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A. Proofs of the Theorems
A.1. Proof of Theorem 1

Theorem 1. For any supersymmetric tensor X €
RNXNX-XN of order at least 3, if it has the form

X=Ylizoz 0oz, MLz =e z {01}V,

1)
any slice of X can only be either a rank-1 matrix z,. o z, or
a 0 matrix.

Proof. Let’s first consider mode = 3. For a fixed node
(index) i, its slice matrix X(:,:,7) = Y% | y;(r) -z, 0 2,",
where y; € R* indicates to which cluster the node i belong.
More specifically, if node ¢ belongs to cluster r, y;(r) =
1, otherwise y;(r) = 0. Since a node cannot belong to
multiple clusters, let’s say it is in cluster ». Then, X(:,:
,i) = 2z, o z,, which is rank one. When mode = 3, there
is no O slice matrix, because a node ¢ must belong to one
cluster. We can also get an intuitive interpretation of the
preceding by considering that the cube tensor must be in
a block-diagonal form (obtained w.l.0.g. by permuting the
nodes w.r.t their cluster labels). Now consider mode = 4.
For fixed nodes (indices) ¢ and j, the corresponding slice
matrix X (:,:,4,7) = Zil vi(r) - y;(r) - z, ® z,. There
are two cases: (1) if ¢ and j belong to the same cluster r,
X(::,1,7) = 2z 0 2,; (2) if ¢ and j belong to different
clusters, X'(:,:,4,7) = 0. If mode > 4, the cases are very
much the same as mode = 4.

A.2. Proof of Theorem 2

Theorem 2. Let a € R™ be a given vector such that its
elements a1 > as > --- > a.,. Consider the following
problem:

x* = argmin ||x — a|| + p(e’x)?, s.t. x € {0,1}™, (2)

where e is an all-one vector. The components of x* is also
in a descending order and there exists an unique integer
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I'Since X is supersymmetric, i can be at any position and X (:,:,4) =
X(:,4,:) = X(4,:,:). Similar results hold when mode > 3.

0 < s < m such that x7 = 1 for i < s and x; = 0 for
1> s.

Proof. 1t is clear that if 0 > a; > --- > a, for some i,
then for the optimal solution x*, z}; = --- = x7 = 0. Thus
without loss of generality, we assume that a,, > 0. We
first prove x* must also be arranged in a descending order
by contradiction. Suppose for some ¢ < 7, we have that
x; < zj. Consider X such that &y = z if k& # 4,7 and
#; = x},%; = z}. Denote the objective function as f(x).
Now

f&) = f(x7) = 2(a;

Case (i): a; > aj. We get f(X) < f(x*) and this contra-
dicts the fact that x* is a minimizer; Case (ii): a; = a;. We
get f(x) = f(x*), and x is also an optimal solution with
Z; > Z;. Note that X is also in a descending order in this
case. The above result implied that there exists an integer
0 < s <msuchthatz] = 1fori < sand z; = 0 for
1 > s. Hence the minimum objective value is given by

—aj)(x; — x;‘) <0. 3)

S = (Jall? + 54+ ps) — 23 as = gls). )

i=1

Note that since a; > as > --- > a,, > 0, the func-
tion Zle a; looks like an increasing concave function as
a function of s = 0, ..., m. On the other hand, (||a||* + s+
ps) looks like an increasing convex function as a function
of s =0,...,m. Thus, we find the value s such that

g(s) —g(s —1) <0,9(s) —g(s+1) <0. (5

Hence the solution x* can be found analytically. Note that
9(0), ...,g(m) can be computed in O(m) operations, and
the minimum value min{g(0), ..., g(m)} can be found in
O(m) operations.



