
Supplementary material for “Simultaneous Clustering and Model Selection for
Tensor Affinities”

Zhuwen Li1, Shuoguang Yang2∗, Loong-Fah Cheong1 and Kim-Chuan Toh1

1National University of Singapore 2Columbia University

A. Proofs of the Theorems
A.1. Proof of Theorem 1

Theorem 1. For any supersymmetric tensor X ∈
RN×N×...×N of order at least 3, if it has the form

X =
∑R

r=1 zr ◦ zr ◦ · · · ◦ zr,
∑R

r=1 zr = e, zr ∈ {0, 1}N ,
(1)

any slice of X can only be either a rank-1 matrix zr ◦ zr or
a 0 matrix.

Proof. Let’s first consider mode = 3. For a fixed node
(index) i, its slice matrix X (:, :, i) =

∑R
r=1 yi(r) · zr ◦ zr1,

where yi ∈ RR indicates to which cluster the node i belong.
More specifically, if node i belongs to cluster r, yi(r) =
1, otherwise yi(r) = 0. Since a node cannot belong to
multiple clusters, let’s say it is in cluster r. Then, X (:, :
, i) = zr ◦ zr, which is rank one. When mode = 3, there
is no 0 slice matrix, because a node i must belong to one
cluster. We can also get an intuitive interpretation of the
preceding by considering that the cube tensor must be in
a block-diagonal form (obtained w.l.o.g. by permuting the
nodes w.r.t their cluster labels). Now consider mode = 4.
For fixed nodes (indices) i and j, the corresponding slice
matrix X (:, :, i, j) =

∑R
r=1 yi(r) · yj(r) · zr ⊗ zr. There

are two cases: (1) if i and j belong to the same cluster r,
X (:, :, i, j) = zr ◦ zr; (2) if i and j belong to different
clusters, X (:, :, i, j) = 0. If mode > 4, the cases are very
much the same as mode = 4.

A.2. Proof of Theorem 2

Theorem 2. Let a ∈ Rm be a given vector such that its
elements a1 ≥ a2 ≥ · · · ≥ am. Consider the following
problem:

x∗ = argmin ∥x− a∥+ ρ(eTx)2, s.t. x ∈ {0, 1}m, (2)

where e is an all-one vector. The components of x∗ is also
in a descending order and there exists an unique integer

∗S. Yang worked on this project as a research engineer at NUS.
1Since X is supersymmetric, i can be at any position and X (:, :, i) =

X (:, i, :) = X (i, :, :). Similar results hold when mode > 3.

0 ≤ s ≤ m such that x∗
i = 1 for i ≤ s and x∗

i = 0 for
i > s.

Proof. It is clear that if 0 ≥ ai ≥ · · · ≥ an for some i,
then for the optimal solution x∗, x∗

n = · · · = x∗
i = 0. Thus

without loss of generality, we assume that an ≥ 0. We
first prove x∗ must also be arranged in a descending order
by contradiction. Suppose for some i < j, we have that
x∗
i < x∗

j . Consider x̂ such that x̂k = x∗
k if k ̸= i, j and

x̂i = x∗
j , x̂j = x∗

i . Denote the objective function as f(x).
Now

f(x̂)− f(x∗) = 2(ai − aj)(x
∗
i − x∗

j) ≤ 0. (3)

Case (i): ai > aj . We get f(x̂) < f(x∗) and this contra-
dicts the fact that x∗ is a minimizer; Case (ii): ai = aj . We
get f(x̂) = f(x∗), and x̂ is also an optimal solution with
x̂i > x̂j . Note that x̂ is also in a descending order in this
case. The above result implied that there exists an integer
0 ≤ s ≤ m such that x∗

i = 1 for i ≤ s and x∗
i = 0 for

i > s. Hence the minimum objective value is given by

f(x∗) = (∥a∥2 + s+ ρs)− 2
s∑

i=1

ai =: g(s). (4)

Note that since a1 ≥ a2 ≥ · · · ≥ am > 0, the func-
tion

∑s
i=1 ai looks like an increasing concave function as

a function of s = 0, . . . ,m. On the other hand, (∥a∥2+ s+
ρs) looks like an increasing convex function as a function
of s = 0, . . . ,m. Thus, we find the value s such that

g(s)− g(s− 1) ≤ 0, g(s)− g(s+ 1) ≤ 0. (5)

Hence the solution x∗ can be found analytically. Note that
g(0), ..., g(m) can be computed in O(m) operations, and
the minimum value min{g(0), ..., g(m)} can be found in
O(m) operations.

1

B. The algorithmic details

B.1. ADMM

The problem we want to solve is:

min − ⟨A,G⟩+ λrank(Ĝ) + γ∥Ĝ∥0,

s.t. G ∈ [0, 1]N×N×...×N , diag(G) = 1,

Gi ∈ S+, rank(Gi) ≤ 1, i = 1, 2, . . . n.

