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A key step for managing a large video database is to partition the video se-
quences into shots. Past approaches to this problem tend to confuse gradual shot
changes with changes caused by smooth camera motions. This is in part due to
the fact that camera motion has not been dealt with in a more fundamental way.
We propose an approach that is based on a physical constraint used in optical flow
analysis, namely, the total brightness of a scene point across two frames should
remain constant if the change across two frames is a result of smooth camera mo-
tion. Since the brightness constraint would be violated across a shot change, the
detection can be based on detecting the violation of this constraint. It is robust be-
cause it uses only the qualitative aspect of the brightness constraint—detecting a
scene change rather than estimating the scene itself. Moreover, by tapping on the
significant know-how in using this constraint, the algorithm’s robustness is further
enhanced. Experimental results are presented to demonstrate the performance of
various algorithms. It is shown that our algorithm is less likely to interpret grad-
ual camera motions as shot changes, resulting in a better precision performance
than most other algorithms. However, its performance deteriorates under large cam-
era or object motions. A twin-threshold scheme is proposed to improve its robust-
ness. c© 2000 Academic Press

1. INTRODUCTION

A key step for managing a large video database is to partition the video sequences
into shots. Video partitioning makes the video data more manageable by imposing on it a
hierarchy. It also forms the first step to understanding video content by dividing it into shots
on which content analysis (e.g., scene, camera motion) can be performed.
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The conventional approach toward video partitioning treats the task as a 2-D image
processing problem. Often, measures [15, 16] are proposed to capture the intuitive idea
that the 2-D pixel intensity should undergo an abrupt change when there is a shot change.
These measures include comparison of pixels, blocks, histograms, or DCT coefficients. It
was found that all these approaches experience difficulties when the intensity changes are
more gradual due to special editing effects, such as dissolve, fade-in, and fade-out. Such
changes are often confused with those caused by smooth camera motions. A better approach
is one where image intensity change caused by camera movements is taken into account.
For instance, in [21], the optical flow field computed must exhibit certain patterns similar to
that arising from a smooth camera motion. However, the criteria is based on simple patterns
that are often violated in scenes with moving objects or in complex scenes where image
flow exhibits patterns much more complicated than the templates.

The contribution of our method lies in using a rigorous physical constraint that is asso-
ciated with the 3-D scene and motion, namely, the total brightness of a scene point across
two frames should remain constant if the change across two frames is a result of smooth
camera motion. Accordingly, since the 2-D image is formed from the projection of the 3-D
scene onto the image plane, the pixel intensity of these 2-D images cannot change arbi-
trarily. The kind of intensity change expected from smooth camera motion is captured by
the brightness constraint equation [8] and has been widely utilized in works dealing with
optical flow. Thus, the problem of shot change detection becomes that of detecting when
this scene-related constraint is violated.

Capturing the problem in this mathematical form has a twofold advantage. First, rather
than dealing directly with the changes in image intensity across time, essential attributes
are abstracted so that the total change in brightness across space and time are considered
together. That is, pixel movements caused by camera motions are already taken into account.
What this means is that images with textured surface and sharp intensity discontinuities
undergoing motion will be better dealt with and not result in false alarms. This is in contrast
to those simple methods where direct comparison of either pixels, regions, or histograms
often reveals large changes.

Second, the assumptions under which the brightness constraint holds are clearly stated
[8, 19]. From a computational standpoint, stating the assumptions has the advantage of
allowing us to make judicious choice of the types of pixels or regions for analysis. For
instance, from [19] it was known that in regions where the image intensity gradients are
weak, the brightness constraint equation is most subject to the perturbations of other effects
such as noise and occlusion. Avoiding analysis based on such regions would help reduce
erroneous decisions and prevent confusion between shot changes and smooth camera tran-
sition. Importantly, we do not need the brightness constraint to hold absolutely at every
point; such a requirement would be unrealistic in the face of noises in real images. We
merely argue that the amount of violation caused by shot change and that caused by any
inherent noise should be sufficiently different for discrimination.

