E = \frac{1}{4\pi\varepsilon} \iiint_{V'} \frac{\rho_v \, dv'}{R'^2} \quad (V/m).
 \]
 - Surface and Line Distributions
 \[
 E = \frac{1}{4\pi\varepsilon} \iint_{S'} \frac{\rho_s \, ds'}{R'^2} \quad \text{or} \quad \frac{1}{4\pi\varepsilon} \int_{l'} \frac{\rho_l \, dl'}{R'^2}, \quad (V/m).
 \]
Coulomb's Law

• Shielding Effects in the Presence of a Conductor
 – Outer charges or currents **DO NOT** effect the inner electric or magnetic fields
 – The inner charges or currents will produce the induced charges or currents and thus will further produce the outer electric and magnetic fields
Coulomb’s Law

- Shielding Effects in the Presence of a Conductor
Example 6

Questions: A ring of charge of radius b is characterised by a uniform line charge density of positive polarity ρ_l. With the ring in free space and positioned in the x-y plane as shown in the figure, determine the electric field intensity \mathbf{E} at a point $P(0, 0, h)$ along the axis of the ring at a distance h from its center.

Solution: Consider the electric field generated by a differential segment of the ring, e.g., segment 1 located at $(b, \phi, 0)$ in the figure. The segment has length $dl = b d\phi$ and contains charge $dq = \rho_l dl = \rho_l b d\phi$. The distance vector \mathbf{R}_1' from segment 1 to point $P(0, 0, h)$ is

$$R_1' = |\mathbf{R}_1'| = \sqrt{b^2 + h^2}, \quad \hat{\mathbf{R}}_1' = \frac{\mathbf{R}_1'}{|\mathbf{R}_1'|} = \frac{-\hat{x} - \hat{z}h}{\sqrt{b^2 + h^2}}.$$
Coulomb’s Law

• Example 6 - continued
 - **Solution:** The electric field intensity \(E \) at the point \(P(0, 0, h) \) due to the charge of segment is
 \[
dE_1 = \frac{1}{4\pi\varepsilon_0} \frac{\rho_l dl}{R_1^2} = \frac{\rho_l b}{4\pi\varepsilon_0} \frac{-\hat{r} b + \hat{z} h}{(b^2 + h^2)^{3/2}} d\phi.
 \]
 - The \(z \)-directional contribution due to two opposite segments is thus given by
 \[
dE = dE_1 + dE_2 = \hat{z} \frac{\rho_l b h}{2\pi\varepsilon_0 (b^2 + h^2)^{3/2}} d\phi.
 \]
 - The total electric field is thus integrated as
 \[
 E = \hat{z} \frac{\rho_l b h}{2\varepsilon_0 (b^2 + h^2)^{3/2}} \int_0^{\pi} d\phi
 \]
 \[
 = \hat{z} \frac{\rho_l b h}{2\varepsilon_0 (b^2 + h^2)^{3/2}} = \hat{z} \frac{Q h}{4\pi\varepsilon_0 (b^2 + h^2)^{3/2}},
 \]
 where \(Q = 2\pi b \rho_l \).
Coulomb’s Law

Example 7

- **Question:** Find the electric field at a point \(P(0, 0, h) \) in free space at a height \(h \) on the \(z \)-axis due to a circular disk of charge in the \(x-y \) plane with uniform charge density \(\rho_s \), as shown in the figure, and then evaluate \(\mathbf{E} \) for the infinite-sheet case by letting \(a \to \infty \).

- **Solution:** A ring of radius \(r \) and width \(dr \) has an area \(ds = 2\pi r \, dr \) and contains charge \(dq = \rho_s \, ds = 2\pi \rho_s \, r \, dr \). Using the expression in the last example, and replacing \(b \) with \(r \), we have

\[
d\mathbf{E} = \hat{z} \frac{h}{4\pi \varepsilon_0 \left(r^2 + h^2 \right)^{3/2}} \left(2\pi \rho_s \, r \, dr \right)
\]

\[
\mathbf{E} = \hat{z} \frac{\rho_s}{2\varepsilon_0} \left[\frac{r \, dr}{\left(r^2 + h^2 \right)^{3/2}} \right] \frac{a}{a \to \infty} \to \pm \hat{z} \frac{\rho_s}{2\varepsilon_0}.
\]
Coulomb’s Law

Example 8

Exercise 3.6 An infinite sheet of charge with uniform surface charge density \(\rho_s \) is located at \(z = 0 \) (x–y plane), and another infinite sheet with density \(-\rho_s\) is located at \(z = 2 \text{ m} \), both in free space. Determine \(\mathbf{E} \) in all regions.

