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Abstract

Estimating the number of clusters remains a difficult
model selection problem. We consider this problem in
the domain where the affinity relations involve groups of
more than two nodes. Building on the previous formulation
for the pairwise affinity case, we exploit the mathematical
structures in the higher order case. We express the original
minimal-rank and positive semi-definite (PSD) constraints
in a form amenable for numerical implementation, as the o-
riginal constraints are either intractable or even undefined
in general in the higher order case. To scale to large prob-
lem sizes, we also propose an alternative formulation, so
that it can be efficiently solved via stochastic optimization
in an online fashion. We evaluate our algorithm with differ-
ent applications to demonstrate its superiority, and show it
can adapt to varying levels of unbalancedness of clusters.

1. Introduction
In graph clustering that is conventionally set forth, it is

assumed that relationship between data points can be cap-
tured by a pairwise measure of affinity. However, in many
graph systems from computer vision, it does not make sense
to talk about affinities between a pair of data points. We can
best illustrate the issue with the classic problem of vanish-
ing point estimation [26]: two lines trivially define a point
and thus there does not seem to exist any useful measure
of affinity between two lines, whereas the degree to which
three lines are coincident conceivably constitutes a much
more useful measure of affinity for this estimation problem.
Other examples in computer vision include multi-structure
fitting [34], texture segmentation [14], etc. In all these prob-
lems, clustering must be performed on the basis of higher
order affinities. Therefore, hypergraph clustering has been
increasingly gaining attention. Hypergraphs are made up of
hyperedges, which encode higher order affinities among a
subset of data whereby the set size can be more than two.

In spite of this increased interest, the problem of model
selection connected with any clustering problem has gener-
ally received less attention partly because it is very hard to

∗S. Yang worked on this project as a research engineer at NUS.

provide a formal definition of what a cluster is. This lacuna
is even more glaring in the case of the higher order setting.
Recently Li et al. [18] has proposed a simultaneous clus-
tering and model selection (SCAMS) method to solve this
problem for the case of pairwise affinities. This is based on
an indicator matrix formulation, together with the generic
low rank and sparsity constraints that capture the notion of
good clusters without making overly strong domain-specific
assumptions about the clusters. In this paper, we will devel-
op a non-obvious generalization of SCAMS to hypergraphs.
Before that, we briefly review its essential points.

Given an affinity matrix A with non-negative entries, S-
CAMS introduces the following problem:

min − ⟨A,G⟩,
s.t. G ∈ S+,diag(G) = 1,

rank(G) = R,G ∈ {0, 1}N×N ,

(1)

where ⟨·, ·⟩ is the Frobenius inner product, which is defined
as ⟨A,G⟩ =

∑
i,j A(i, j)G(i, j), S+ is the PSD cone,

diag(·) are the diagonal entries of the matrix, R is the num-
ber of clusters, and G is a binary relationship matrix en-
coding the pairwise relationships between elements. More
specifically, if the i-th and j-th elements belong to the same
cluster, G(i, j) = 1; otherwise, G(i, j) = 0. G can be fac-
torized as G = ZZT , where Z is an indicator matrix whose
rows indicate to which group a point belongs. Intuitively,
given A, we approximate it with G with ideal attributes, in
which ”1” means similar and ”0” means different.

With the group number R being unknown, SCAMS in-
stead solves the following problem:

min − ⟨A,G⟩+ λrank(G) + γ||G||0,

s.t. G ∈ S+,diag(G) = 1,G ∈ {0, 1}N×N ,
(2)