This paper also presents a comparison of our algorithm with several other shot change
detection methods, with the view to understand the limits faced by different classes of algo-
rithms. The rest of the paper is organized as follows. In Section 2, we discuss related works
in the literature. Section 3 presents our algorithm with technical details. Section 4 describes
the algorithms selected for comparison and the implementation details. Experimental re-
sults are presented in Section 5 with discussions. Finally, the conclusions are given in
Section 6.
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2. RELATED WORKS

Numerous scene change detection algorithms have been proposed by several researchers
and reviewed by [1, 9]. We characterize related works according to whether they explicitly
take into account the image changes resulting from smooth camera operations.

Algorithms that are computing some kind of difference metric, whether it is based on
pixels [16], block statistics [15], histograms [14], or DCT coefficients [20], all fall into
the same category. They do not explicitly model the image difference caused by camera
movements and are thus, strictly speaking, incapable of differentiating smooth camera
operations from gradual scene transitions. While the use of more complex features such as
image edges or histograms improves the situation, it will only relieve, but not remove, the
problem.

Algorithms that are based on optical flow [2, 21] (computed from a pair of raw images)
or on motion vectors [13] or macroblock data rates [12] (computed in the compressed do-
main) explicitly incorporate or compensate the image difference caused by smooth camera
movements. The fact that the total change of image intensity, both in space and in time,
is modeled should result in enhanced performance of these algorithms. However, most of
these algorithms [12, 13, 21] did not exploit the characteristic of this change in a deeper
manner. For instance, in the twin comparison approach [21], optical flow field computed
was checked for its similarity with certain simple patterns expected to arise from typical
smooth camera motions. Liu and Zick [12] used the ratio of the number of forward, back-
ward, and bidirectional motion prediction vectors for B frames to detect cut. The results
of such simple treatments are that these algorithms still face difficulties when the scene
transitions are very gradual. On the other hand, [2] argued that smooth camera motions
result in a flow that can be characterized by an affine model. This imposes a much stronger
requirement on the properties of the scene change. The drawbacks are that it requires the
scene in view to be locally planar and that it needs expensive computation to carry out the
requisite segmentation. Compared to [2], our method exploits the fundamental property of
the scene without imposing any domain specific assumption; it requires fewer assumptions
and is therefore potentially more robust. However, optical flow techniques do rely on the
assumption that the interframe displacements are small; we investigate the implication of
this dependence in our experiments.

Recent literature has seen a number of model-based approaches [7, 13, 20]. The efficacy
of these algorithms depends on the choice of certain parameters or thresholds which must
be fine tuned. Furthermore, the assumption that the transition during special-effect edits is
linear may not always be correct.

A number of researchers presented their evaluation of different approaches [3, 6, 10].
The recall and the precision ratio were often computed, the former evaluating the number
of missed detections and the latter the number of false alarms:

Recall= detects

detects+missed detects

Precision= detects

detects+ false alarms
.

Kobla et al. [10] did a comparatively exhaustive comparison on special effect detection
between their algorithm VideoTrails and four other algorithms. These four algorithms
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were: (1) the plateau detection algorithm of Yeo and Liu [20]; (2) the variance curve ap-
proach of Menget al. [13]; (3) the twin comparison approach of Zhanget al. [21]; and (4)
the chromatic edit model approach of Songet al.[18]. The variance curve approach and the
chromatic edit model approach were reported with poor recall performance, whereas the
twin comparison approach and the plateau detection approach scored high recall but low
precision.

3. PROPOSED METHOD

The shot detection method that we propose solves the problem of video segmentation
based on the observation that there is a violation of the basic brightness constraint during
shot changes. This observation is formulated more formally in the following.