B. The algorithmic details
B.1. ADMM

The problem we want to solve is:
min — (A, G) + Arank(G) + v||Glo,
st G € [0, 1)V XN diag(G) = 1, (12)
G; € S, rank(G;) <1,i=1,2,...n

For ease of representatlon we let WW = —A and unfold
it in the same form of G as W. We solve (12) by Alternat-
ing Direction Method of MultipliersctADMM) [ 1] with three
block variables G, H and {J; }?_;:

min (W, G) + Arank(G) +~||Hl|o + g(H),

s.t. unfolding_ diag(ﬁ) =1,G=H, G = j, (13)
J; € Sy, rank(J;) <1,i=1,2,.

where J = [vec(J1) vec(Js) . .. vec(d,,)], g is the indicator
function of the convex set [0, 1]V *"_ which returns 0 if it
is in the set, oo otherwise, and unfolding,diag() are those
entries of the unfolded form H corresponding to the diago-
nal entries of the tensor. The overall framework is summa-
rized in Algorithm 1.

Algorithm 1 Solving (12) by ADMM
Input: Negative affinity matrix WV, parameters A and 7.
Initialize: G =H=J =Y; = Y5 = Oxnnxn, o= 10°,
p=1.1, tmin= 10710 and e=10"8.
while not converged do
Step 1 Fix the others and update G:

min ||G—§(H+J—M(W+Y1+Y2))\|2F+/\urank(@).
Step 2 Fix the others and update H: ©)

min ([ = (G + Y0 &+ 2y | Ho +9(FD).
s.t. unfolding_diag(H) = 1.
Step 3 Fix the others and update {J;}7 ;:
For ¢ =1,2,...n,solve
min [|J; — (Gi + pY2:) | 7, ®

s.t.J; € S4, rank(J;) <1,
where G is extracted from the i-th column of G and
reorganized into a square matrix. Similarly Yo, is ex-
tracted from the i-th column of Y- and reorganized

Step 4 Update the multipliers: Y1 = Y1 + (G H)
and Yo = Yo + #(G J).

Step 5 Update the parameter 1 by p = max(%, uTin)'
Step 6 Check the convergence conditions: |G —
Hloo <eand |G — Jo < e.

end while

Algorithm 2 Solving (14) by Stochastic ADMM

Input: Negative affinity tensor VV, an initialization GY and
parameters 7.
Initialize: G =H=J =G, Y, = Y, = ONNxRo»
Y3=0pn,u=1p=11, min =1071% k£ = 0 and
e=10"8.
while not converged do

_ /R
Me+1 =N Q(T_ﬁl)
Randomly extract/construct one slice from W.

Step 1 Fix the others and update G:
min [|G — P|Z,
G

©)
s.t. G; € S;,rank(G;) <1, j=1...Ry,

5 _ (17 17 Ok _ _ _
WheriP = (;H + ;J + chrlG Y, - Y,
Ga@)/G+at)

Step 2 Fix the others and update H:
Ro
mm IH - QI3 + QH’YZ |[H,1[5,
= (10)

st. H e {0,1}VNxTo,
where Q =G+ ©wY. N
Step 3 Fix the others and update J:

. 1 ~ o~

min <Y2, G- J> + |G = T2+

3 21
~ 1 ~

<Y3, SJep, — eN> + 5, I8Ten, - en

(11)
Step 4 Update the multipliers:
Y=Y+ (G H),
Y=Y+ 1 (G J),
Y; = Y3+#(SJGRO —eN)
Step 5 If £ > 750, update the parameter p by y =
max( , bmin); end if
Step 6 Check the convergence conditions: ||é —
H|oo <6 |G —=J|loc <eand|STer, —en|loo < €
k=k+1

end while

B.2. Stochastic ADMM

The problem we want to solve is:

n Ro
.1 Ro
min -3 min (Wi, Gj) +9 311Gyl
7 = (14)
st. G e {0,1}VV*Fo G, e s,

rank(G;) < 1, j =1,..Ro,SGeg, = e,



where W, is a slice from W, G =
[vec(G1) wvec(Ga)...vec(Gg,)], er, and ey
are all-one vectors of size Ry and N respective-
ly, and S € {0,1}*¥N s a selection matrix with
S(i,(N+1)i— N) =1,i=1,..., N and other elements
being 0.