where || · ||0 is the ℓ0 norm, which counts the number of
nonzero elements. In this problem, the first term −⟨A,G⟩
keeps G as close to the affinity matrix A as possible; the
second term rank(G) seeks a simplest model, i.e. the clus-
tering result with the smallest cluster number; the third ter-
m reflects the sparse nature of an ideal affinity matrix and
avoids the trivial solution of G with entries being all ones;
the PSD constraint and {0, 1} integer constraint help to dis-
cover the authentic sparse structure underlying the data, re-
moving spurious connections and filling in missing links.
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There are various non-trivial difficulties when we want to
generalize the preceding SCAMS algorithm to hypergraph-
s. Given an affinity tensor A with non-negative entries, a
direct extension would be to solve for a binary relationship
tensor G in a similar manner. However, even though we ex-
pect that the low rank condition to be retained for the tensor,
it is in general difficult to minimize a tensor rank as con-
ventionally defined. There is no straightforward algorithm
to determine the rank of a specific given tensor; in fact, this
problem is NP-hard [16]. Moreover, while it is prevalent to
use the nuclear norm as a convex surrogate of a matrix rank,
it is NP-hard to find the nuclear norm of a tensor rank [8].
Thus the natural generalization of matrix rank to tensor rank
will not work. Another serious issue is as follows. In the
formulation set forth by SCAMS, the structure of G aris-
ing from its specific form of G = ZZT is captured by the
PSD constraint. In the higher order case of tensor, the PSD
constraint breaks down: firstly, there is no common defini-
tions of tensor eigenvalue and eigenvector, and even with
these definitions, positive semi-definiteness can only be de-
fined on tensors of even orders [4]. Thus, there is a funda-
mental difficulty to define a meaningful notion of positive
semi-definiteness. Lastly, there is also the practical issue of
scalability: a K-order affinity tensor with N nodes results
in NK unknowns in G. This can easily reach a prohibitively
large number, rendering the problem intractable due to both
time and memory constraint. All these represent significant
obstacles when we extend SCAMS to the hypergraphs.

The SCAMS formulation has revealed and exploited the
particular structure present in the clustering and model se-
lection problem for the pairwise affinity case. We believe
that there are also interesting structures in the higher order
case, and it is the objective of this paper to arrive at a more
complete knowledge of these structures, as well as to ar-
ticulate the constraints in a form that circumvents the three
problems mentioned in the preceding paragraph. Specifical-
ly, we make three main contributions in solving these three
problems. First, to solve the tensor rank minimization prob-
lem, we unfold the tensor in a special way so that the prob-
lem becomes a matrix rank minimization problem. Note
that it is not the same as the n-rank methods which will be
reviewed in Section 1.2. By leveraging on the special struc-
ture of the binary relationship tensor, we show that the rank
of the matrix obtained in this way is exactly the same as the
tensor rank. Next, to handle the problem of the PSD con-
straint, we articulate the constraint on G in a different way:
we regard G as the sum of the outer-products of several 1-D
tensors (vectors), i.e., G =

∑R
r=1 zr ◦ zr ◦ · · · ◦ zr, where

◦ represents the vector outer product and zr is an indicator
vector. The upshot is that the constraint on G can then be
transformed into many small-sized rank-1 matrix approxi-
mation problems with the PSD constraints. Lastly, for huge
problems, we propose an alternative formulation to signifi-

cantly reduce the number of unknowns based on the special
structure of the binary relationship in the tensor, and most
importantly, to keep the size of the unknowns constant as
the order increases. We solve this problem via stochastic
optimization in an online fashion without having to con-
struct the affinity tensor in the first place, thereby bypassing
any potential memory bottleneck.
1.1. Notations

We mostly follow the terminology of tensors used in
[16] for our paper. An K-mode (or order/way) tensor
is written as X ∈ RI1×I2×...×IK . For example, a vec-
tor is a 1-mode tensor and a matrix is a 2-mode ten-
sor. The (i1, i2, · · · , iK)-th entry of X is denoted as
X (i1, i2, · · · , iK), where 1 ≤ ik ≤ Ik and 1 ≤ k ≤ K.
We also define fibers (vectors) as higher order analogue of
matrix rows and columns by fixing every index but one, de-
noted as X (:, i2, · · · , iK). Similarly, we define slices (ma-
trices) as two-dimensional sections of a tensor by fixing all
but two indices, denoted as X (:, :, · · · , iK).

A tensor is called cubical if every mode is of the same
size, i.e., X ∈ RI×I×...×I . A cubical tensor is called super-
symmetric if its entries remain constant under any permuta-
tion of the indices. An K-mode tensor X ∈ RI1×I2×...×IK

is rank one if it can be written as the outer product of K
vectors, i.e., X = a(1) ◦a(2) ◦ · · · ◦a(K). The rank of a ten-
sor, denoted as rank(X ), is defined as the smallest number
of rank-1 tensors that generate X as their sum.

