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A key step for managing a large video database is to partition the video se-
quences into shots. Past approaches to this problem tend to confuse gradual shot
changes with changes caused by smooth camera motions. This is in part due to
the fact that camera motion has not been dealt with in a more fundamental way.
We propose an approach that is based on a physical constraint used in optical flow
analysis, namely, the total brightness of a scene point across two frames should
remain constant if the change across two frames is a result of smooth camera mo-
tion. Since the brightness constraint would be violated across a shot change, the
detection can be based on detecting the violation of this constraint. It is robust be-
cause it uses only the qualitative aspect of the brightness constraint—detecting a
scene change rather than estimating the scene itself. Moreover, by tapping on the
significant know-how in using this constraint, the algorithm’s robustness is further
enhanced. Experimental results are presented to demonstrate the performance of
various algorithms. It is shown that our algorithm is less likely to interpret grad-
ual camera motions as shot changes, resulting in a better precision performance
than most other algorithms. However, its performance deteriorates under large cam-
era or object motions. A twin-threshold scheme is proposed to improve its robust-
NESS. (© 2000 Academic Press

1. INTRODUCTION

A key step for managing a large video database is to partition the video sequen
into shots. Video partitioning makes the video data more manageable by imposing on
hierarchy. It also forms the first step to understanding video content by dividing it into sh
on which content analysis (e.g., scene, camera motion) can be performed.
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The conventional approach toward video partitioning treats the task as a 2-D im:
processing problem. Often, measures [15, 16] are proposed to capture the intuitive
that the 2-D pixel intensity should undergo an abrupt change when there is a shot cha
These measures include comparison of pixels, blocks, histograms, or DCT coefficient
was found that all these approaches experience difficulties when the intensity change:
more gradual due to special editing effects, such as dissolve, fade-in, and fade-out. ¢
changes are often confused with those caused by smooth camera motions. A better app
is one where image intensity change caused by camera movements is taken into acc
For instance, in [21], the optical flow field computed must exhibit certain patterns similar
that arising from a smooth camera motion. However, the criteria is based on simple patt
that are often violated in scenes with moving objects or in complex scenes where im
flow exhibits patterns much more complicated than the templates.

The contribution of our method lies in using a rigorous physical constraint that is as:
ciated with the 3-D scene and motion, namely, the total brightness of a scene point ac
two frames should remain constant if the change across two frames is a result of sm
camera motion. Accordingly, since the 2-D image is formed from the projection of the 3
scene onto the image plane, the pixel intensity of these 2-D images cannot change
trarily. The kind of intensity change expected from smooth camera motion is captured
the brightness constraint equation [8] and has been widely utilized in works dealing w
optical flow. Thus, the problem of shot change detection becomes that of detecting w
this scene-related constraint is violated.

Capturing the problem in this mathematical form has a twofold advantage. First, rat
than dealing directly with the changes in image intensity across time, essential attrib
are abstracted so that the total change in brightness across space and time are cons
together. Thatis, pixel movements caused by camera motions are already taken into acc
What this means is that images with textured surface and sharp intensity discontinui
undergoing motion will be better dealt with and not result in false alarms. This is in contr:
to those simple methods where direct comparison of either pixels, regions, or histogr:
often reveals large changes.

Second, the assumptions under which the brightness constraint holds are clearly si
[8, 19]. From a computational standpoint, stating the assumptions has the advantag
allowing us to make judicious choice of the types of pixels or regions for analysis. F
instance, from [19] it was known that in regions where the image intensity gradients
weak, the brightness constraint equation is most subject to the perturbations of other eff
such as noise and occlusion. Avoiding analysis based on such regions would help re
erroneous decisions and prevent confusion between shot changes and smooth camer:
sition. Importantly, we do not need the brightness constraint to hold absolutely at ev
point; such a requirement would be unrealistic in the face of noises in real images.
merely argue that the amount of violation caused by shot change and that caused by
inherent noise should be sufficiently different for discrimination.

This paper also presents a comparison of our algorithm with several other shot cha
detection methods, with the view to understand the limits faced by different classes of al
rithms. The rest of the paper is organized as follows. In Section 2, we discuss related wi
in the literature. Section 3 presents our algorithm with technical details. Section 4 descri
the algorithms selected for comparison and the implementation details. Experimental
sults are presented in Section 5 with discussions. Finally, the conclusions are give
Section 6.