For notational convenience,Awe denote the ﬁ1§t term
in the objective function as f(G) = 13"  /,(G), and

1

6(G) = minf, <W‘J é> where W € RNN*Ro with
its j-th column given by vec(W;) and 0 elsewhere. Now
the problem is in a form suited for optimization by the s-
tochastic ADMM [3] in an online fashion. In particular, we
randomly obtain one slice W, from W for each iteration,
solve the following constituent subproblems once, and then
initiate the next iteration with a different slice from W, re-
peating the above until convergence.

Again we introduce the intermediate variables Hand J
and solve

n Ro
.1 ~
min — 3 " 6(G) +7 ) I[H[G,
X - . (15)
st. Gy €84,G=H,G=JHe {01}V,
<

1, _7 = 1, ...Ro,SjeRO = en,

To obtain a good initialization for the algorithm, we can
apply spectral clustering to the projected graph and over-
segment the points into Iy groups. The overall framework
of the Stochastic ADMM is shown in Algorithm 2.

B.3. Complexity

In our algorithms, the most expensive part is usually the
SVD decomposition due to the rank minimization. In Algo-
rithm 1, the size of G is N2 x N¥=2_ a) When K = 3, the
complexity of (6) is O(N®); when K > 3, itis O(N?£-2).
b) It is O(N¥) for (7), and c) O(NE+1) for (8). Thus,
solving (6) is the most expensive and sometimes it becomes
intractable as the order increases to a large number. In this
case, we have to resort to the stochastic version, in which G
is of size N? x Ry, where Ry < NX~2, In Algorithm 2,
the complexities of solving the respective subproblems are
as follows: a) O(RoN?) for (9), b) O(N?2log(N)) for (10),
and ¢) O(R3N®) for (11). As is evident, the complexity
does not change as the tensor order increases. However, it
does take more iterations (usually) for the stochastic version
to converge. Based on our observation, Algorithm | usually
needs about 300 iterations to converge, while Algorithm 2
needs about 900 iterations.

C. Multiple fundamental matrix fitting

In this subsection, we add an extra experiment and esti-
mate multiple fundamental matrices on real images. Given
the matched points in an image pair, usually 8 correspon-

Table 1. Multiple fundamental matrix fitting (F1-measure) on Ade-
laideRMF dataset

Method | Label- CExp- CExp- SCAMSTA-
Cost GH SCAMS | SADMM

mean + | 0.7777+ | 0.64214+ | 0.6490+ | 0.8593 =+

variance | 0.1183 0.2031 0.2022 0.1448

dences are needed to fit a fundamental matrix; a 9-th point
is need to determine the goodness of the fitted model, mean-
ing that the order in this problem is 9. Again, we only com-
pare the stochastic ADMM version with the others and add
LabelCost [2] into the evaluation.

In this experiment, the data also comes from the Ade-
laideRMF dataset [5]; it consists of 21 image pairs with
matched points available for multiple fundamental matrix
fitting. In each iteration of SCAMSTA-SADMM, we adop-
t the RCM sampling [4] to sample 7 correspondences, as
(9 — 2) samples are required to generate a slice. All the
generated slices are also used to construct the projected
2D graph needed by other methods; using the same slices
makes sure that the same amount of information are provid-
ed for each methods. We set the label cost to 10000 for all
labels, parameters v = 8 x 10~° for SCAMSTA-SADMM,
and A = 2 and v = 0.16 for SCAMS. The Fl-measures
averaged over 21 instances are reported in Table 1. Sim-
ilarly, it is observed that our method outperforms the oth-
ers significantly, being the only one with mean F1-measure
greater than 0.8. Other thant that, it is noticeable that CExp-
SCAMS performs very bad in this experiment, showing that
the projected pairwise graph degrades significantly when
the order increases.
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