3.1. Brightness Constraint Equation

Let E(x, y, t) be the brightness of a point at image coordinates (x, y) and timet ; Ex, Ey,

andEt denote the partial derivatives of image brightness with respect tox, y, andt , respec-
tively. Then the aforementioned constraint can be expressed as

Exu+ Eyv + Et = 0, (1)

whereu= ∂x
∂t andv= ∂y

∂t are the horizontal and vertical components of the optical flow,
respectively. Optical flow is an approximation of the actual motion field. For instance,
when the scene experiences a change in the level of illumination, the brightness constraint
is violated. A nonzero optical flow field would be induced, even if there is no relative motion
between the camera and the scene. In the current context, there will be a change in the scene
illumination during cut, fade-in, fade-out, or dissolve. This violation of the brightness
constraint would result in a “spurious” optical flow that has a haphazard appearance.

3.2. Optical Flow Under Shot Change

Equation (1) yields only the normal component of the optical flow (u, v), that is, the
optical flow projected onto the normal direction (Ex, Ey). To obtain the full optical flow,
we use the smoothness constraint proposed in [8].

The smoothness constraint assumes that neighboring points on objects have similar ve-
locities and the optical flow field varies smoothly over the entire image. The problem of
solving the optical flow then becomes that of simultaneously satisfying the brightness con-
straint and the smoothness constraint. This can be formulated as minimizing the error in
the equation for the rate of change of image brightness,

Eb = uEx + vEy + Et ,

and the measure of the departure from smoothness in the optical flow,

E2
c =

(
∂u

∂x

)2

+
(
∂u

∂y

)2

+
(
∂v

∂x

)2

+
(
∂v

∂y

)2

. (2)

The solution for the optical flow field is obtained by minimizing a weighted sum ofEb
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andEc

E2 =
∫ ∫ (

α2E2
c + E2

b

)
dx dy,

whereα is the weighting factor determining the relative importance of the two termsEb

andEc.
Since the brightness constraint is violated under shot changes, the two errorsEb and

Ec may not be satisfied simultaneously. Even under smooth camera motion, the motion
discontinuities that exist across object boundaries may give rise to conflicts betweenEb

andEc. The result is that there will be error residues in both these situations. However, in
the former, this phenomenon occurs globally over the whole image, whereas in the latter,
it only occurs locally at object boundaries. Thus, we can use the sum of the error residue
over the entire image as an indicator of shot changes.E, Eb, or Ec could have been used in
the measure, depending on the value ofα used. For the conventional value ofα= 0.5, we
found thatEc is the most effective.

4. IMPLEMENTATION

This section provides a brief description of the five algorithms that are included in this
paper for comparison. The reader is referred to the cited papers for more details.

Our algorithm. We have implemented our algorithm for shot detection as defined in
the previous section. Our method first preprocessed the images with Gaussian smoothing,
using a 5× 5 spatial filter and a temporal filter of 5 time units. Optical flow analysis was
then carried out with the value ofα set to 0.5. A thresholdTi on the intensity gradient was
set to ensure that only sufficiently textured areas are considered.Tc was another threshold
beyond which the error residue inEc was considered significant. The values used for these
thresholds were rather conventional and were not tuned in this experiment. The following
was then defined,

n1(x, y) =
{

1 if |Ec| > Tc and
∣∣E2

x + E2
y

∣∣ > Ti

0 otherwise

n2(x, y) =
{

1 if
∣∣E2

x + E2
y

∣∣ > Ti

0 otherwise

D =
∑

y

∑
x n1(x, y)∑

y

∑
x n2(x, y)

× 100%,

where D measured the departure of the optical flow from smoothness, and the partial
derivatives inEc were approximated from the discrete set of optical flow measurements in a
5× 5 spatial window. We declared a shot change ifD is greater thanT1= 12. Furthermore,
since fast movements often generate a series of closely spaced false alarms, we devised a rule
to reduce such false alarms. If a series of detects are close (less than 20 frames apart), retain
them only ifD is greater than a second thresholdT2= 2× T1. This amounts to a thresholding
rule that is context dependent and is similar in idea to the twin comparison method.