Let H = (V, E ,A) denote a hypergraph with V =
{vi}Ni=1 the set of the N nodes, E = {ei}Li=1 the set of
the L hyperedges containing subsets of nodes, and A ∈
RN×N×...×N an affinity tensor storing the weights of the
hyperedges. It is customary to neglect the directedness of
the hyperedges, if any, and thus, it follows that A is super-
symmetric. The weight A(ei) ≥ 0 is an entry in A which
represents the affinity of the nodes in the hyperedge ei.
A(ei) = 0 suggests that the nodes in ei are completely dis-
similar, and thus likely to be disconnected, whileA(ei) > 0
means there is the possibility for these nodes in ei to be clus-
tered into the same group. The larger the value, the more
likely these nodes in ei should be in the same group. The
degree of a hyperedge ei is the number of nodes in it and de-
noted as |ei|. The order of the corresponding affinity tensor
is thus K = maxLi=1(|ei|).
1.2. Related Works

Current approaches to hypergraph clustering can be
roughly divided into the projection and generalization meth-
ods. The projection methods [1, 36] transform the hyper-
graph into a graph by mapping the higher order affinities
to pairwise ones, after which conventional graph clustering
method (such as spectral clustering [23]) is applied. The
generalization methods [17, 19, 28, 35] extend the graph
clustering methods and the attendant matrix analysis to hy-
ergraphs and tensor analysis.



Choosing the number of clusters is still a difficult
model-selection problem, especially in the hypergraph set-
ting. A general approach to this problem is based on the
information-theoretic principle [13], which balances the
goodness of fit against the complexity of the model. This
principle is not algorithm specific, and thus can be applied
to any clustering method. The major drawback of this kind
of methods is that the results are often sensitive to choice
of parameters. Alternatively, graph based model selection
algorithms can be applied via the projection approach. That
is, we first project the hypergraph onto a graph, after which,
say the spectral clustering (SC) approach [27] can be used
to determine the number of zero eigenvalues of the Lapla-
cian matrix of the affinity graph. Note that the SC approach
usually does not deliver the number of clusters. One has to
rely on the existence of large gaps between pairs of consec-
utive eigenvalues to suggest that number. This gap is not
always apparent unless the clusters are weakly connected to
each other. What is more, when the clusters are unbalanced,
the SC approach faces limitations that are well-documented
[22]. In the hypergraph setting, these issues are exacerbat-
ed by the need to perform the averaging operation in the
projection step—such averaging favors large clusters as ver-
tices in these clusters have many edges joining vertices of
the same cluster. Our method works in the hypergraph s-
pace directly and does not suffer from the aforementioned
issues. Furthermore, our method performs a tight joint op-
timization of clustering and model selection in one single
step, whereas the two approaches mentioned above usually
adopt separate criteria to measure the goodness of the clas-
sification and to determine the number of clusters.

Our method is based on an extension of SCAMS [18] to
the higher order setting. As SCAMS is related to correla-
tion clustering (CC) [3], our method is also closely related
to higher order CC [14]. The difficulty of CC or its higher
order variant is in determining a proper threshold to distin-
guish between “similar” and “dissimilar”. While [14] learns
this threshold in the image segmentation task, both SCAMS
and our method are completely unsupervised.

The tensor rank minimization component of our algorith-
m is closely related to tensor decompositions. Two early
works, based on the higher-order extensions of the matrix
singular value decomposition, have very much shaped re-
search directions in this field: CANDECOMP/PARAFAC
(CP) [7] decomposes a tensor as a sum of rank-1 tensors,
whereas Tucker decomposition [33] is a higher-order for-
m of principal component analysis (PCA). Building upon
Tucker decomposition, the low n-rank tensor approxima-
tion [10] has many practical ramifications due to its compu-
tational feasibility. Basically, the n-rank method “unfolds”
a tensor by stacking all its fibers along every direction and
forms several matrices (This operation is called matriciza-
tion [16]). Thus, a n-mode tensor will result in n matrices,

and the n-rank method performs low rank minimization by
minimizing the sum of the rank of these n matrices. Our
method is different from the n-rank method in the unfold-
ing procedure, which in our case is governed by the physical
meaning of the problem.