226 LOONG-FAH CHEONG

2. RELATED WORKS

Numerous scene change detection algorithms have been proposed by several resea
and reviewed by [1, 9]. We characterize related works according to whether they explic
take into account the image changes resulting from smooth camera operations.

Algorithms that are computing some kind of difference metric, whether it is based
pixels [16], block statistics [15], histograms [14], or DCT coefficients [20], all fall intc
the same category. They do not explicitly model the image difference caused by can
movements and are thus, strictly speaking, incapable of differentiating smooth can
operations from gradual scene transitions. While the use of more complex features suc
image edges or histograms improves the situation, it will only relieve, but not remove, 1
problem.

Algorithms that are based on optical flow [2, 21] (computed from a pair of raw image
or on motion vectors [13] or macroblock data rates [12] (computed in the compressed
main) explicitly incorporate or compensate the image difference caused by smooth can
movements. The fact that the total change of image intensity, both in space and in ti
is modeled should result in enhanced performance of these algorithms. However, mos
these algorithms [12, 13, 21] did not exploit the characteristic of this change in a dee
manner. For instance, in the twin comparison approach [21], optical flow field comput
was checked for its similarity with certain simple patterns expected to arise from typic
smooth camera motions. Liu and Zick [12] used the ratio of the number of forward, bac
ward, and bidirectional motion prediction vectors for B frames to detect cut. The resu
of such simple treatments are that these algorithms still face difficulties when the sc
transitions are very gradual. On the other hand, [2] argued that smooth camera mot
result in a flow that can be characterized by an affine model. This imposes a much stror
requirement on the properties of the scene change. The drawbacks are that it require
scene in view to be locally planar and that it needs expensive computation to carry out
requisite segmentation. Compared to [2], our method exploits the fundamental propert
the scene without imposing any domain specific assumption; it requires fewer assumpt
and is therefore potentially more robust. However, optical flow techniques do rely on t
assumption that the interframe displacements are small; we investigate the implicatiol
this dependence in our experiments.

Recent literature has seen a number of model-based approaches [7, 13, 20]. The effi
of these algorithms depends on the choice of certain parameters or thresholds which 1
be fine tuned. Furthermore, the assumption that the transition during special-effect edi
linear may not always be correct.

A number of researchers presented their evaluation of different approaches [3, 6,
The recall and the precision ratio were often computed, the former evaluating the num
of missed detections and the latter the number of false alarms:

detects
Recall= -
detectst+ missed detects
- detects
Precision=

detectst+ false alarms

Kobla et al. [10] did a comparatively exhaustive comparison on special effect detecti
between their algorithm VideoTrails and four other algorithms. These four algorithr
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were: (1) the plateau detection algorithm of Yeo and Liu [20]; (2) the variance curve ¢
proach of Menget al. [13]; (3) the twin comparison approach of Zhaetwal. [21]; and (4)
the chromatic edit model approach of Sai@l.[18]. The variance curve approach and the
chromatic edit model approach were reported with poor recall performance, whereas
twin comparison approach and the plateau detection approach scored high recall but
precision.

3. PROPOSED METHOD

The shot detection method that we propose solves the problem of video segmente
based on the observation that there is a violation of the basic brightness constraint du
shot changes. This observation is formulated more formally in the following.

3.1. Brightness Constraint Equation

Let E(x, y, t) be the brightness of a point at image coordinatey) and timet; Ex, Ey,
andE; denote the partial derivatives of image brightness with respectytpandt, respec-
tively. Then the aforementioned constraint can be expressed as

Exu+ Eyv+ E; =0, (1)

whereu = g—’; andv = % are the horizontal and vertical components of the optical flow
respectively. Optical flow is an approximation of the actual motion field. For instanc
when the scene experiences a change in the level of illumination, the brightness const
is violated. A nonzero optical flow field would be induced, even if there is no relative motic
between the camera and the scene. In the current context, there will be a change in the
illumination during cut, fade-in, fade-out, or dissolve. This violation of the brightnes
constraint would result in a “spurious” optical flow that has a haphazard appearance.

3.2. Optical Flow Under Shot Change

Equation (1) yields only the normal component of the optical floww], that is, the
optical flow projected onto the normal directioB, Ey). To obtain the full optical flow,
we use the smoothness constraint proposed in [8].