(12)

For ease of representation, we let W = −A and unfold
it in the same form of Ĝ as Ŵ. We solve (12) by Alternat-
ing Direction Method of Multipliers(ADMM) [1] with three
block variables Ĝ, Ĥ and {Ji}ni=1:

min ⟨Ŵ, Ĝ⟩+ λrank(Ĝ) + γ∥Ĥ∥0 + g(Ĥ),

s.t. unfolding diag(Ĥ) = 1, Ĝ = Ĥ, Ĝ = Ĵ,

Ji ∈ S+, rank(Ji) ≤ 1, i = 1, 2, . . . n,

(13)

where Ĵ = [vec(J1) vec(J2) . . . vec(Jn)], g is the indicator
function of the convex set [0, 1]NN×n, which returns 0 if it
is in the set, ∞ otherwise, and unfolding diag(·) are those
entries of the unfolded form Ĥ corresponding to the diago-
nal entries of the tensor. The overall framework is summa-
rized in Algorithm 1.

Algorithm 1 Solving (12) by ADMM
Input: Negative affinity matrix W , parameters λ and γ.

Initialize: Ĝ= Ĥ= Ĵ=Y1 =Y2 = 0NN×n, µ= 106,
ρ=1.1, µmin=10−10 and ϵ=10−8.
while not converged do

Step 1 Fix the others and update Ĝ:

min ∥Ĝ− 1

2
(Ĥ+Ĵ−µ(Ŵ+Y1+Y2))∥2F +λµrank(Ĝ).

(6)Step 2 Fix the others and update Ĥ:

min ∥Ĥ− (Ĝ+ µY1)∥2F + 2µγ∥Ĥ∥0 + g(Ĥ),

s.t. unfolding diag(Ĥ) = 1.
(7)

Step 3 Fix the others and update {Ji}ni=1:
For i = 1, 2, . . . n, solve

min ∥Ji − (Gi + µY2i)∥2F ,
s.t. Ji ∈ S+, rank(Ji) ≤ 1,

(8)

where Gi is extracted from the i-th column of Ĝ and
reorganized into a square matrix. Similarly Y2i is ex-
tracted from the i-th column of Y2 and reorganized.
Step 4 Update the multipliers: Y1 = Y1+

1
µ (Ĝ− Ĥ)

and Y2 = Y2 +
1
µ (Ĝ− Ĵ).

Step 5 Update the parameter µ by µ = max(µρ , µmin).
Step 6 Check the convergence conditions: ∥Ĝ −
Ĥ∥∞ ≤ ϵ and ∥Ĝ− Ĵ∥∞ ≤ ϵ.

end while

Algorithm 2 Solving (14) by Stochastic ADMM

Input: Negative affinity tensor W , an initialization Ĝ0 and
parameters γ.
Initialize: Ĝ = Ĥ = Ĵ = Ĝ0, Y1 = Y2 = 0NN×R0 ,
Y3 = 0N , µ = 1, ρ = 1.1, µmin = 10−10, k = 0 and
ϵ=10−8.
while not converged do

ηk+1 = N
√

R0

2(k+1) .
Randomly extract/construct one slice from W .
Step 1 Fix the others and update Ĝ:

min
Ĝ

∥Ĝ− P̂∥2F ,

s.t. Gj ∈ S+, rank(Gj) ≤ 1, j = 1 . . . R0,
(9)

where P̂ = (1µĤ + 1
µ Ĵ + 1

ηk+1
Ĝk − Y1 − Y2 −

ℓ′k+1(Ĝ
k))/(2µ + 1

ηk+1
).

Step 2 Fix the others and update Ĥ:

min
Ĥ

∥Ĥ− Q̂∥2F + 2µγ

R0∑
j=1

||Hj ||20,

s.t. Ĥ ∈ {0, 1}NN×R0 ,

(10)

where Q̂ = Ĝ+ µY1.
Step 3 Fix the others and update Ĵ:

min
Ĵ

⟨
Y2, Ĝ− Ĵ

⟩
+

1

2µ
∥Ĝ− Ĵ∥2F+⟨

Y3,SĴeR0 − eN

⟩
+

1

2µ
∥SĴeR0 − eN∥2F

(11)
Step 4 Update the multipliers:
Y1 = Y1 +

1
µ (Ĝ− Ĥ),

Y2 = Y2 +
1
µ (Ĝ− Ĵ),

Y3 = Y3 +
1
µ (SĴeR0 − eN).

Step 5 If k ≥ 750, update the parameter µ by µ =
max(µρ , µmin); end if
Step 6 Check the convergence conditions: ∥Ĝ −
Ĥ∥∞ ≤ ϵ, ∥Ĝ− Ĵ∥∞ ≤ ϵ and ∥SĴeR0 − eN∥∞ ≤ ϵ
k = k + 1.

end while

B.2. Stochastic ADMM

The problem we want to solve is:

min
Ĝ

1

n

n∑
i=1

R0

min
j=1

⟨Wi,Gj⟩+ γ

R0∑
j=1

||Gj ||20,

s.t. Ĝ ∈ {0, 1}NN×R0 ,Gj ∈ S+,

rank(Gj) ≤ 1, j = 1, ...R0,SĜeR0 = eN ,

(14)

where Wi is a slice from W , Ĝ =
[vec(G1) vec(G2) . . . vec(GR0)], eR0 and eN
are all-one vectors of size R0 and N respective-
ly, and S ∈ {0, 1}N×NN is a selection matrix with
S(i, (N + 1)i − N) = 1, i = 1, ..., N and other elements
being 0.

