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Abstract Traditionally, the camera pose recovery problem
has been formulated as one of estimating the optimal cam-
era pose given a set of point correspondences. This criti-
cally depends on the accuracy of the point correspondences
and would have problems in dealing with ambiguous fea-
tures such as edge contours and high visual clutter. Joint es-
timation of camera pose and correspondence attempts to im-
prove performance by explicitly acknowledging the chicken
and egg nature of the pose and correspondence problem.
However, such joint approaches for the two-view problem
are still few and even then, they face problems when scenes
contain largely edge cues with few corners, due to the fact
that epipolar geometry only provides a “soft” point to line
constraint. Viewed from the perspective of point set regis-
tration, the point matching process can be regarded as the
registration of points while preserving their relative posi-
tions (i.e. preserving scene coherence). By demanding that
the point set should be transformed coherently across views,

This work is partially supported by project grant NRF2007IDM-
IDM002-069 on ”Life Spaces” from the IDM Project Office, Media
Development Authority of Singapore and DSO grant R263-000-400-
592.

First, Second and Third Author
Electrical and Computer Engineering Department,
National University of Singapore
4 Engineering Drive 3, Singapore 117576
E-mail: g0600124, eleclf, ptan@nus.edu.sg

Fourth Author
DSO National Laboratories,
20 Science Park Drive,
Singapore 118230
E-mail: gdong@dso.org.sg

Fifth Author
Institute for Infocomm Research,
1 Fusionopolis Way. #21-01 Connexis, South Tower.
Singapore 138632
E-mail: sliu@i2r.a-star.edu.sg

this framework leverages on higher level perceptual infor-
mation such as the shape of the contour. While thus poten-
tially allowing registration of non-unique edge points, the
registration framework in its traditional form is subject to
substantial point localization error and is thus not suitable
for estimating camera pose. In this paper, we introduce an al-
gorithm which jointly estimates camera pose and correspon-
dence within a point set registration framework based on
motion coherence, with the camera pose helping to localize
the edge registration, while the “ambiguous” edge informa-
tion helps to guide camera pose computation. The algorithm
can compute camera pose over large displacements and by
utilizing the non-unique edge points can recover camera pose
from what were previously regarded as feature-impoverished
SfM scenes. Our algorithm is also sufficiently flexible to in-
corporate high dimensional feature descriptors and works
well on traditional SfM scenes with adequate numbers of
unique corners.

Keywords Structure from Motion · Registration

1 Introduction

The process of recovering 3-D structure from multiple im-
ages of the same scene is known in the vision community as
the Structure from Motion (SfM) problem. One central issue
that must be addressed in solving SfM is camera pose re-
covery. Traditionally, the camera pose recovery problem has
been formulated as one of estimating the optimal camera
pose given a set of point correspondences. Such approach
includes, among many others, improved linear estimation
[22,43], bundle adjustment [53] as well as globally opti-
mal estimators [12,26]. However, despite many advances in
matching techniques [3,21,35], obtaining correspondences
across two images remains a non-trivial problem and con-
tains a strong underlying assumption that the features are
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Fig. 1 This scene illustrates the difficulty in obtaining reliable matches
when there are few corners. The correspondences are the results of a
SIFT matcher. There are insufficient corners available for matching,
with most of the few corners available suffering from ambiguity. Pose
recovery on these scenes would be substantially easier if we could use
the clear contour cues present.

sufficiently distinct to enable unique point to point corre-
spondence. This limits camera pose recovery to well tex-
tured scenes with abundant corner features. In this paper, we
seek to design an algorithm which can incorporate ambigu-
ous features such as edge points into the camera pose recov-
ery process. This allows pose recovery on more challeng-
ing SfM scenes where there are few corners; such scenes
are particularly common in man-made environment [56,57],
one example of which is illustrated in Figure 1. Our algo-
rithm is, however, not limited to such scenes. Natural scenes
where the visual features are highly similar or whose ex-
traction is non-repeatable across large viewpoint change can
also benefit from our approach.

While correspondence is needed to obtain camera pose,
knowledge of camera pose also facilitates point correspon-
dence. In recent years, a number of works [9,18,30,36,47]
have proposed joint pose and correspondence algorithms (JPC)
which explicitly acknowledge the chicken and egg nature of
the pose and correspondence problem. Rather than choos-
ing a camera pose in accordance with a pre-defined set of
matches, these algorithms choose camera pose on the ba-
sis of whether the feature points can find a correspondence
along the associated epipolar line. This permits the utiliza-
tion of non-unique features to contribute to camera pose
computation. Note that we should distinguish such JPC works
from other joint estimation works such as 2D image or 3D
surface registration [5,11,31,59] using say, the Iterative Clos-
est Point (ICP) technique. These registration works invari-
ably involve a global transformation that is parameterized
by a few variables (such as the affine parameters) and pro-
vides a well-defined mapping from point to point. This one-
to-one mapping means the global parameters automatically
preserves the relative alignment of features and largely ac-
counts for the success in solving the registration. In contrast,
in the JPC algorithms, the 3D camera pose does not define a
point to point correspondence but rather a point to epipolar
line relationship on the 2D image plane. This additional am-
biguity means a much greater degree of freedom and associ-
ated problem complexity. More importantly for our problem
scenario where the features are highly ambiguous, it also

means that the epipolar constraint alone is insufficient to re-
solve the ambiguity, even with the JPC approach. For exam-
ple, if the feature points consisted of edge pixels that form a
long connected contour, an epipolar line in any direction will
eventually intersect with the contour. Thus, a JPC algorithm
will have difficulty choosing a correct camera pose.

Despite such apparent ambiguity, we note that the motion-
induced deformation of a 2D contours’ shape contains clear
perceptual cues as to the relative camera pose. One possible
reason that humans can infer the camera pose might be that
they perceive the contour points as a collective entity in mo-
tion (i.e. the law of shared common fate), rather than as in-
dependently moving individual points. This motivates us to
impose a coherent motion constraint on the feature point dis-
placements such that the displacements approximately pre-
serve the overall shape of these points; in other words, points
close to one another should move coherently [58].