Plateau detection [20]. In the plateau detection algorithm, abrupt changes and gradual
transitions are detected separately. An abrupt scene change is declared if there is a sharp
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peak in theDi plot, whereDi is simply the DC difference between framei and frame
i + 1. To ensure sharpness of the peak, the peak value must ben times the second largest
maximum in a symmetric sliding window. After our tuning experiment,n was chosen to be
1.5, and the size of the window was 20. Gradual transitions are then detected by looking for
plateaus on theDk

i plot. The DC differenceDk
i is computed by comparing every frame to the

following kth frame. In our experiment,k was chosen to be 20. Two criteria are then used
by the authors Yeo and Liu to detect the plateau on the difference plot. The first criterion
checks that there is little variation on the plateau. In our implementation, we allowed for a
20% variation within a symmetric window of size 5. The second criterion checks that the
plateau stands out by the following:Dk

i ≥ l × Dk
i−k/2−1 or Dk

i ≥ l × Dk
i+k/2+1. We used the

value ofl = 2.8; we also comparedDk
i with Dk

i−k−1 andDk
i+k+1 instead of withDk

i−k/2−1

andDk
i+k/2+1, respectively. This modification was also suggested by [10].

Variance curve [13]. In the variance curve approach, an abrupt change is declared if
there is large change in the variance plot (in our implementation, a 35% change in the
varianceσ 2). The variance plot is then examined for downward parabolic curves to detect
dissolves. The two peaks that bound a valley and the valley are first located. To qualify as a
candidate for gradual transition, the distances between the peaks and the valley must each
be at least four frames. If this criterion is satisfied, and if either of the drops in variance from
the peaks to the valley is more than 25%, a dissolve is declared. In addition, as suggested
by [10], if the average variance difference|4σ 2| between the two peaks is greater than that
on either end of the peaks, a dissolve is also declared. We used a local window of 10 frames
before the left peak and 10 frames after the right peak for the|4σ 2| computation, and we
required that the difference be at least 2.5 times.

Twin comparison [21]. The implementation for the twin comparison approach is quite
straightforward. The twin thresholdsTb (used for break detection) andTs (used for special
effect detection) were respectively 25,000 and 15,000.

Chromatic edit model [18]. Finally, in the chromatic edit model approach, the first
partial derivative of the intensity with respect to time is computed. If there is a large change
(500%) in this first derivative, a cut is declared. The second partial derivative of the intensity
with respect to time is then computed. If it is small compared with the first partial derivative,
a dissolve is declared. As found out by [10], a large value is required for the test to work.
We used 0.9 as the fraction value for the threshold.

Error metric and others. We chose recall and precision as the evaluation criteria. In
particular, a gradual transition was considered correctly detected if any of the frame of the
transition was marked as a shot boundary. Conversely a missed dissolve was counted as one
miss, irrespective of the duration of the effect. Often, a fast action followed immediately
after a scene cut, resulting in the reported shot boundary being displaced from the true cut
location, in which case we counted as a missed cut and a false alarm. On the other hand, if
a long dissolve was detected as multiple transitions, we counted one of them as a correct
detect, with the rest treated as false alarms. Furthermore, since various algorithms (e.g.,
in the plateau detection algorithm) ruled out the possibilities of two scene changes within
a short duration, we applied a similar rule to all other algorithms where this step was not
explicitly taken. In particular, if there is a series of transitionst1, t2, . . . , tn, each separated
by less than 10 frames, retain onlyt1 andtn. We found that this rule was especially important
in helping the variance curve approach and the twin comparison approach to reduce the
number of false alarms arising from fast motions.
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5. EXPERIMENTS AND RESULTS

This section describes the two sets of experiments conducted, the corresponding test sets,
and the results obtained.