The smoothness constraint assumes that neighboring points on objects have simila
locities and the optical flow field varies smoothly over the entire image. The problem
solving the optical flow then becomes that of simultaneously satisfying the brightness c
straint and the smoothness constraint. This can be formulated as minimizing the errc
the equation for the rate of change of image brightness,

Eb = UEX + vEy+ Et,
and the measure of the departure from smoothness in the optical flow,
du\? /au\? [av\®  [av)?
E2=(— — — — . 2
-(&) +(5) +(5) +(5) @

The solution for the optical flow field is obtained by minimizing a weighted sungof
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andE.

E2=// («®EZ + EZ) dx dy,

whereq is the weighting factor determining the relative importance of the two tdgms
andE..

Since the brightness constraint is violated under shot changes, the two Egrarsl
E. may not be satisfied simultaneously. Even under smooth camera motion, the mo
discontinuities that exist across object boundaries may give rise to conflicts belyeen
andE;. The result is that there will be error residues in both these situations. However
the former, this phenomenon occurs globally over the whole image, whereas in the la
it only occurs locally at object boundaries. Thus, we can use the sum of the error resi
over the entire image as an indicator of shot change&y, or E. could have been used in
the measure, depending on the valuexafsed. For the conventional value@t 0.5, we
found thatE;. is the most effective.

4. IMPLEMENTATION

This section provides a brief description of the five algorithms that are included in tt
paper for comparison. The reader is referred to the cited papers for more details.

Our algorithm. We have implemented our algorithm for shot detection as defined
the previous section. Our method first preprocessed the images with Gaussian smoot
using a 5x 5 spatial filter and a temporal filter of 5 time units. Optical flow analysis wa
then carried out with the value afset to 05. A thresholdT; on the intensity gradient was
set to ensure that only sufficiently textured areas are consid&y&dhs another threshold
beyond which the error residue i, was considered significant. The values used for thes
thresholds were rather conventional and were not tuned in this experiment. The follow
was then defined,

1 if|Ec| > Tcand|EZ + E2| > T,
M y) = {0 otherwise
if |EZ+EZ| > Ti
0 otherwise

2y 2mxy)
B Zy Zx nZ(Xv y)

where D measured the departure of the optical flow from smoothness, and the par
derivatives inE. were approximated from the discrete set of optical flow measurements ir
5 x 5 spatial window. We declared a shot change ik greater thai; = 12. Furthermore,
since fast movements often generate a series of closely spaced false alarms, we devised
to reduce such false alarms. If a series of detects are close (less than 20 frames apart),
themonlyifD is greater than a second thresh®jd= 2 x T;. This amounts to a thresholding
rule that is context dependent and is similar in idea to the twin comparison method.

1
na(X, y) = {

D x 100%

Plateau detection [20]. In the plateau detection algorithm, abrupt changes and gradu
transitions are detected separately. An abrupt scene change is declared if there is a -
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peak in theD; plot, whereD; is simply the DC difference between framend frame

i + 1. To ensure sharpness of the peak, the peak value mustifnes the second largest
maximum in a symmetric sliding window. After our tuning experimenyas chosen to be
1.5, and the size of the window was 20. Gradual transitions are then detected by looking
plateaus on th®¥ plot. The DC differenc®¥ is computed by comparing every frame to the
following kth frame. In our experimenk was chosen to be 20. Two criteria are then use
by the authors Yeo and Liu to detect the plateau on the difference plot. The first criter
checks that there is little variation on the plateau. In our implementation, we allowed fo
20% variation within a symmetric window of size 5. The second criterion checks that t
plateau stands out by the followin®¥ > | x D¥ , , ; or D=1 x D, »,,. We used the
value ofl =2.8; we also compare® with DF ,_, andDf,,,, instead of withDF , , ;
and Dik+k/2+l, respectively. This modification was also suggested by [10].

Variance curve [13]. In the variance curve approach, an abrupt change is declarec
there is large change in the variance plot (in our implementation, a 35% change in
variancer2). The variance plot is then examined for downward parabolic curves to dett
dissolves. The two peaks that bound a valley and the valley are first located. To qualify
candidate for gradual transition, the distances between the peaks and the valley must
be at least four frames. If this criterion is satisfied, and if either of the drops in variance fr
the peaks to the valley is more than 25%, a dissolve is declared. In addition, as sugge
by [10], if the average variance differeneo 2| between the two peaks is greater than tha
on either end of the peaks, a dissolve is also declared. We used a local window of 10 fra
before the left peak and 10 frames after the right peak fofAfe?| computation, and we
required that the difference be at least 2.5 times.