2. Hypergraph Clustering with Unknown
Group Numbers

2.1. Problem Formulation
The goal is to cluster N nodes in a hypergraph into R

groups, where the group number R is unknown a priori and
needs to be estimated. To formulate the problem, we de-
note {zr ∈ {0, 1}N}Rr=1 as the indicator vectors of the R
clusters, whose entries indicate if the points belong to the
r-th cluster, i.e., if the i-th point belongs to the r-th cluster,
zr(i) = 1; otherwise, zr(i) = 0. In the standard definition
for clusters, each node must belong to at least one cluster
but cannot be in multiple clusters. Thus, there is one and
only one ’1’ at the same i-th position of all zr, r = 1 . . . R.
To generalize SCAMS as presented in (1) to the tensor case,
we have the following problem:

min − ⟨A,G⟩,

s.t. G =

R∑
r=1

zr ◦ zr ◦ · · · ◦ zr, zr ∈ {0, 1}N ,

G ∈ {0, 1}N×N×···×N ,

R∑
r=1

zr = e,

(3)

where e is an all one vector of size N . The last constraint
ensures that one node belongs to one and only one cluster,
and we call it the exclusivity constraint. Note that (1) is a
special case of (3) whereby the tensor is 2-mode. One may
however observe that the PSD constraint in (1) is differen-
t from the first constraint in (3) (we call it the rank-1 sum
constraint). Indeed, when the tensor is 2-mode, the rank-1
sum constraint leads to the PSD constraint since the sum
of PSD matrices is PSD. Even though the reverse is gen-
erally not true, it can be readily proven that, together with
the {0, 1}-integer constraint and the exclusivity constraint
in (3), a PSD G can be always factorized into the form of
G =

∑R
r=1 zr ◦ zr. The good news is that the PSD con-

straint on tensor is not really required but rather the math-
ematical form of G =

∑R
r=1 zr ◦ zr ◦ · · · ◦ zr should be

enforced. This formulation lends itself to a more tractable
solution, as we will show in the following.

Let {Gi}nt
i=1 be all the slice matrices extracted from G in

all directions. Note that there are in total nt = NK−2
(
K
2

)
slices1. However, since A and G are assumed to be super-
symmetric, we only need to deal with the slice matrices in
one direction; i.e. n = NK−2 slices. When K ≥ 3, if
we carefully examine the slice in G, it can only be either a
rank-1 matrix or a 0 matrix. Formally, we have

1
(a
b

)
= a!

b!(a−b)!
is the Choose function.



Theorem 1. For any supersymmetric tensor X ∈
RN×N×...×N of order at least 3, if it has the form

X =
∑R

r=1 zr ◦ zr ◦ · · · ◦ zr,
∑R

r=1 zr = e, zr ∈ {0, 1}N ,
(4)

any slice of X can only be either a rank-1 matrix zr ◦zr or
a 0 matrix.
The proof follows from the fact that any slice in X has the
form of

∑R
i=1 ci · zr ◦ zr, where ci ∈ {0, 1} depends on the

assignments of the fixed indices and
∑R

i=1 ci ∈ {0, 1}. The
detailed proof is provided in the supplementary material.

From Theorem 1, it is clear that there are exactly R + 1
types of slices, namely, z1 ◦ z1, . . . , zR ◦ zR, or a 0 matrix,
and each of them is a PSD matrix of rank no larger than 1.
Thus, we can transform (3) to

min − ⟨A,G⟩,

s.t. rank(Ĝ) = R, diag(G) = 1,G ∈ {0, 1}N×...×N ,

Gi ∈ S+, rank(Gi) ≤ 1, i = 1, 2, . . . n,

(5)

where Ĝ = [vec(G1) vec(G2) . . . vec(Gn)] and vec(·)
vectorizes a matrix to a column vector. Note that G, Ĝ and
{Gi}ni=1 are the same variable in different forms: G is the
tensor form; Ĝ is the unfolding of the tensor G in matrix
form; and {Gi}ni=1 is the slice matrices form. It is also nec-
essary to note that the unfolded form Ĝ is not the commonly
used matricization of a tensor in n-rank estimation[15]. In
(5), rank(Ĝ) represents model complexity. Essentially it is
the number of types of rank-1 matrices Gi, which should
be equal to the number of clusters, i.e., the tensor rank of G.
Writing G in these various forms permits the derivation of a
tractable optimization scheme.