Solution: Per Eq. (3.25), for the sheet at \(z = 0 \),

\[
\mathbf{E}_1 = \begin{cases}
\hat{z} \frac{\rho_s}{2\varepsilon_0}, & \text{for } z > 0, \\
-\hat{z} \frac{\rho_s}{2\varepsilon_0}, & \text{for } z < 0.
\end{cases}
\]

Similarly, for the sheet at \(z = 2 \text{ m} \) with charge density \(-\rho_s\),

\[
\mathbf{E}_2 = \begin{cases}
-\hat{z} \frac{\rho_s}{2\varepsilon_0}, & \text{for } z > 2 \text{ m}, \\
\hat{z} \frac{\rho_s}{2\varepsilon_0}, & \text{for } z < 2 \text{ m}.
\end{cases}
\]

Hence,

\[
\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2 = \begin{cases}
0, & \text{for } z < 0, \\
\hat{z} \frac{\rho_s}{\varepsilon_0}, & \text{for } 0 < z < 2 \text{ m}, \\
0, & \text{for } z > 2 \text{ m}.
\end{cases}
\]
Gauss’s Law

- **Gauss’s Law**
 - **Differential Form**
 \[\nabla \cdot \mathbf{D} = \rho_v \n\]
 - **Total Charge**
 \[\iiint_{v} \nabla \cdot \mathbf{D} \, dv = \iiint_{v} \rho_v \, dv = Q \n\]
 - **Divergence Theorem**
 \[\iiint_{v} \nabla \cdot \mathbf{D} \, dv = \oiint_{S} \mathbf{D} \cdot ds \n\]
 - **Integral Form**
 \[\oiint_{S} \mathbf{D} \cdot ds = Q \n\]

Gauss’s law states that the outward flux of \(D \) through a surface is proportional to the enclosed charge \(Q \).
Gauss’s Law

- Electric Field due to a Point Charge
 - Radially Outward \(\mathbf{D} \)
 \[
 \mathbf{D}(\mathbf{R}) = \hat{\mathbf{R}} \mathbf{D}_R
 \]
 - Gauss’s Law
 \[
 \oint_S \mathbf{D} \cdot d\mathbf{s} = \oint_S \hat{\mathbf{R}} \mathbf{D}_R \cdot d\mathbf{s} = \int_S \mathbf{D}_R \cdot d\mathbf{s} = D_R \left(4\pi R^2 \right) = q.
 \]
 - Electric field – Coulomb’s Law
 \[
 \mathbf{E}(\mathbf{R}) = \frac{\mathbf{D}(\mathbf{R})}{\varepsilon} = \hat{\mathbf{R}} \frac{q}{4\pi \varepsilon R^2}, \quad \text{(V/m)}.
 \]

- Gauss’s Law is easier to apply than Coulomb’s Law, but limited to symmetrical charge distributions
Gauss’s Law

- **Example 9**

 Exercise 3.7 Two infinite lines of charge, each carrying a charge density \(\rho_l \), are parallel to the \(z \)-axis and located at \(x = 1 \) and \(x = -1 \). Determine \(\mathbf{E} \) at an arbitrary point in free space along the \(y \)-axis.

 Solution:

 The distance between either line of charge and a point at \(y \) on the \(y \)-axis is \(r = (1 + y^2)^{1/2} \).