While general non-rigid registration algorithms such as
[7,42] are generally able to preserve the overall shape of a
point set, they are not designed for point-to-point correspon-
dence and suffer from the aperture problem. As was shown
in our preliminary work [32], individual contour points are
poorly localized using the registration algorithm proposed
in [42]. The registration is not consistent with any epipo-
lar geometry and, hence, is not useful for obtaining camera
pose.

In this paper, we propose jointly estimating the camera
pose and point correspondence while enforcing a coherent
motion constraint. Such joint estimation scheme is complex
because the goodness of any point match depends not only
on the camera pose and its local descriptor, but also on the
matching position allocated to all other image points. The
complexity is further increased because the smooth coher-
ent motion of a contour is essentially a continuous concept,
but we wish to work on discrete point sets containing pos-
sibly both corners and edge information. We adapt for this
purpose the Coherent Point Drift framework of [42], which
overlaid a continuous displacement field over the sparse point
set, and regularized the displacement field to achieve motion
coherence. The resultant scheme can compute camera pose
using “ambiguous” features such as edge points (as well as
the conventional corner points). It also removes the local-
ization uncertainty of the edge point correspondence from
using registration algorithm. This is illustrated in Figure 2.
To our knowledge, this is the first attempt to integrate mo-
tion coherence, correspondence over a sparse point set and
camera pose estimation into a common framework. The re-
sult makes a big difference in the perceived difficulty of a
SfM scene. Our experiment showed that our algorithm can
work well across large viewpoint changes, on scenes which
primarily consist of long edges and few corners, as well as
natural scenes with high visual clutter.
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Fig. 2 The dotted region represents the localization uncertainty present
in the matching provided by the registration algorithm. On the right, the
horizontal epipolar line allows the localization of the contour point.

1.1 Related works

The core concept of using an iterative refinement of pose and
correspondence has a long and rich history in SfM. Exam-
ples include RANSAC-flavored algorithms [15,20,39], and
the Joint Pose and Correspondence/Flow algorithms [36,30,
9,47,18,44,49,55]. Many of these are landmark works which
greatly improve SfM’s stability in previously difficult scenes.

A large number of JPC works can be classified as work-
ing on discrete features like corners. The optimality of a
specific pose is evaluated on the basis of whether its asso-
ciated epipolar constraint permits good correspondence. A
variety of methods are then proposed to minimize the cost
function, such as the Radon transforms in [36], line match-
ing in the Fourier space [30], or an EM-based search of the
space [9]. The problem of searching the solution space can
also be simplified and made more robust (though at the ex-
pense of generality) by introducing restrictions on antici-
pated scene type or camera motion. As such, a number of
these works focus on the affine camera [47,30], while oth-
ers like [18] restricted the camera to motion on a plane, thus
limiting potential camera pose space to a 2-dimensional re-
gion. Also related to the JPC scheme is [17], where although
pre-computed correspondence is used, the correspondences’
photometric properties are used to help restrict camera pose.
Our work also focuses on using pre-detected features and
edges, however, unlike the previously discussed works, we
incorporate a smoothness term, thus permitting the handling
of ambiguous edge features and their associated aperture
problem over large displacements.

Conceptually, our work is similar to flow based JPC al-
gorithms such as [49,44,55]. They overcome the aperture
problem by finding an optical flow that is consistent with
a camera motion. While this approach can be extended to
wider baselines by applying a point set registration algo-
rithm as initialization, such an algorithm would be inelegant
and is likely to suffer from large amount of noise caused by
approximating a large displacement by flow. Our approach
handles large displacement naturally. It also handles the prob-
lem of disconnected point sets and isolated corners more

naturally than that of optical flow formulation and would
be especially useful in incorporating recently proposed edge
descriptors [38]. Lastly, our approach can incorporate high-
dimensional feature descriptors which give greater robust-
ness to photometric noise.

There are many other works that jointly estimate a global
transformation between two sets of points and the point cor-
respondence between them, but they differ from our work
in some important aspects. Some of these involve multiple
frames [10,28,41], where an initial 3D map was built from
say, five-point stereo [43]. Subsequent camera poses were
tracked using local bundle adjustment over the N most re-
cent camera poses, and features are constantly added to al-
low the 3D map to grow in the SLAM style. In other works,
the 3D models are available a priori (e.g. from a CAD model)
[8,27,40,13]. In contrast, our joint estimation is carried out
over two frames in the absence of any 3D model or initial
map. Other joint estimation works [5,25,31,46,59] involve
aligning two sets of points which are related by some simple
transformations defining a point to point mapping. The one
to one mapping automatically preserves the relative align-
ment of the features within the point set without having a
need for an additional coherence constraint. Our work dif-
fers in that the epipolar geometry does not enforce a one-
to-one mapping. Instead, the unknown depth of the feature
points means that the camera pose provides a point to epipo-
lar line constraint. It also means that an additional coherence
term is needed to enforce a greater coherence of shape, lead-
ing to a significantly more complex problem formulation.

For multiple views, it is also possible to make use of
structure from lines algorithms to overcome the aperture prob-
lem [2,14,23,50]. Interested readers might like to peruse
other works dealing with various aspects of curve / line re-
construction [1,6,24,51,56,57] as well as the merger of in-
tensity and edge information [37,45,54].

2 Formulation

In this paper, the problem addressed is the recovery of cam-
eras’ relative pose (i.e. orientation and position) given two
different views of a static scene. The formulation empha-
sizes generality, allowing easy adaptation for different in-
puts such as corners and edges. Edges are simply described
by point sets obtained by sampling the edge map of the im-
age.

2.1 Definitions

Each feature point takes the form of a D dimensional feature
vector, [

x y r g b . . .
]T
1×D

,
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with x and y being image coordinates, while the remain-
ing optional dimensions can incorporate other local descrip-
tors such as color, curvature, etc. We are given two point
sets. A base point set B0M×D = [b01, ..., b0M ]T describ-
ing M feature points in the base image and a target point
set T0N×D = [t01, ..., t0N ]T describing N feature points in
the target image. b0i, t0i are D dimensional point vectors of
the form given above.