Since R is unknown, we instead solve

min − ⟨A,G⟩+ λrank(Ĝ) + γ∥Ĝ∥0,

s.t. G ∈ [0, 1]N×N×...×N , diag(G) = 1,

Gi ∈ S+, rank(Gi) ≤ 1, i = 1, 2, . . . n,

(6)

where ∥Ĝ∥0 is used to avoid the trivial solution and recover
the underlying sparsity structure as in SCAMS [18]. Note
that the {0, 1} integer constraint is also relaxed.
2.2. Solver

For ease of representation, we letW = −A and unfold
it in the same form of Ĝ as Ŵ. We solve (6) by Alternat-
ing Direction Method of Multipliers(ADMM) [5] with three
block variables Ĝ, Ĥ and {Ji}ni=1:

min ⟨Ŵ, Ĝ⟩+ λrank(Ĝ) + γ∥Ĥ∥0 + g(Ĥ),

s.t. unfolding diag(Ĥ) = 1, Ĝ = Ĥ, Ĝ = Ĵ,

Ji ∈ S+, rank(Ji) ≤ 1, i = 1, 2, . . . n,

(7)

where Ĵ = [vec(J1) vec(J2) . . . vec(Jn)], g is the indica-
tor function of the convex set [0, 1]NN×n, which returns 0
if it is in the set, ∞ otherwise, and unfolding diag(·) are
those entries of the unfolded form Ĥ corresponding to the
diagonal entries of the tensor.

The augmented Lagrangian function is

L =⟨Ŵ, Ĝ⟩+ λrank(Ĝ) + γ∥Ĥ∥0 + g(Ĥ) + ⟨Y1, Ĝ− Ĥ⟩+
1

2µ
∥Ĝ− Ĥ∥2F + ⟨Y2, Ĝ− Ĵ⟩+ 1

2µ
∥Ĝ− Ĵ∥2F ,

s.t.unfolding diag(Ĥ) = 1,Ji ∈ S+,

rank(Ji) ≤ 1, i = 1, 2, . . . n,

(8)

where Y1 and Y2 are the Lagrange parameters, and µ > 0
is a penalty parameter. The function can be minimized with
respect to Ĝ, Ĥ and {Ji}ni=1 alternatingly, by fixing the
other two variables, and then updating the Lagrange multi-
pliers Y1 and Y2. The subproblems in ADMM are:
Solving G.

min
Ĝ

∥Ĝ− 1

2
(Ĥ+Ĵ−µ(Ŵ+Y1+Y2))∥2F +λµrank(Ĝ). (9)

Solving H.
min
Ĥ

∥Ĥ− (Ĝ+ µY1)∥2F + 2µγ∥Ĥ∥0 + g(Ĥ),

s.t. unfolding diag(Ĥ) = 1.
(10)

Solving J.
min
Ĵ

∥Ji − (Gi + µY2i)∥2F ,

s.t. Ji ∈ S+, rank(Ji) ≤ 1,
(11)

where Gi is extracted from the i-th column of Ĝ and re-
organized into a square matrix. Similarly Y2i is extracted
from the i-th column of Y2 and reorganized. These three
subproblems can be solved similarly as in [18] and all of
them have closed-form solutions. The overall framework is
provided in the supplementary material.

In general, there is no convergence result for ADMM
applied to non-convex problems, but it often works well
in practice([18, 29], etc.). Empirically our algorithm has
strong convergence behavior indeed.

3. Constrained Boolean Tensor Decomposition
We also extend the Constrained Boolean Matrix Factor-

ization of [18] to tensor cases, for the purpose of decompos-
ing the tensor G obtained from the preceding section into
its constituent indicator vectors z1, ...zR. Here “Boolean”
means that the matrix/tensor contains only 0’s and 1’s.

Before we define our Boolean Tensor Decomposition
problem, we first introduce the necessary notations and
Boolean operators. We use the superscript b to distinguish
Boolean variables from the normal ones. ∨ is the OR oper-
ator applied element-wise, and defined as the normal sum
but with 1 + 1 = 1. ⊕ is the Exclusive-OR operator
applied element-wise, and defined as the normal sum but
with 1 + 1 = 0. Finally, we denote | · | as the norm of
Boolean tensor and defined it as the number of 1’s in it, i.e.,
|X b| =

∑
i1,i2,··· ,iK X

b(i1, i2, · · · , iK). Now we define the
problem as



Problem 1. Constrained Boolean Tensor Decomposition
(CBTD) with the rank-1 sum and exclusivity constraints.
Given a Boolean tensor Gb ∈ {0, 1}N×N×···×N of or-
der K, and an upper bound R0, find Boolean vectors
{z1, z2, . . . , zR}, R ≤ R0 satisfying

min |Gb ⊕ G̃b|,

s.t. G̃b = ∨R
r=1zr ◦ zr ◦ · · · ◦ zr,

R∑
r=1

zr = e,
(12)

where e is an all-one vector of length N . Note that the
exclusivity constraint can be interpreted as an orthonormal
constraint under Boolean algebra.