 For line 1,

 \[
 \hat{r}_1 = \frac{r_1}{r} = \frac{-\hat{x} + \hat{y} y}{(1 + y^2)^{1/2}}.
 \]

 For line 2,

 \[
 \hat{r}_2 = \frac{r_2}{r} = \frac{\hat{x} + \hat{y} y}{(1 + y^2)^{1/2}}.
 \]

 Using Eq. (3.33),

 \[
 \mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2 = \frac{\hat{r}_1 \rho_l}{2\pi \varepsilon_0 r} + \frac{\hat{r}_2 \rho_l}{2\pi \varepsilon_0 r} = \frac{(-\hat{x} + \hat{y} y)\rho_l}{2\pi \varepsilon_0 (1 + y^2)} + \frac{(\hat{x} + \hat{y} y)\rho_l}{2\pi \varepsilon_0 (1 + y^2)} = \frac{\hat{y} \rho_l y}{\pi \varepsilon_0 (y^2 + 1)}.
 \]
Gauss’s Law

- **Home Work**
 - **Question 1:** Prove that the electric field due to an infinite wire of charge density ρ_l is given by
 \[E = \hat{r} \frac{\rho_l}{2\pi \varepsilon_0 r}, \quad \text{(infinite line).} \]

 - **Questions 2:** Derive the electric field anywhere along the z-axis resulted from a regular wire triangle lying in the x-y plane, whose centre is located at coordinate origin, side dimension of a and total charge of Q.
Example 10

Exercise 3.9 A spherical volume of radius a contains a uniform volume charge density ρ_v. Use Gauss’s law to determine \mathbf{D} for (a) $R \leq a$ and (b) $R \geq a$.

Solution:

For $R \leq a$,

$$\oint_S \mathbf{D} \cdot d\mathbf{s} = \oint_S \mathbf{D}_r \ ds = D_r (4\pi R^2)$$

Q within a sphere of radius R is

$$Q = \frac{4}{3} \pi R^3 \rho_v$$

Hence,

$$4\pi R^2 D_R = \frac{4}{3} \pi R^3 \rho_v$$

$$D_r = \frac{\rho_v R}{3}$$

$$\mathbf{D} = \hat{\mathbf{R}} D_r = \hat{\mathbf{R}} \frac{\rho_v R}{3}, \quad R \leq a.$$
Example 10 (Continued)

Exercise 3.9 A spherical volume of radius \(a \) contains a uniform volume charge density \(\rho_v \). Use Gauss’s law to determine \(\mathbf{D} \) for (a) \(R \leq a \) and (b) \(R \geq a \).

Solution:

For \(R \geq a \), total charge in sphere is

\[
Q = \frac{4}{3} \pi a^3 \rho_v,
\]

\[
4\pi R^2 D_R = \frac{4}{3} \pi a^3 \rho_v,
\]

\[
\mathbf{D} = \hat{\mathbf{R}} D_R = \hat{\mathbf{R}} \frac{\rho_v a^3}{3R^2}, \quad R \geq a.
\]
Electric Scalar Potential

- Electric Potential as a Function of E-Field

Work done in moving a charge q a distance dy against the electric field \mathbf{E} is $dW = qE dy$.
Electric Scalar Potential

• Concept

– The voltage V between two points in the circuit represents the amount of work, or potential energy, required to move a unit charge between the two points.

– In fact, the term “voltage” is a short form of “voltage potential” and is the same as electric potential.

– An electric field between two points gives rise to the voltage difference between circuits, such as across a resistor or a capacitor.
Electric Scalar Potential

- **Electric Potential as a Function of E-Field**
 - Consider a simple case of a positive charge q in a uniform electric field $\mathbf{E} = (0, -E)$, parallel to the $-y$-direction.
 - The presence of the field \mathbf{E} exerts a force $\mathbf{F}_e = q\mathbf{E}$ on the charge in the negative y-direction (against the force \mathbf{F}_e).
 - If we attempt to move the charge along the positive y-direction (against the force \mathbf{F}_e) at a constant speed, we need an external force \mathbf{F}_{ext} which should have the same magnitude but opposite direction: $\mathbf{F}_{ext} = - \mathbf{F}_e = -q\mathbf{E}$.
 - The work done in Joules by moving any object a vector differential distance $d\mathbf{l}$ under the force \mathbf{F}_{ext} is $dW = \mathbf{F}_{ext} \cdot d\mathbf{l} = -q\mathbf{E} \cdot d\mathbf{l}$, or specifically $dW = -q(0, -E)(0, dy) = qEdy$.

 Work done in moving a charge q a distance dy against the electric field \mathbf{E} is $dW = qEdy$.