We define another matrix BM×D = [b1, ..., bM ]T which
is the evolved version of B0. We seek to evolve B until it is
aligned to the target point set T0N×D, while still preserv-
ing the coherence of B0 (that is, the overall 2D geometric
relationships between points in B0 should be preserved as
much as possible). The evolution of B consists of changing
only the image coordinates (first two entries) of the bi vec-
tors. The remaining entries are held constant to reflect the
brightness/ feature constancy assumption. When attempting
to align the evolving base set B to the target set T0, we try to
ensure that the resulting mapping of the image coordinates
of b0i to bi are consistent with that of a moving camera view-
ing a static scene (i.e. abide by some epipolar constraint).

As many equations only involve the first two dimensions
of b0i, bi, to simplify our notation, we define them as the
sub-vectors β0i, βi respectively. We further denote the first
two columns of B0 and B by B0 and B, which are M × 2
matrices formed by β0i and βi. As B0 and B uniquely de-
fine B0 and B respectively in our case, the matrices can
often be used interchangeably in probabilities and function
declarations. The constancy of much of the bi vector also
means that the algorithm’s run time is largely independent
of the size of D. Hence one can apply high dimensional de-
scriptors on the contour points with little additional cost.

2.2 Problem formulation

We seek an aligned base set B and the associated motion of
an uncalibrated camera F (for calibrated cameras, one could
parameterize F using the rotation and translation parame-
ters without changing the formulation), which has maximum
likelihood given the original base and target point sets B0

and T0 respectively. Mathematically, this can be expressed
as maximizing P (B,F|B0,T0). Using Bayes’ rule, this can
be formulated as,

P (B,F|B0,T0) =
P (T0,B|F,B0)P (F,B0)

P (B0,T0)

=
P (T0,B|F,B0)P (F|B0)P (B0)

P (B0,T0)

It is clear that the likelihoods P (B0), P (B0,T0) are
constants with respect to the minimization variables F,B.
Furthermore, if we assume a uniform (un-informative) prior
for the motion, it makes sense to assign P (F|B0) to be a

constant1. This allows us to simplify the probabilistic ex-
pression into

P (B,F|B0,T0) ∝ P (T0,B|F,B0)

= P (B|F,B0)P (T0|B,F,B0).
(1)

Observe that by expressing our formulation in terms of
a warping from a base image to a target image, we treat the
information from the two views in an asymmetrical man-
ner. A symmetrical formulation may be able to better han-
dle spurious feature and validate whether the algorithm has
converged to an adequate minimum. However, the resultant
scheme will be complex and is beyond the scope of this pa-
per.

We first study the term P (B|F,B0). Given camera pose
F and assuming independent isotropic Gaussian noise of
standard deviation σb, the evolving base point set B has
an associated probability given by the “improper” (the non-
essential scale is dropped for simplicity) distribution

P (B|F,B0) = P (B|F,B0) = e−λΨ(B)
M∏
i=1

g(di, σb). (2)

where g(z, σ) = e−
∥z∥2

2σ2 is a Gaussian function. The first,
e−λΨ(B) term is a coherence term which we discuss in Sec-
tion 2.3, while the second term contains the epipolar con-
straint, with di denoting distance from the epipolar line, with
the detailed discussion in Section 2.4.

2.3 Coherence term

The first exponent in equation (2) contains the regularization
term Ψ(B) with λ controlling the relative importance of this
regularization term.

Recall that we desire to enforce smoothness over a dis-
crete point set whose points are sparsely distributed, a rather
difficult operation to perform. One option is to directly pe-
nalize any deviation in the relative position of points consid-
ered as neighbors. Such an approach fits naturally into the
discrete point set problem and is amenable to graph based
minimization [48,52]. However, because only the first or-
der smoothness is imposed, it tends to penalize all devia-
tions in relative position, rather than penalizing discontinu-
ous changes in shape much more heavily than smooth de-
formation in shape caused by viewpoint changes. In other
words, such first-order smoothness does not supply enough
coherence of shape.

To overcome the aforementioned difficulties, we define
a fictitious continuous field over the sparse point set and call

1 An intuitive explanation for a uniform prior is that a camera can
move to any position in the 3D world and similarly have any calibration
parameters.
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it the displacement field or velocity field (in this paper, the
terms velocity and displacement are used loosely and do not
imply any small motion approximation for the former). We
utilize the motion coherence framework of [58] in which
higher order of smoothness is enforced on the velocity field.
The smoothness is imposed mathematically by regulariza-
tion in the Fourier domain of the velocity field. Our scheme
has a number of advantages:

1. By imposing higher-order smoothness, it permits smooth
changes in relative position that nevertheless maintains
coherence in shape, rather than penalizing all changes.
In fact, [58] explicitly showed that for isolated features, a
smoothing operator with only first-order derivatives does
not supply enough smoothness for a well-posed solution.

2. The formulation of this fictitious velocity field acts as
a unifying principle for all types of motion information
(isolated features, contours, brightness constancy con-
straint). It allows us to integrate the information pro-
vided by isolated features and contours, and yet does not
require the declaration of a specific region of support
when deciding which points are neighbors that should
influence each others’ motion.

3. While the interaction of the velocity field falls off with
distance and is thus local, we obtain a resultant interac-
tion between the isolated features that is nonlocal. This
is desirable on account of the Gestalt principle. On the
other hand, when there is local motion information that
suggests discontinuous change in the velocity field, the
rapidly falling off local interaction of the velocity field
will ensure that it will be the locally measured data that
are most respected, thus allowing discontinuous change
in the velocity field. Preservation of such discontinuous
changes is further aided by additional mechanisms intro-
duced in the regularization scheme (more of that, later).

We define v(.) as this 2D velocity field function. The
velocity field covers the entire image, and at image locations
β0i where feature points exist, it must be consistent with the
feature points’ motion. Mathematically, this means that they
obey the constraint

βi = v(β0i) + β0i. (3)

Ψ(B) is defined in the Fourier domain to regularize the
smoothness of the velocity field function v(.):

Ψ(B) = min
v′(s)

(∫
ℜ2

|v′(s)|2

g′(s) + κ′(s)
ds

)
, (4)

where v′(s) is the Fourier transform of the velocity field
v(.) which satisfies equation (3) and g′(s) is the Fourier
transform of a Gaussian smoothing function. The Gaussian
function has a spatial standard deviation of γ which con-
trols the amount of coherence desired of the velocity field.