To solve this problem, we follow the Asso algorithm [21]
and its constrained variant [18] via a heuristic approach of
generating the candidate columns using pairwise associa-
tion accuracies. More specifically, we generate a matrix D
with its entries being the association accuracy as defined
in association rule mining [2], so that the candidate vec-
tors can be extracted from D and used to construct G̃b in
a greedy fashion. We extend the association accuracy to
tensor cases as follows. Without loss of generality, let’s
consider the (K − 1)-mode tensor G̃b(i, :, · · · , :). Due to
the exclusivity of {zr}Rr=1, there exists an unique cluster
p such that zp(i) = 1 and G̃b(i, :, · · · , :) = zp ◦ · · · ◦ zp︸ ︷︷ ︸

K−1

.

Similarly, there exists an unique cluster q such that G̃b(j, :
, · · · , :) = zq ◦ · · · ◦ zq︸ ︷︷ ︸

K−1

. If p = q, ⟨G̃b(i, :, · · · , :), G̃b(j, :

, · · · , :)⟩ = ∥G̃b(i, :, · · · , :)∥2F = ∥G̃b(j, :, · · · , :)∥2F , and
zp(i) = zp(j) = 1; otherwise, ⟨G̃b(i, :, · · · , :), G̃b(j, :
, · · · , :)⟩ = 0, and zp(j) = zq(i) = 0, which means
zp(i) ̸= zp(j). The key aspect of this analysis is that if
⟨G̃b(i, :, · · · , :), G̃b(j, :, · · · , :)⟩ = ∥G̃b(j, :, · · · , :)∥2F , it is
likely that zp(i) = zp(j). By this intuition, we construct

D(i, j) =
⟨Gb(i, :, · · · , :),Gb(j, :, · · · , :)⟩

∥G̃b(j, :, · · · , :)∥2F
, (13)

which is the association accuracy for rule Gb(j, :, · · · , :)⇒
Gb(i, :, · · · , :). Note that ∀i, D(i, i) = 1.

If Gb has the perfect form of
∑R

r=1 zr ◦ zr ◦ · · · ◦ zr, the
set of columns of D should be exactly {z1, ...zR}. How-
ever, Gb is often contaminated by some noise (e.g. it is not
binary) or outliers and thus is not perfect. In this case, the
closer D(i, j) is to 1, the more likely Gb(i, :, · · · , :) and
Gb(j, :, · · · , :) are generated by the same vector zr with
some noise, and the more likely that if zr(i) = 1, then
zr(j) = 1, i.e., i and j belong to the same cluster r. We
could set a threshold τ to get a binary matrix Db which con-
tains all the candidate items for {z1, ...zR}, and choose the
ones that could best describe Gb by the greedy Algorithm.

To reduce the probability that the same position of zr
contains multiple 1’s and violates the Boolean orthonormal

Algorithm 1 The AssoCBTD algorithm
Input: G, R0.
Output: A set of indicator vectors Z∗ = {z1, . . . , zR}.

Initialize: Z = ∅, e = ∞, td = 0.1, and construct Gb
from G with rounding threshold tb = 0.5.
for τ = 0.1, 0.2, . . . , 1 do

Construct D by (13) and obtain the Boolean matrix Db

with threshold τ .
for k = 1, 2, ..., R0 do
i = argmini |Gb ⊕ G̃b|, where G̃b =
∨z∈Z

∪
Db(:,i) z ◦ z ◦ · · · ◦ z;

Z ← Db(:, i); delete all j-th columns with
⟨Db(:,i),Db(:,j)⟩

∥Db(:,i)∥∥Db(:,j)∥ > td from Db.
if ∥G − ∨z∈Z z ◦ z ◦ · · · ◦ z∥2F < e, Z∗ = Z; e =
∥G − ∨z∈Z z ◦ z ◦ · · · ◦ z∥2F , end if
if Db is empty or (12) is not reduced in this
loop, break, end if

end for
end for
return Z∗

(i.e. exclusivity) constraint, we only retain as candidate
those columns which are sufficiently different from the s-
elected columns (based on some threshold td) for the next
iteration. The full details are presented in Algorithm 1, in
which the input R0 is selected as the rank of Ĝ.