For notational convenience, we denote the first term
in the objective function as f(Ĝ) = 1

n

∑n
i=1 ℓi(Ĝ), and

ℓi(Ĝ) = minR0
j=1

⟨
W̃j

i , Ĝ
⟩

, where W̃j
i ∈ RNN×R0 with

its j-th column given by vec(Wi) and 0 elsewhere. Now
the problem is in a form suited for optimization by the s-
tochastic ADMM [3] in an online fashion. In particular, we
randomly obtain one slice Wi from W for each iteration,
solve the following constituent subproblems once, and then
initiate the next iteration with a different slice from W , re-
peating the above until convergence.

Again we introduce the intermediate variables Ĥ and Ĵ
and solve

min
Ĝ

1

n

n∑
i=1

ℓi(Ĝ) + γ

R0∑
j=1

||Hj ||20,

s.t. Gj ∈ S+, Ĝ = Ĥ, Ĝ = Ĵ, Ĥ ∈ {0, 1}NN×R0 ,

rank(Gj) ≤ 1, j = 1, ...R0,SĴeR0 = eN ,

(15)

To obtain a good initialization for the algorithm, we can
apply spectral clustering to the projected graph and over-
segment the points into R0 groups. The overall framework
of the Stochastic ADMM is shown in Algorithm 2.

B.3. Complexity

In our algorithms, the most expensive part is usually the
SVD decomposition due to the rank minimization. In Algo-
rithm 1, the size of Ĝ is N2 ×NK−2. a) When K = 3, the
complexity of (6) is O(N5); when K > 3, it is O(N2K−2).
b) It is O(NK) for (7), and c) O(NK+1) for (8). Thus,
solving (6) is the most expensive and sometimes it becomes
intractable as the order increases to a large number. In this
case, we have to resort to the stochastic version, in which Ĝ
is of size N2 × R0, where R0 ≪ NK−2. In Algorithm 2,
the complexities of solving the respective subproblems are
as follows: a) O(R0N

3) for (9), b) O(N2log(N)) for (10),
and c) O(R3

0N
6) for (11). As is evident, the complexity

does not change as the tensor order increases. However, it
does take more iterations (usually) for the stochastic version
to converge. Based on our observation, Algorithm 1 usually
needs about 300 iterations to converge, while Algorithm 2
needs about 900 iterations.

C. Multiple fundamental matrix fitting
In this subsection, we add an extra experiment and esti-

mate multiple fundamental matrices on real images. Given
the matched points in an image pair, usually 8 correspon-

Table 1. Multiple fundamental matrix fitting (F1-measure) on Ade-
laideRMF dataset

Method Label-
Cost

CExp-
GH

CExp-
SCAMS

SCAMSTA-
SADMM

mean ±
variance

0.7777±
0.1183

0.6421±
0.2031

0.6490±
0.2022

0.8593 ±
0.1448

dences are needed to fit a fundamental matrix; a 9-th point
is need to determine the goodness of the fitted model, mean-
ing that the order in this problem is 9. Again, we only com-
pare the stochastic ADMM version with the others and add
LabelCost [2] into the evaluation.

In this experiment, the data also comes from the Ade-
laideRMF dataset [5]; it consists of 21 image pairs with
matched points available for multiple fundamental matrix
fitting. In each iteration of SCAMSTA-SADMM, we adop-
t the RCM sampling [4] to sample 7 correspondences, as
(9 − 2) samples are required to generate a slice. All the
generated slices are also used to construct the projected
2D graph needed by other methods; using the same slices
makes sure that the same amount of information are provid-
ed for each methods. We set the label cost to 10000 for all
labels, parameters γ = 8× 10−5 for SCAMSTA-SADMM,
and λ = 2 and γ = 0.16 for SCAMS. The F1-measures
averaged over 21 instances are reported in Table 1. Sim-
ilarly, it is observed that our method outperforms the oth-
ers significantly, being the only one with mean F1-measure
greater than 0.8. Other thant that, it is noticeable that CExp-
SCAMS performs very bad in this experiment, showing that
the projected pairwise graph degrades significantly when
the order increases.

References
[1] S. Boyd, N. Parikh, E. Chu, and B. Peleato. Distributed op-

timization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends in Machine
Learning, 1(3):1–122, 2011. 2

[2] A. Delong, A. Osokin, H. N. Isack, and Y. Boykov. Fast
approximate energy minimization with label costs. IJCV,
96(1):1–27, 2012. 3

[3] H. Ouyang, N. He, L. Tran, and A. G. Gray. Stochastic alter-
nating direction method of multipliers. In ICML, 2013. 3

[4] P. Purkait, T. Chin, H. Ackermann, and D. Suter. Clustering
with hypergraphs: The case for large hyperedges. In ECCV,
2014. 3

[5] H. S. Wong, T. Chin, J. Yu, and D. Suter. Dynamic and hi-
erarchical multi-structure geometric model fitting. In ICCV,
2011. 3