Without the κ′(s) term, the above smoothness function fol-
lows the motion coherence form proposed in [58] and has
been used in general regularization theory [19]; it was also
subsequently adopted in the contour registration work of
[42]. Such definition allows us to impose a continuous co-
herent motion field over the motion of a discrete point set
specified by equation (3). Suppressing the high frequency
components of the velocity field ensures that adjacent con-
tour points have similar motion tendencies, thus preserving
the overall 2D geometric relationships between points in
B0. However, the Gaussian function drops off very sharply
away from the mean, greatly penalizing the high frequency
terms. In SfM where there may be occlusion and sharp ve-
locity changes, such a penalty function can be overly re-
strictive. As such, we introduce the additional κ′(s) term,
which should have limited spatial support and hence wide
frequency support. In this paper, spatial support is taken to
be less than the smallest separation between any two points
in B0. Given such limited spatial support, the exact form
of the function κ is immaterial. We simply specify that κ(.)
must have the property:

κ(β0i − β0j) =

{
k, i = j
0, i ̸= j

(5)

where k is some pre-determined constant.

2.4 Epipolar term

The second term in equation (2) contains the epipolar con-
straint defined by camera pose, F. As mentioned earlier, we
desire that the image coordinate pairs β0i, βi, to be consis-
tent with F. Hence, di is the perpendicular distance of the
point βi from the epipolar line defined by point β0i and
pose F, with a cap at ζ. Observe that since β0i is a fixed
point of unknown depth, di is the geometric error [23] asso-
ciated with β0i, βi,F, with an additional capping function.
The capping function basically expresses the fact that the
Gaussian noise error model is only valid for inlier points,
while there exist a number of randomly distributed outlier
points which result in much thicker tails than are commonly
assumed by the Gaussian distribution.

Practically, such robust functions allow outliers to be re-
moved from consideration by paying a certain fixed penalty.
In this regards, its function is similar to statistical form of
RANSAC [53]. Formally, the capped geometric distance can
be written as

di = min(
∥∥lTi (βi − ri)

∥∥, ζ) (6)

where ri is a two dimensional vector representing any point
on the epipolar line. li is a two dimensional unit vector per-
pendicular to the epipolar line defined by F and β0i. ζ is the
maximum deviation of a point from the epipolar line, before
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it is considered an outlier. As our point sets often contain
huge numbers of outliers, we usually set ζ to a very low
value of 0.01 (the distance is defined in the normalized im-
age space after Hartley’s normalization [22]).

2.5 Registration term and overall cost function

We now consider P (T0|B,F,B0) in equation (1). Since
T0 is independent of the ancestors F and B0 given the im-
mediate parent B, this probability can be simplified to just
the confidence measure of T0 given B. Note that the T0

and B contain a mix of descriptor and coordinate terms.
We let each bi be the D dimensional centroid of an equi-
variant Gaussian function with standard deviation σt (we
assume that the data has been pre-normalized, the normal-
ization weights being given in section 3.3). The following
forms the Gaussian mixture probability of T0:

P (T0|B,F,B0) =

N∏
j=1

M∑
i=1

g(t0j − bi, σt). (7)

This is the registration error term which includes both ge-
ometric and intensity information for the entire set of fea-
tures but does not force a strict one-to-one feature corre-
spondence. Initially, B is not necessarily close to T0, thus
making the above probability very small. However, using
the Expectation Maximization (EM) algorithm, we use these
initial, low probabilities to better align B with T0. Note that
we use the term EM loosely to describe the general mini-
mization style although the exact mechanism is slightly un-
conventional.

Substituting equations (2) and (7) into (1) and taking the
negative log of the resultant probability, our problem be-
comes one of finding the F and B which maximize the prob-
ability in equation (1), or equivalently, minimize A(B,F),
where

A(B,F) = −
N∑

j=1

log

M∑
i=1

g(t0j − bi, σt) +

M∑
i=1

d2i
2σ2

b

+ λΨ(B).

(8)

The first term in A(B,F) measures how well the evolv-
ing point set B is registered to the target point set T0. The
second term measures whether the evolving point set B ad-
heres to the epipolar constraint. Finally, the third term en-
sures that the point set B evolves in a manner that approxi-
mately preserves the coherence of B0.

3 Joint estimation of correspondence and pose

We seek the B and F which optimize equation (8) (recall
that B is the first two columns of B). Observe that this is

a constrained minimization but as the li, ri terms in the ge-
ometric distance di have a non-linear relationship with the
camera pose F and image point β0i, as well as due to the
presence of the regularization term, it precludes other more
straightforward minimization techniques. Using a method
similar to expectation maximization, we minimize A(B,F)
by alternately updating B and F. The procedure is described
in the following subsections.

3.1 Updating registration, B

In this subsection, we hold the camera pose Fold constant
while updating B. This results in a Bnew whose associated
evolving base point set Bnew is better aligned to the tar-
get point set T0, while preserving the point set’s coherence
and respecting the epipolar lines defined by the camera pose
Fold. The new registration Bnew can be computed from the
M × 2 linear equations in equation (13).

Here we provide the derivations. We define

ϕij(bi, t0j) = g(t0j − bi, σt)

ϕij(B, t0j) =
ϕij(bi, t0j)∑
z ϕzj(bz, t0j)

.
(9)

For more robust correspondence with occlusion, we use a
robust version of ϕij(B, t0j) in equation (9). This is given
by ϕij(B, t0j) =

ϕij(bi,t0j)∑
z ϕzj(bz,t0j)+2µπσ2

t
. The second, 2µπσ2

t

denominator term provides a thickening of the tail compared
to those of the Gaussian. The idea is similar to the robust
implementation of the regularization in equation (6).

Using Jensen’s inequality and observing that the maxi-
mum value of di is ζ, we can write the inequality

A(Bnew,Fold)−A(Bold,Fold)

≤−
N∑
j=1

M∑
i=1

ϕij(B
old, t0j)log

ϕij(b
new
i , t0j)

ϕij(boldi , t0j)

+
∑

i∈inlier

(dnewi )2 − (doldi )2

2σ2
b

+ λ
(
Ψ(Bnew)− Ψ(Bold)

)
=∆A(Bnew,Bold,Fold).