5.1. Experiment One

The purpose of this set of experiments is twofold. First, we want to illustrate the per-
formance of these algorithms under various challenging scenarios, such as long dissolves
and fast motions. Different algorithms are likely to work well in different scenarios and
it is important to understand in which domain a given algorithm does work well. Such
performance characteristics are not always obvious from the recall and precision figures
reported from typical test sets. The second objective of this set of experiment is to fine tune
the various parameters involved. The thresholds have been chosen such that high recall ratio
is given more priority, without penalizing precision unduly if possible.

A small number of real-world video clips (about 4100 frames) extracted from VHS tapes
were used. They were comprised of clips from a nature documentary showing the landscape
and the fauna of the Okavango Delta, a documentary commemorating the life of Princess
Diana, and a recorded clip depicting soccer action. These videos were quite noisy and
contained a mix of fast image motions and long dissolves (especially in the Diana sequence).

Some examples from the Diana clip and the soccer clip are illustrated in the top row of
Fig. 1. The Diana clip typifies documentaries of this genre: there are many slow transitions
lasting more than two seconds. Other likely problems of the clip are that part of it depicts
fast moving objects and that the first 500 frames of this sequence are very noisy. The soccer
clip contains many fast camera and object motions; some of the close-ups are particularly
problematic. This clip also contains some sport-style edits such as wipes.

The second and third rows of Fig. 1 present the performances of the various algorithms
for the Diana clip and the soccer clip respectively. The vertical axes of the plots correspond
to the metrics used in the respective methods, althoughSD” of the twin comparison plot
has been somewhat modified from the original metric to facilitate plotting. It is defined
as the accumulated difference between the current frame and the potential starting frame
of a transition once such a potential starting frame has been identified and has not been
dropped; otherwise it is just the difference between consecutive frames defined by the
difference metric. Dotted lines in the figures correspond to the various thresholds used in
these algorithms. The thresholds shown in the plots for our algorithm correspond toT1 and
T2 mentioned above, whereas those shown in the twin comparison plots correspond to the
twin thresholdsTb andTs. In other cases, the final decision for detection is not obvious from
the plots. Thus, all graphs were annotated with the following letters: we useC, S, F , and
M to denote cut detect, special-effect detect, false alarm, and miss, respectively.

The results of the Diana sequence showed that the model-based methods, including the
plateau detection, the variance curve, and the chromatic edit approach, performed better than
the rest in picking up dissolves longer than two seconds. On the other hand, as evidenced
by the plots for the soccer sequence, by adopting appropriate models, the plateau detection
algorithm and the chromatic edit algorithm achieved better immunity against false alarms
arising from fast motions.

The twin comparison and our approach adopt a twin-threshold scheme to relieve the
trade-off problem involved in using a single threshold. While such a scheme was effective
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to filter away some of the false alarms arising from fast motions (see the results of the soccer
sequence), the problem was not totally removed. Without the aid of a model, these methods
were still fundamentally limited in detecting dissolves of longer duration, as can be seen by
the results of the Diana sequence. The virtue of these two methods lies in their simplicity,
which means that they are less likely to fall prey to invalid assumptions such as linearity. In
the Diana sequence significant, noise in the same sequence also resulted in a comparatively
higher number of false alarms for most linear-model-based approaches. These effects are
in general more difficult to control or to compensate for.

5.2. Experiment Two

In the second set of experiments, the tuned algorithms were applied to a test set comprising
of a large number of video clips (about 30,000 frames with 233 edits). They were drawn
from wide-ranging categories, including documentaries, news, commercials, music videos,
sports, and action movies. Table 1 summarizes the characteristics of these different clips,
with a brief description of the troublesome elements in these clips. For instance, special
effect edits such as wipes, additive dissolves, and fold-ups are often used in sports videos.
Commercials often have edits closely spaced together, and the duration of the edits are
often very short. On the other hand, parts of the documentaries have dissolves as long
as 180 frames (6 s). There are also many video clips where the assumptions underlying
the various algorithms are violated. For instance, action movies and sport clips invariably
contain large interframe camera or object movements exceeding the range required of optical
flow computation. Music videos and commercials have scenes that violate the assumption