Electric Scalar Potential

- **Electric Potential as a Function of E-Field**
 - Differential electric potential
 \[dV = \frac{dW}{q} = -E \cdot dl \]
 - Potential difference
 \[V_{21} = V_2 - V_1 = \int_{P_1}^{P_2} dV = -\int_{P_1}^{P_2} E \cdot dl \]
 - Kirchhoff’s voltage law
 \[\oint_C E \cdot dl = 0 \quad (\text{Electrostatics}) \]
 which is conservative or irrotational field
 - General form
 \[V = -\int_{\infty}^{P} E \cdot dl, \quad (V) \]

Potential difference between P_2 and P_1 is the same irrespective of the path used for calculating the line integral of the electric field between them.
Electric Scalar Potential

- Electric Potential due to a Point Charge
 - Electric field
 \[E = \hat{R} \frac{q}{4\pi \varepsilon R^2} \]
 - Potential due to a point charge
 \[V = -\int_{\infty}^{R} \left(\hat{R} \frac{q}{4\pi \varepsilon R^2} \right) \cdot \hat{R} dR = \frac{q}{4\pi \varepsilon R} = \frac{q}{4\pi \varepsilon |R - R_1|} \]
 if the charge is located at \(R_1 \).
 - Potential due to \(N \) discrete point charges
 \[V = \frac{1}{4\pi \varepsilon} \sum_{i=1}^{N} \frac{q_i}{|R - R_i|} \quad (V) \]
Electric Scalar Potential

- Electric Potential due to Continuous Distributions

\[V(R) = \frac{1}{4\pi\varepsilon} \left\{ \iiint_{v'} \frac{\rho_v}{R'} dv', \quad \text{volume;} \right. \]
\[\left. \iint_{s'} \frac{\rho_s}{R'} ds', \quad \text{surface;} \right. \]
\[\int_{l'} \frac{\rho_l}{R'} dl', \quad \text{line.} \]

- \textit{E}-Field as a Function of Electrical Potential

\[dV = -E \cdot d\mathbf{l} = \nabla V \cdot d\mathbf{l} \]
\[\mathbf{E} = -\nabla V \]

\[V = -\int_{\infty}^{P} \mathbf{E} \cdot d\mathbf{l}, \quad (V) \]
Electric Scalar Potential

- **Example 11**

Exercise 3.10 Determine the electric potential at the origin in free space due to four charges of 20 μC each located at the corners of a square in the x–y plane and whose center is at the origin. The square has sides of 2 m each.

Solution: For four identical charges all equidistant from the origin:

\[
V = \frac{4Q}{4\pi \varepsilon_0 R}, \quad R = \sqrt{2} \quad (\text{m})
\]

\[
= \frac{4 \times 20 \times 10^{-6}}{4\pi \varepsilon_0 \sqrt{2}} = \frac{\sqrt{2} \times 10^{-5}}{\pi \varepsilon_0} \quad (\text{V}).
\]
Electric Scalar Potential

• **Poisson’s Equation**

 – **Gauss’s Law and Electric Potential**
 \[\nabla \cdot (\varepsilon \mathbf{E}) = \rho_v \text{ and } \mathbf{E} = -\nabla V \text{ so we have } \nabla \cdot (\nabla V) = -\frac{\rho_v}{\varepsilon} \nabla \]

 – **Poisson’s Equation**
 \[\nabla^2 V = \nabla \cdot (\nabla V) = -\frac{\rho_v}{\varepsilon} = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} \]

 satisfied by
 \[V = \frac{1}{4\pi\varepsilon} \int \int \int \frac{\rho_v}{R'} \, dv' \]

 – **Laplace’s Equation**
 \[\nabla^2 V = 0 \]
Electric Scalar Potential

- **Example 12**

Exercise 3.11 A spherical shell of radius R has a uniform surface charge density ρ_s. Determine the electric potential at the center of the shell.

Solution: Application of (3.48b):

\[
V(R) = \frac{1}{4\pi \varepsilon} \int_{S'} \frac{\rho_s}{R'} ds'
\]

\[
= \frac{1}{4\pi \varepsilon R} \cdot \rho_s (4\pi R^2)
\]

\[
= \frac{\rho_s R}{\varepsilon}.
\]