(10)

where a point i is an inlier if doldi < ζ.
Observing from equation (10) that ∆A(Bold,Bold,Fold) =

0, the Bnew which minimizes ∆A(Bnew,Bold,Fold) will
ensure that

A(Bnew,Fold) ≤ A(Bold,Fold)

since the worst A(Bnew,Fold) can do is to take on the value
of A(Bold,Fold).
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Dropping all the terms in ∆A(Bnew,Bold,Fold) which are
independent of Bnew, we obtain a simplified cost function

Q =
1

2

N∑
j=1

M∑
i=1

ϕij(B
old, t0j)

∥t0j − bnewi ∥2

σ2
t

+
∑

i∈inlier

(dnewi )
2

2σ2
b

+ λΨ(Bnew).

(11)

Using a proof similar to that in [42], we show in the Ap-
pendix that the regularization term Ψ(B) at the minima of
A(B,F) is related to B and B0 by

Ψ(B) = tr(ΓG−1ΓT ), (12)

where G is a M × M matrix with its (i, j) entry given by
G(i, j) = g(β0i − β0j , γ) + kδij (δij being the Kronecker
delta), Γ = (B − B0)

T , and tr(.) represents the trace of
a matrix. Substituting the above expression of Ψ(B) into Q
and taking partial differentiation of Q with respect to each
element of Bnew, we can construct the matrix ∂Q

∂Bnew , where
each entry is ∂Q

∂Bnew(i,j) . The conditions needed for achiev-
ing the minimum of Q can be obtained by setting all the
entries of this matrix to zero:

∂Q

∂Bnew
=

[
c1 c2 . . . cM−1 cM

]
+ 2λΓnewG−1 = 02×M

C+ 2λΓnewG−1 = 02×M

CG+ 2λΓnew = 02×M

(13)

Here, the column vector ci is computed as

ci =

N∑
j=1

ϕij(B
old, t0j)

(
βnew
i − t̂0j

σ2
t

)

+

{
qi

old(βnew
i −roldi )

σ2
b

i ∈ inlier
02×1 otherwise

,

where qi2×2 is a 2 × 2 matrix given by qi2×2 = (li)(l
T
i ),

t̂0j stands for the truncated vector of t0j with the latter’s
first two elements, and the definitions of li, ri are as given in
equation (6). Equation (13) produces M×2 linear equations
which can be solved to obtain Bnew.

Observe that the minimization step in equation (13)—
in particular, the computation of ci—is in keeping with the
spirit of the outlier rejection scheme discussed in equation
(6): “outliers” are no longer over-penalized by the camera
pose but they remain incorporated into the overall registra-
tion framework.

3.2 Updating camera pose, F

We now update the camera pose on the basis of the new
correspondence set Bnew,B0. Replacing B in equation (8)
with Bnew and holding it constant, we seek to minimize the
cost function A(Bnew,Fnew) with respect to only Fnew.
Only the middle term in A(B,F) depends on F. Using the
definition of the geometric distance di in equation (6), we
minimize the simplified cost function

M∑
i=1

min
(∥∥(lnewi )T (βnew

i − rnewi )
∥∥2 , ζ2) (14)

with βnew
i being the image coordinates of the point set Bnew.

Observe that the problem of finding the Fnew which in
turn produces lnewi and rnewi that minimize the above cost
function can be formulated as a bundle adjustment problem
[53] with camera pose F initialized to Fold.

After these two steps, Bold, Fold are replaced with Bnew,
Fnew and the algorithm returns to the first step in section
3.1. The process is iterated until convergence as the evolv-
ing base set B registers itself to the target set T0.

3.3 Initialization and iteration

Hartley normalization is performed on the image coordi-
nates of both point sets, thus pre-registering their centroids
and setting the image coordinates to have unit variance. In
this paper, SIFT [35] feature descriptors were also attached
to the points. These descriptors are normalized to have mag-
nitudes of σt of equation (7).

For initialization of the correspondence, we use SIFT
flow [33] to give initial values of Bnew. However, SIFT flow
is not used to initialize the camera pose. As can be seen from
equation (8), setting li to zero for the first EM iteration will
cause the algorithm to ignore the epipolar constraint during
this first iteration. Once Bnew is calculated, Fnew can be
calculated from Bnew and B0, after which Bold,Fold are
replaced with Bnew,Fnew. Normal EM resumes with li re-
stored, and the process is iterated until convergence.

For stability, we set σt, σb to artificially large values,
then steadily anneal them smaller. This corresponds to the
increased accuracy expected of the camera pose estimate
and the point correspondence. A summary of the algorithm
is given in figure 3.

4 System implementation

In this section, we consider how one might build a complete
SfM system using our proposed joint estimation framework.
To do this, we must address issues such as point set acquisi-
tion, occlusion detection and initialization under real world
conditions.
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Input: Point sets, B0, T0

Initialize σt, σb;
Initialize Bold as B0, li to zero vector;
while σt, σb above threshold do

while No convergence do
Use eqn (9) to evaluate ϕij(b

old
i , t0j) from Bold,

Fold;
Use eqn (13) to determine Bnew from ϕij(b

old
i , t0j);

Use bundle adjustment to obtain Fnew from Bnew

and B0;
Replace Bold,Fold with Bnew,Fnew;

end
Anneal σt = ασt, σb = ασb, where α = 0.97.

end

Fig. 3 Algorithm

Fig. 4 Left to right: Output of SIFT feature detector with and without
its cornerness function.

The first step of any such system has to be the identi-
fication of point sets in both images. As our algorithm is
capable of utilizing non-unique features such as edges, we
do not wish to use a corner detector, which would reject all
edge-like features. Edge detectors would provide edge in-
formation; however, they often detect many spurious edges
[54]. In order to overcome these problems, we detect fea-
tures following the seminal SIFT algorithm [35]. However,
as we are not interested in uniqueness, we disabled the cor-
nerness term which otherwise would remove feature points
that are considered too edge-like. The result appears to re-
semble that of a rather sparse but robust edge detector as il-
lustrated in figure 4 but will also provide corner information
when available. The descriptors that come with the SIFT de-
tector also contribute greatly to stability.