Twin comparison [21]. The implementation for the twin comparison approach is quit
straightforward. The twin thresholdsg (used for break detection) afid (used for special
effect detection) were respectively 25,000 and 15,000.

Chromatic edit model [18]. Finally, in the chromatic edit model approach, the first
partial derivative of the intensity with respect to time is computed. If there is a large char
(500%) in this first derivative, a cut is declared. The second partial derivative of the inten:
with respect to time is then computed. If it is small compared with the first partial derivativ
a dissolve is declared. As found out by [10], a large value is required for the test to wc
We used 0.9 as the fraction value for the threshold.

Error metric and others. We chose recall and precision as the evaluation criteria. |
particular, a gradual transition was considered correctly detected if any of the frame of
transition was marked as a shot boundary. Conversely a missed dissolve was counted &
miss, irrespective of the duration of the effect. Often, a fast action followed immediate
after a scene cut, resulting in the reported shot boundary being displaced from the true
location, in which case we counted as a missed cut and a false alarm. On the other hau
a long dissolve was detected as multiple transitions, we counted one of them as a co
detect, with the rest treated as false alarms. Furthermore, since various algorithms (
in the plateau detection algorithm) ruled out the possibilities of two scene changes wit
a short duration, we applied a similar rule to all other algorithms where this step was
explicitly taken. In particular, if there is a series of transitiond,, . . . , t,, each separated
by less than 10 frames, retain omjyandt,. We found that this rule was especially important
in helping the variance curve approach and the twin comparison approach to reduce
number of false alarms arising from fast motions.
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5. EXPERIMENTS AND RESULTS

This section describes the two sets of experiments conducted, the corresponding test
and the results obtained.

5.1. Experiment One

The purpose of this set of experiments is twofold. First, we want to illustrate the pe
formance of these algorithms under various challenging scenarios, such as long dissc
and fast motions. Different algorithms are likely to work well in different scenarios an
it is important to understand in which domain a given algorithm does work well. Su
performance characteristics are not always obvious from the recall and precision figt
reported from typical test sets. The second objective of this set of experiment is to fine t
the various parameters involved. The thresholds have been chosen such that high recall
is given more priority, without penalizing precision unduly if possible.

A small number of real-world video clips (about 4100 frames) extracted from VHS tap
were used. They were comprised of clips from a nature documentary showing the landst
and the fauna of the Okavango Delta, a documentary commemorating the life of Princ
Diana, and a recorded clip depicting soccer action. These videos were quite noisy
contained a mix of fastimage motions and long dissolves (especially in the Diana sequer

Some examples from the Diana clip and the soccer clip are illustrated in the top row
Fig. 1. The Diana clip typifies documentaries of this genre: there are many slow transitic
lasting more than two seconds. Other likely problems of the clip are that part of it depi
fast moving objects and that the first 500 frames of this sequence are very noisy. The so
clip contains many fast camera and object motions; some of the close-ups are particul
problematic. This clip also contains some sport-style edits such as wipes.

The second and third rows of Fig. 1 present the performances of the various algoritt
for the Diana clip and the soccer clip respectively. The vertical axes of the plots correspe
to the metrics used in the respective methods, alth@Ighof the twin comparison plot
has been somewhat modified from the original metric to facilitate plotting. It is define
as the accumulated difference between the current frame and the potential starting fr
of a transition once such a potential starting frame has been identified and has not t
dropped; otherwise it is just the difference between consecutive frames defined by
difference metric. Dotted lines in the figures correspond to the various thresholds use
these algorithms. The thresholds shown in the plots for our algorithm corresp@pend
T, mentioned above, whereas those shown in the twin comparison plots correspond tc
twin thresholdsl, andTs. In other cases, the final decision for detection is not obvious fror
the plots. Thus, all graphs were annotated with the following letters: w€uSeF, and
M to denote cut detect, special-effect detect, false alarm, and miss, respectively.

The results of the Diana sequence showed that the model-based methods, includin
plateau detection, the variance curve, and the chromatic edit approach, performed better
the rest in picking up dissolves longer than two seconds. On the other hand, as evidel
by the plots for the soccer sequence, by adopting appropriate models, the plateau dete
algorithm and the chromatic edit algorithm achieved better immunity against false alar
arising from fast motions.