TABLE 1

Different Classes of Test Video

Types of gradual
Class Description transitions Fast movements Other problems

Sports 4 clips (2 cricket Dissolves, wipes, Tracking activities; Flashes
and 2 soccer) and fold-ups close-up on

players;

Commercial 4 clips (Discovery Large number of Moderate Rapid rhythm of edits
channel, Pampers, short dissolves, (15 frames apart),
Lifestyle, cough graphics overlay burning flames
drops)

Music video 2 clips (1 on-stage Dissolves, fade-ins Singers’ movements Rhythm of edits mixed;
and 1 outdoor) and fade-outs floodlight

News 2 clips (BBC news on Short dissolves Footage on war is
Chechnya war) noisy; cloud shadows

resulting in intensity
changes

Documentary 3 clips (Diana, Many long dissolves Animals’ movements Footage on Diana
Okavango Delta, and (1–6 s), fade-in, is noisy
Serengeti Plain) fade-out.

Action movie 2 clips (movie “Speed” None Many fast actions and Fast actions resulting
and TV series extreme close-ups in displaced shot
“Martial Law”) boundaries
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TABLE 2

Performance of the Various Algorithms

Ours PL VC TC CE

C F M C F M C F M C F M C F M

Sports 27 23 0 25 17 2 17 35 10 27 15 0 20 7 7
Commercial 54 5 8 54 5 8 42 9 20 53 16 9 56 14 6
Music video 57 2 6 58 5 5 38 8 25 60 6 3 59 4 4
News 23 6 0 21 14 2 12 12 11 22 13 1 20 16 3
Documentary 5 3 20 14 24 11 24 19 1 7 8 18 14 11 11
Action movie 29 36 4 30 6 3 23 82 10 30 26 3 26 24 7

Total 195 75 38 202 71 31 156 165 77 199 84 34 195 76 38

Recall % 83.7 86.7 67.0 85.4 83.7
Precision % 72.2 74.0 48.6 70.3 72.0

of constant illumination (flashes). Finally, there are shot changes where linear assumption
fails, resulting in difficulties for algorithms assuming linear transition. In sum, the test set
is constructed to be as comprehensive as possible.

The results of the second experiment are tabulated in Table 2 (PL, plateau detection; VC,
variance curve; TC, twin comparison; CE, chromatic edit). It shows that our approach, the
plateau detection approach, the twin comparison approach, and the chromatic edit approach
gave satisfactory performance, whereas the variance curve approach did not yield good
results.

Of the model-based approaches, the plateau detection method performed very well. It
is capable of picking up long edits and yet its immunity to false alarms when there are
fast movements is unsurpassed (see its performance under the sports and action movies
genres). It is difficult to further improve on the choice of the plateau parametersk andl .
For instance, it is hard to set an optimal value ofk for all sequences. A largek tends to
merge closely-spaced edits (such as those found in commercials) together. Conversely a
smallk tends to split edits of long duration into multiple transitions (such as those found in
documentaries, thus its high false alarm rate).

The variance curve approach did not perform well. While it has the best recall rate in
the documentary genre (with long dissolves), it tends to miss a lot of transitions especially
if the scenes do not contain enough variance (e.g., dim scenes in music videos, scenes of
a cricket field in sport). Furthermore, the peak and valley locations are very sensitive to
perturbances such as fast actions. Peaks and valleys occur at different scales; some of these
correspond to transition events and some do not. It was found difficult to have an optimal
smoothing so that only the “desirable” events are picked up. Thus its performance (both
recall and precision) declined drastically in the sport and action movies genres.