The next issue is one of initialization and occlusion de-
tection. What we need at this stage is not a well localized
image registration but a crude initialization and a general
idea of which sections of the image are occluded (feature
points in the occluded regions need to be removed from the
point sets B0 and T0). For these purposes, we utilize the
dense SIFT flow algorithm to give us a crude mapping. Oc-
cluded regions are defined as regions where the SIFT flow
is inconsistent, i.e. point A in image 1 maps to point B in
image 2, however, point B does not map back to anywhere
near point A. At very large baselines, the occlusion detector
may declare the entire image as occlusion. In such situations
the occlusion mask is discarded. (Note that a more sophis-

ticated form of occlusion detection can be obtained in [4].)
The complete pipeline for camera pose recovery is shown in
figure 5.

Fig. 5 Pose computation pipeline. Left to right: Input images, key-
point detection, occlusion detection (with occluded pixels set to zero)
and recovered camera pose.

5 Experiments and Evaluation

We run a series of real and simulated experiments to eval-
uate our algorithm, with errors reported as deviations from
ground truth rotation and translation. All parameters reported
are with respect to the Hartley normalized coordinates. All
images are evaluated at a resolution of 640× 480.

The rotational error R̃ refers to the rotation angle in de-
gree needed to align the reference frame of the computed
pose to that of the true pose. The translational error T̃ is the
angle in degree between the computed translation and the
ground truth translation. Although both the rotational and
translational errors are given in degrees, in general, for typ-
ical camera and scene configuration, a large rotational error
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is more serious than a translational error of similar magni-
tude.

We test our system on a wide range of scene types and
baselines. These include many “non-traditional” SfM scenes
in which there are few/ no distinct corners available for match-
ing, such as natural vegetation scenes where there is a large
amount of self occlusion and thus spurious corners, architec-
tural scenes where the available corners are very repetitive
as well as more traditional SfM scenes. This is followed by a
systematic evaluation of our algorithm’s handling of increas-
ing baseline. For most scenes, ground truth camera pose is
obtained by manually obtaining point correspondences until
the computed camera pose is stable. An exception is made
for the last two images in figure 7, where the extremely tex-
tureless scenes were taken using linear rail with known mo-
tion. A calibrated camera was used for all these tests.

To give the reader a general feel for the scenes’ diffi-
culty, our results are benchmarked against that of a tradi-
tional SfM technique. Correspondences are obtained using
[35]. Camera pose is obtained using the five point algorithm
[43] together with outlier removal by the RANSAC imple-
mentation in [29], the outliers rejection threshold being set
at a Sampson distance of 0.001. The RANSAC step is fol-
lowed by a bundle adjustment using the implementation of
[34] to minimize the reprojection error.

The same set of parameters are used throughout the en-
tire experiments. The two Gaussian parameters σb and σt

in equations (2) and (7) are given an initial value of σt =
σb = 0.1. They are decreased using the annealing parameter
α = 0.97. The occlusion handling parameter µ in equation
(9) is set to 0.5, while the epipolar outlier handling param-
eter ζ in equation (6) is set to 0.01. λ, which controls the
relative weight given to the smoothness function, is set to 1.
k, the degree of tolerance for high frequency components in
equation (5), was set to 0.0001, while γ, the standard devia-
tion of the Gaussian smoothness function, was set to 1. The
algorithm can handle approximately 1500 SIFT features in
5 minutes.

5.1 Evaluation

We evaluate our algorithm on a variety of real and simulated
scenes. In the simulated scene in figure 6, we illustrate our
system’s performance over depth discontinuities and the role
of the discontinuity parameter k in equation (5). It shows
that our algorithm can handle depth discontinuities and the
pose computed is robust to the smoothness perturbations that
the discontinuities induce. This is also illustrated in a num-
ber of real images of trees in figure 8 and a bicycle scene
in figure 9. For the outdoor scenes, the baseline is usually a
few meters. For the indoor scenes where objects are closer
to the camera, the baseline is typically half a meter.

Original point set

Registration with k set to 0.0001

Registration without accommodating discontinuities (i.e. k=0)

Fig. 6 The vertical bars have a different depth and color (color not
shown in results) from the horizontal bars. As the camera moves, the
depth discontinuity causes the vertical bars to slide over the horizon-
tal one. Setting the high frequency tolerance parameter k to 0.0001,
the system retains both the smoothness constraint while accommodat-
ing the discontinuities. While there are some correspondence errors,
our system is sufficiently robust to ensure that there is negligible error
in the overall pose estimation. Using the standard motion coherence,
where k = 0, the conflict between registration, smoothness and epipo-
lar geometry cannot be resolved. The resultant pose estimate suffers,
with a translational and rotation errors of 13.5o and 5o respectively.

In figure 7, we investigate real images of scenes with
sparsely distributed corners. Errors in the recovered cam-
era parameters are reported below the images. “Ours” in-
dicates the errors obtained by our algorithm, “SIFT flow”
those obtained by running the five point algorithm and bun-
dle adjustment on SIFT flow as correspondence input and fi-
nally, “Traditional” those obtained by running the five point
algorithm with RANSAC and bundle adjustment on SIFT
matches as correspondence input (traditional here refers to
the dependence on unique features such as corners). In some
scenes, SIFT matching returns too few matches for the tra-
ditional algorithm to give a pose estimate. In such circum-
stances, the pose error is given as Not Applicable (NA).
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The first two test images are of buildings. As in many man-
made structures, lines and edges are the predominant cues
present. The problem of identifying matches needed for tra-
ditional SfM is compounded by the wide baseline. By relax-
ing the uniqueness requirement, our algorithm can utilize a
much greater amount of information compared to the tradi-
tional approach, leading to a stable camera pose recovery.
The third and fourth scenes consist of extremely sparsely
distributed sets of corners. Here the primary SfM cue is the
edge information. Our algorithm can utilize this edge infor-
mation to convert an information-impoverished scene with
very few point matches into an information-rich scene. This
allows it to circumvent the difficulties faced by the tradi-
tional SfM algorithms.