The twin comparison and our approach adopt a twin-threshold scheme to relieve
trade-off problem involved in using a single threshold. While such a scheme was effect
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to filter away some of the false alarms arising from fast motions (see the results of the so
sequence), the problem was not totally removed. Without the aid of a model, these mett
were still fundamentally limited in detecting dissolves of longer duration, as can be seer
the results of the Diana sequence. The virtue of these two methods lies in their simplic
which means that they are less likely to fall prey to invalid assumptions such as linearity
the Diana sequence significant, noise in the same sequence also resulted in a compara
higher number of false alarms for most linear-model-based approaches. These effect:
in general more difficult to control or to compensate for.

5.2. Experiment Two

Inthe second set of experiments, the tuned algorithms were applied to a test set compr
of a large number of video clips (about 30,000 frames with 233 edits). They were dra
from wide-ranging categories, including documentaries, news, commercials, music vide
sports, and action movies. Table 1 summarizes the characteristics of these different c
with a brief description of the troublesome elements in these clips. For instance, spe
effect edits such as wipes, additive dissolves, and fold-ups are often used in sports vid
Commercials often have edits closely spaced together, and the duration of the edits
often very short. On the other hand, parts of the documentaries have dissolves as
as 180 frames (6 s). There are also many video clips where the assumptions underl
the various algorithms are violated. For instance, action movies and sport clips invaria
contain large interframe camera or object movements exceeding the range required of of;
flow computation. Music videos and commercials have scenes that violate the assumg

TABLE 1
Different Classes of Test Video
Types of gradual
Class Description transitions Fast movements Other problems
Sports 4 clips (2 cricket Dissolves, wipes, Tracking activities; Flashes
and 2 soccer) and fold-ups close-up on
players;
Commercial 4 clips (Discovery Large number of Moderate Rapid rhythm of edits
channel, Pampers, short dissolves, (15 frames apart),
Lifestyle, cough graphics overlay burning flames
drops)
Music video 2 clips (1 on-stage Dissolves, fade-ins  Singers’ movements  Rhythm of edits mixe
and 1 outdoor) and fade-outs floodlight
News 2 clips (BBC news on  Short dissolves Footage on war is
Chechnya war) noisy; cloud shadows
resulting in intensity
changes
Documentary 3 clips (Diana, Many long dissolves Animals’ movements Footage on Diana
Okavango Delta, and (1-6 s), fade-in, is noisy
Serengeti Plain) fade-out.
Action movie 2 clips (movie “Speed” None Many fast actions and Fast actions resulting
and TV series extreme close-ups in displaced shot

“Martial Law”) boundaries
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TABLE 2
Performance of the Various Algorithms

Ours PL VvC TC CE

Sports 27 23 0 25 17 2 17 35 10 27 15 0 20 7 7
Commercial 8 5 8 54 5 8 42 9 20 53 16 9 56 14 6
Music video 54 2 6 58 5 5 38 8 25 60 6 3 59 4 4
News 23 6 0 21 14 2 12 12 11 22 13 1 20 16 3
Documentary 5 3 20 14 24 11 24 19 1 7 8 18 14 11 11
Action movie 29 36 4 8 6 3 23 82 10 30 26 3 26 24 7
Total 195 75 38 202 71 31 156 165 77 199 84 34 195 76 38
Recall % 83.7 86.7 67.0 85.4 83.7
Precision % 72.2 74.0 48.6 70.3 72.0

of constant illumination (flashes). Finally, there are shot changes where linear assumg
fails, resulting in difficulties for algorithms assuming linear transition. In sum, the test <
is constructed to be as comprehensive as possible.

The results of the second experiment are tabulated in Table 2 (PL, plateau detection;
variance curve; TC, twin comparison; CE, chromatic edit). It shows that our approach,
plateau detection approach, the twin comparison approach, and the chromatic edit appr
gave satisfactory performance, whereas the variance curve approach did not yield ¢
results.

Of the model-based approaches, the plateau detection method performed very we
is capable of picking up long edits and yet its immunity to false alarms when there :
fast movements is unsurpassed (see its performance under the sports and action m
genres). It is difficult to further improve on the choice of the plateau paramietansl|.
For instance, it is hard to set an optimal valuekdbr all sequences. A large tends to
merge closely-spaced edits (such as those found in commercials) together. Convers
smallk tends to split edits of long duration into multiple transitions (such as those found
documentaries, thus its high false alarm rate).