The chromatic edit approach has slightly inferior performance compared to the plateau
detection approach. The poorer precision of the chromatic edit approach could be attributed
to the proposed test for gradual transitions. A large fraction value needs to be set in order to
pick up gradual transitions. The accompanying increase in false alarm rate is not unexpected.
However, this increase in false alarms could not be strictly attributed to a sole factor such
as fast motions. These false detects were not clustered together and were therefore more
difficult to compensate for.
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The results of the twin comparison approach and ours were quite comparable. They
were also slightly inferior to that of the plateau detection approach. Both false alarm rates
increased chiefly with fast actions. However, this is amenable to the treatment of the twin
threshold concept (since they are clustered together), with the result that the deterioration
is graceful. In particular, if the camera–object motions are not of the large foreground
types, both algorithms did not yield significant false alarms. In fact, if we exclude the
sports and action movie categories, our algorithm has the lowest false alarm rates among all
the algorithms tested. Unfortunately, close-up shots of fast actions such as those found in
action movies and sports seemed to pose severe challenge for our algorithm. Furthermore,
both algorithms still faced problems in picking up dissolves longer than two seconds,
as evidenced by the high number of misses in the documentary genre. There is a weak
linear assumption implied in the twin comparison method. If an edit has long duration, the
consecutive difference value may fall below the lower thresholdTs. It can result either in a
miss or in multiple detects. This problem was discussed in Zhang’s paper and the authors
suggested setting a tolerance value that allows a number of consecutive frames with low
difference value before rejecting the transition candidate.

Illumination changes arising from camera flashes in the sport videos did not cause false
alarms as the effect was local (i.e., the flashes occurred in a long shot of the spectator scene).
Illumination changes arising from natural causes such as passing clouds, while global in
effect, are much more gradual. They are apt to be picked up as false alarms by the model-
based approaches, which are more sensitive to such gradual changes lasting over a long
duration. This accounts for the higher number of false alarms reported by the model-based
approaches in the news clips where overcast weather produced such global changes.

For applications where real time processing is required, our method is at a disadvantage
due to the significant amount of processing involved in optical flow computation. The time
taken by our nonoptimized algorithm for a 352× 288 image is about 30 s per frame. While
various fast parallel methods of optical flow computation have been proposed [4, 11], they
require varying amounts of dedicated hardware. For instance, the algorithm in [4] requires
parallel hardware computation of the Laplacian of Gaussian of the images, with the rest of
the computation performed with common desktop hardware.

From the results of these experiments, we can make the following observations. As far
as our algorithm was concerned, it seemed that the degradation in performance caused
by image noise and moderate motions was largely well controlled. The well-known flow
inaccuracies caused by the Horn and Schunck’s method did not affect the validity of our
results, thus corroborating our claim that only a qualitative aspect of the optical flow is used.
However, if the scenes contained large interframe displacements (typically greater than 10
pixels in sports and action movies), the assumption underlying optical flow computation was
severely violated, resulting in a rapid increase in the false alarm rate. However these false
alarms were mostly closely clustered together, and thus to a large extent can be controlled
by a context-dependent twin-thresholding rule.

6. CONCLUSION

We have proposed an algorithm that utilizes a basic constraint associated with 3-D scene
points—the brightness constraint. As it only needs partial information about the scene—
detecting a scene change rather than estimating the scene itself—it does not need accurate
optical flow information and is thus robust. By using this basic constraint, our algorithm
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is capable of handling a diverse range of situations such as textured images undergoing
motion and nonlinear shot transitions. However, when dealing with extreme situations,
such as very large motions or transitions lasting more than two seconds, our algorithm
faces limitations. Among the algorithms compared, the plateau detection approach, the twin
comparison approach, the chromatic edit approach, and our approach have quite comparable
performances, as far as this particular test set is concerned. In general, the good model-based
approaches are more successful in picking up transitions lasting more than two seconds and
are less susceptible to false alarms arising from fast motions. For the non-model-based
approaches, a twin-thresholding scheme seems to be required in order to overcome the
trade-off involved in using a single threshold.
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