In figure 8, we further our investigation on scenes which
contain a large number of non-unique corners. This is true
for the floor image, where the grid pattern tiling results in
multiple corners with nearly identical feature descriptor. It
also occurs in natural vegetation scenes, where the leaves
form many repetitive features. For plants, the problem is
made more severe because the extensive self occlusion caused
by the interlocking of leaves and branches further degrades
potential corner descriptors. Hence, despite the large num-
ber of corners available (nearly 1000 for some of the im-
ages), there are few SIFT matches on the foliage. For the
floor scene, jointly estimating the correspondence and pose
allows the handling of non-unique features and the subse-
quent pose recovery. For the plant images, our algorithm can
ignore the noise in the degraded feature descriptors and uti-
lize the tree trunks and their outlines to obtain a camera pose
estimate. We also illustrate a failure case in the last column
of figure 8. With most of the feature descriptors badly per-
turbed by self occlusion, the primary SfM cue lies in the
edge information which in this case is the extremal contour
of the plant. Unlike polyhedral objects, the extremal con-
tour of the plant is view-dependent (i.e. the points on the
plants that participate in generating the contour are view-
dependent). This dependency effect is especially significant
when the displacement is quite large (at smaller displace-
ments our algorithm can handle this scene).

Finally, in figure 9 we evaluate our algorithm on tradi-
tional SfM scenes with adequate number of unique features.
This shows that our algorithm also works well when the pri-
mary cue lies in disconnected but discriminative corner in-
formation. Although some scenes contain significant depth
discontinuities, our algorithm can produce the same accu-
racy in the camera pose estimate when compared to the re-
sults of the traditional SfM algorithms.

5.2 Performance with increasing baseline

In figure 10, we investigate our algorithm’s behavior with in-
creasing baseline. The sequences consist of a moving cam-

era fixated upon a scene and are arranged in increasing base-
line and thus level of difficulty. The color-coded depth maps
obtained by reconstructing the scene using PMVS [16] are
also included. The first sequence is a traditional, well tex-
tured SfM scene. The baseline is fairly large, with the cam-
era rotating through 33.9 degrees while fixated on the table.
Our algorithm gives a stable estimate of camera pose for all
images in that sequence, achieving comparable performance
with the traditional approach, and slightly outperforming it
for the case of the widest baseline. The second sequence is
of a moderately difficult scene where our algorithm outper-
forms the traditional approach by remaining stable over the
entire sequence. This enhanced stability is the result of our
algorithm being able to utilize the edge features provided by
the door frame, while the traditional approach is limited to
the tightly clustered features on the posters, giving it a small
effective field of view. Finally, the last sequence shows a
very difficult scene. There are very few feature matches (the
point matches from the second image pair are shown in fig-
ure 1) and by the third image of the sequence, there are in-
sufficient matches for a traditional SfM algorithm to make
a pose estimate. Furthermore, the baseline is slightly larger
than that shown in the previous two scenes, with a maximum
camera rotation of 35.9 degrees about the object of interest.
Although the performance of our algorithm at larger base-
lines degrades, an estimate of the camera pose and the depth
can still be recovered at very large baselines.

5.3 Unresolved issues and Discussion

Throughout this paper, we have emphasized our algorithm’s
ability to utilize more information than traditional SfM al-
gorithms. However, we should caution that unless properly
weighted, more information is not necessarily better. This
is illustrated in figure 11, where an undulating cloth sur-
face means that the edge information is subject to a great
deal of “occlusion” noise, caused by the extremal contours
varying with viewpoint changes. inconsistent edge detec-
tion. Despite the large amount of occlusion, our algorithm
could still return a fairly good estimate; however, re-running
our algorithm using only corner information improves the
results. This indicates that it is the inclusion of “noisy” in-
formation without proper weighting that degrades somewhat
the performance of our algorithm. We note that unique cor-
ner matches can be better incorporated into our algorithm by
allowing these point matches to influence the σt values in
our Gaussian mixture. A principled fusion of these different
sources of match information, together with a well thought-
out data weighting scheme would be of great practical value
and remains to be properly addressed.

While our algorithm cannot attain the global minimum
and more research in that direction is necessary, we would
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R̃ T̃ R̃ T̃ R̃ T̃ R̃ T̃
SIFT flow 15.9177 32.7802 4.8950 5.5900 13.589 81.2057 2.0970 27.8590
Traditional 14.5585 78.5412 12.8954 9.3199 15.0885 57.1229 17.7057 80.8453
Ours 0.8944 2.8339 4.2943 7.5999 1.6161 12.5875 0.9923 11.5929

Fig. 7 We show a number of scenes where there are few corners and correspondingly few matches. The correspondences obtained from SIFT
matching [35] are shown in the third row. The matches that exist are also poorly distributed, with the majority of matches being clustered in a small
region. The fourth row shows the SIFT points used by our algorithm. By relaxing the need for unique correspondence, we can use a much richer
and better distributed point set, which in turn permits a better recovery of the camera pose. The pose errors are reported below the images (see the
text for the meanings of R̃ and T̃ ).

like to make some final remarks on the stability of our al-
gorithm against local minima, whether arising from the in-
herent ambiguity of the SfM problem, or caused by errors in
the initialization. Referring to figures 7, 8, and 10, it can be
seen that both “SIFT flow” and “Traditional” sometimes re-
turned a translation estimate that was almost 90 degrees off
the correct solution. This is caused by the well known bias
of the translation estimate towards the center of the image
(the true translation is lateral in these sequences), which be-
comes more acute when the feature matches are insufficient
or of poor quality. Our algorithm suffers less from these well
known local minima of SfM because we can use ambigu-
ous edge features in these circumstances. While initializa-
tion with SIFT flow helps reduce the local minima problem,
it can be seen from our results that we can converge to a
correct solution even when the original SIFT flow initial-
ization is fairly erroneous. This is especially obvious in the
sequences with varying baseline in figure 10, where our al-
gorithm degrades gracefully with increasing displacement
induced noise and worsening SIFT flow initialization.

6 Conclusion

In this paper we have extended the point registration frame-
work to handle the two-frame structure from motion prob-
lem. Integrating the motion coherence constraint into the
joint camera pose and matching algorithm provides a princi-
pled means of incorporating feature points with non-unique
descriptors. This in turn allows us to recover camera pose
from previously difficult SfM scenes where edges are the
dominant cues and point features are unreliable.