The variance curve approach did not perform well. While it has the best recall rate
the documentary genre (with long dissolves), it tends to miss a lot of transitions especi
if the scenes do not contain enough variance (e.g., dim scenes in music videos, scen
a cricket field in sport). Furthermore, the peak and valley locations are very sensitive
perturbances such as fast actions. Peaks and valleys occur at different scales; some of
correspond to transition events and some do not. It was found difficult to have an opti
smoothing so that only the “desirable” events are picked up. Thus its performance (k
recall and precision) declined drastically in the sport and action movies genres.

The chromatic edit approach has slightly inferior performance compared to the plat
detection approach. The poorer precision of the chromatic edit approach could be attrib
to the proposed test for gradual transitions. A large fraction value needs to be set in ordk
pick up gradual transitions. The accompanying increase in false alarm rate is not unexpe
However, this increase in false alarms could not be strictly attributed to a sole factor s
as fast motions. These false detects were not clustered together and were therefore
difficult to compensate for.
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The results of the twin comparison approach and ours were quite comparable. T
were also slightly inferior to that of the plateau detection approach. Both false alarm ra
increased chiefly with fast actions. However, this is amenable to the treatment of the t
threshold concept (since they are clustered together), with the result that the deteriore
is graceful. In particular, if the camera—object motions are not of the large foregrou
types, both algorithms did not yield significant false alarms. In fact, if we exclude tt
sports and action movie categories, our algorithm has the lowest false alarm rates amor
the algorithms tested. Unfortunately, close-up shots of fast actions such as those four
action movies and sports seemed to pose severe challenge for our algorithm. Furthern
both algorithms still faced problems in picking up dissolves longer than two secon
as evidenced by the high number of misses in the documentary genre. There is a v
linear assumption implied in the twin comparison method. If an edit has long duration, 1
consecutive difference value may fall below the lower threshgldt can result either in a
miss or in multiple detects. This problem was discussed in Zhang's paper and the autl
suggested setting a tolerance value that allows a number of consecutive frames with
difference value before rejecting the transition candidate.

Illumination changes arising from camera flashes in the sport videos did not cause f:
alarms as the effect was local (i.e., the flashes occurred in a long shot of the spectator sc
lllumination changes arising from natural causes such as passing clouds, while globe
effect, are much more gradual. They are apt to be picked up as false alarms by the mc
based approaches, which are more sensitive to such gradual changes lasting over a
duration. This accounts for the higher number of false alarms reported by the model-be
approaches in the news clips where overcast weather produced such global changes.

For applications where real time processing is required, our method is at a disadvan
due to the significant amount of processing involved in optical flow computation. The tir
taken by our nonoptimized algorithm for a 35288 image is about 30 s per frame. While
various fast parallel methods of optical flow computation have been proposed [4, 11], tl
require varying amounts of dedicated hardware. For instance, the algorithm in [4] requi
parallel hardware computation of the Laplacian of Gaussian of the images, with the res
the computation performed with common desktop hardware.

From the results of these experiments, we can make the following observations. As
as our algorithm was concerned, it seemed that the degradation in performance ca
by image noise and moderate motions was largely well controlled. The well-known flc
inaccuracies caused by the Horn and Schunck’s method did not affect the validity of
results, thus corroborating our claim that only a qualitative aspect of the optical flow is us
However, if the scenes contained large interframe displacements (typically greater thai
pixels in sports and action movies), the assumption underlying optical flow computation v
severely violated, resulting in a rapid increase in the false alarm rate. However these f
alarms were mostly closely clustered together, and thus to a large extent can be contr
by a context-dependent twin-thresholding rule.

6. CONCLUSION

We have proposed an algorithm that utilizes a basic constraint associated with 3-D sc
points—the brightness constraint. As it only needs partial information about the scent
detecting a scene change rather than estimating the scene itself—it does not need acc
optical flow information and is thus robust. By using this basic constraint, our algorith
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capable of handling a diverse range of situations such as textured images underg
otion and nonlinear shot transitions. However, when dealing with extreme situatio

such as very large motions or transitions lasting more than two seconds, our algori
faces limitations. Among the algorithms compared, the plateau detection approach, the
comparison approach, the chromatic edit approach, and our approach have quite compe
performances, as far as this particular test setis concerned. In general, the good model-|
approaches are more successful in picking up transitions lasting more than two second:

ar

e less susceptible to false alarms arising from fast motions. For the non-model-be

approaches, a twin-thresholding scheme seems to be required in order to overcoms
trade-off involved in using a single threshold.
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