While the results obtained so far are promising, there is
also much scope for further improvements in terms of im-
proving the initialization, incorporation of multiple views,
proper weighting of cues, as well as basic improvement to
the point registration mechanism.
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R̃ T̃ R̃ T̃ R̃ T̃ R̃ T̃
SIFT flow 2.0097 27.8590 7.6931 3.6912 1.3447 11.5193 15.3635 88.9147
Traditional 9.3170 56.4661 6.5460 86.6666 66.5418 89.6218 NA NA
Ours 1.2401 8.6582 1.5239 13.5200 0.8103 9.3550 48.6037 35.5356

Fig. 8 Here we experiment on images where corners are plentiful (some of the tree images have over 1000 features detected) but unique matching
remains challenging. This lack of uniqueness is due to the strong repetitive pattern. For the plant images, the problem is compounded by the
interlocking leaves which induce self-occlusion and corresponding feature degradation. For the floor image, our algorithm can utilize the non-
unique SIFT feature to recover camera pose, while for the tree images, we can utilize the features lying along the trees branches. The final image
shows a failure case where the stem is hidden by the foliage and the problem is further compounded by a view-dependent extremal contour.

R̃ T̃ R̃ T̃ R̃ T̃ R̃ T̃ R̃ T̃ R̃ T̃

SIFT flow 1.13 0.63 0.38 1.53 5.92 14.7 24.51 85.50 1.83 3.89 14.12 27.08
Traditional 0.93 1.51 0.17 0.60 3.20 3.95 0.79 2.26 0.80 0.83 0.96 1.01
Ours 0.30 0.38 0.35 0.60 0.12 0.46 0.13 0.24 0.88 0.85 0.50 0.13

Fig. 9 Evaluating our algorithm on a traditional structure from motion sequence from Christoph Strecha. Camera pose is computed between
adjacent image pairs. Observe that our algorithm also performs well on well-textured structure from motion scenes.
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8 Appendix

This appendix deals with how the smoothness function Ψ(B)

can be simplified into a more tractable form for the min-
imization process. In particular, we want to show that at
the minima of A(B,F), Ψ(B) is related to B and B0 by
Ψ(B) = tr(ΓG−1ΓT ).

At the minima, the derivative of equation (8) with re-
spect to the velocity field expressed in the Fourier domain
v′(.) must be zero. Hence, utilizing the Fourier transform
relation, v(β0i) =

∫
ℜ2 v

′(s)e2πk<β0i,s>ds, we obtain the
constraint

∂A(v′,F)

∂v′(z)
=

−
N∑

j=1

M∑
i=1

(
1

σ2
t

(βi − t̂0j)

)
g(t0j − bi, σt)

∫
ℜ2

∂v′(s)

∂v′(z)
e2πk<β0i,s>ds

M∑
i=1

g(t0j − bi, σt)

+
∑

i∈inlier

1

σ2
b

lil
T
i (βi − ri)

∫
ℜ2

∂v′(s)

∂v′(z)
e2πk<β0i,s>ds

+ λ

∫
ℜ2

∂

∂v′(z)

|v′(s)|2

g′(s) + κ′(s)
ds

= −
N∑

j=1

M∑
i=1

(
1

σ2
t

(βi − t̂0j)

)
g(t0j − bi, σt)e

2πk<β0i,z>

M∑
i=1

g(t0j − bi, σt)

+
∑

i∈inlier

1

σ2
b

lil
T
i (βi − ri)e

2πk<β0i,z> + 2λ
v′(−z)

g′(z) + κ′(z)
,

= 02×1

(15)

where t̂0j denotes a two dimensional vector made of the first
two elements of t0j .

Simplifying equation (15), we obtain

−2λ

M∑
i=1

wie
2πk<β0i,z> + 2λ

v′(−z)

g′(z) + κ′(z)
= 0

where the two dimensional vectors wi act as placeholders
for the more complicated terms in (15).

Substituting z with −z into the preceding equation and
making some minor rearrangements, we have

v′(z) = (g′(−z) + κ′(−z))
M∑
i=1

wie
−2πk<β0i,z>. (16)

where the two dimensional vectors, wi, can be considered as
weights which parameterize the velocity field.

Using the inverse Fourier transform relation∫
ℜ2

wT
i wj(g

′(z) + κ′(z))e+2πk<β0j−β0i,z>dz

= wT
i wj (g(β0j − β0i, γ) + κ(β0j − β0i)) ,
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and equation (16), we can rewrite the regularization term of
equation (8) as

Ψ(B) =

∫
ℜ2

(v′(z))T (v′(z))∗

g′(z) + κ′(s)
dz

=

∫
ℜ2

(g′(z) + κ′(s))2
∑M

i=1

∑M
j=1 w

T
i wje

+2πk<β0j−β0i,z>

g′(z) + κ′(s)
dz

=
M∑
i=1

M∑
j=1

∫
ℜ2

wT
i wj(g

′(z) + κ′(s))e+2πk<β0j−β0i,z>dz

= tr(WTGW),

(17)

where ∗ represents the complex conjugate operation, tr(.)
represents the trace of a matrix, and

WM×2 = [w1, ..., wM ]T ,

G(i, j) = g(β0i − β0j , γ) + κ(β0i − β0j).

If, as in the main text, one takes κ(.) to be a function with
spatial support less than the smallest separation between two
feature points in B0, the above expression for G(i, j) can be
simplified into

G(i, j) =

{
g(β0i − β0j , γ) + k, i = j
g(β0i − β0j , γ), i ̸= j

(18)

where k is some pre-determined constant.
Lastly, taking the inverse Fourier transform of equation

(16), we obtain

v(z) = (g(z, γ) + κ(z)) ∗
M∑
i=1

wiδ(z − β0i)

=

M∑
i=1

wi(g(z − β0i, γ) + κ(z − β0i)).

where δ is the Dirac delta. Hence,

B−B0 = GW. (19)

Substituting equation (19) into (17), we see that the reg-
ularization term Ψ(B), has the simplified form used in the
main text

Ψ(B) = tr(WTGW) = tr((B−B0)
TG−1(B−B0)).

(20)