Since we only approximately enforce the Boolean or-
thonormal constraint, it is possible for a row of Z =
{zr}Rr=1 to contain multiple 1’s in the same positions of
zr. Usually, these constitute a very small proportion. Thus,
most points can be uniquely assigned to clusters and the
clusters are adequately populated. As a result, we can re-
solve the assignment conflict by a simple post-processing
step as follows. We postpone the cluster assignment of all
those points with conflicts. Assuming the resultant clus-
tering is Y = {Y1, . . . , YR} and that there is an unas-
signed data point i, we assign the point i to the group YR′

with whose members it has the largest affinities; that is
R′ = argmaxr

∑
j∈Yr,e∈Eij

A(e), where Eij contains all
hyperedges that including node i and j and A is the affinity
tensor as defined in Section 1.1.

4. An Alternative Solver via Stochastic Opti-
mization

When the order of the problem increases, the number of
unknowns in the previous formulation can rapidly reach a
very large number. As an example, multiple homography
fitting has order 5; even as few as 100 points leads to 1010

unknowns. What is worse, we can easily exceed the mem-
ory limit of a modern desktop computer if we pre-compute
and store the affinity tensor even for problem with moderate
order and number of points. This motivates us to develop an



alternative solver which is scalable to large problems.
Recall from Theorem 1 that there are exactly R+1 types

of slices (including a 0 slice) in the optimal solution for G.
Thus, instead of solving for the tensor G, we solve for the R
nonzero slices Gj . While R is generally unknown, we do
know that R is usually a small number. Thus, we give an
upper bound R0 to R:

min
Ĝ

1

n

n∑
i=1

R0

min
j=1

⟨Wi,Gj⟩+ γ

R0∑
j=1

||Gj ||20,

s.t. Ĝ ∈ {0, 1}NN×R0 ,Gj ∈ S+,

rank(Gj) ≤ 1, j = 1, ...R0,SĜeR0 = eN ,

(14)

where Wi is a slice from W , Ĝ =
[vec(G1) vec(G2) . . . vec(GR0)], eR0 and eN are
all-one vectors of size R0 and N respectively,
and S ∈ {0, 1}N×NN is a selection matrix with
S(i, (N + 1)i − N) = 1, i = 1, ..., N and other ele-
ments being 0. Essentially, Svec(Gj) selects the diagonal
elements of Gj and organise them into a column vector.
Recall that Theorem 1 implies that the (i, i) diagonal
elelment of each slice can be a 0 or 1; the constraint
SĜeR0 = eN requires that the (i, i) element must be a 1
in at least one and only one of the slice Gj . In (14), ∥ · ∥20
is the square of the ℓ0-norm. Numerically, squaring the
ℓ0-norm enlarges the range of values spanned by the second
term in (14), making (14) less sensitive to the setting of
γ. Compared to the unsquared ℓ0 norm in (6), we need
this stretching here because the second term only contains
R0 ×N ×N entries and thus its ℓ0-norm can only sum up
to R0×N ×N , whereas that in (6) can attain a much larger
value of n × N × N . Note that as a consequence of the
squaring, this penalty term would also favour a partitioning
with more balanced clusters.

Note that in (14), Ĝ has very few columns, more exactly,
R0 of them; R0 can be considered as an upper bound of the
tensor rank of the original G. Comparing to (6), the number
of unknowns is significantly reduced (from N2n to N2R0),
and importantly, it does not increase as the order increases.

For notational convenience, we denote the first term
in the objective function as f(Ĝ) = 1

n

∑n
i=1 ℓi(Ĝ), and

ℓi(Ĝ) = minR0
j=1

⟨
W̃j

i , Ĝ
⟩

, where W̃j
i ∈ RNN×R0 with

its j-th column given by vec(Wi) and 0 elsewhere. Now
the problem is in a form suited for optimization by the s-
tochastic ADMM [24]2 in an online fashion. In particular,
we randomly obtain one slice Wi from W for each itera-
tion, solve the following constituent subproblems once, and
then initiate the next iteration with a different slice fromW ,
repeating the above until convergence.

Again we introduce the intermediate variables Ĥ and Ĵ

2Note that its convergence result is not applicable due to the non-convex
problems in our formulation.

and solve

min
Ĝ

1

n

n∑
i=1

ℓi(Ĝ) + γ

R0∑
j=1

||Hj ||20,

s.t. Gj ∈ S+, Ĝ = Ĥ, Ĝ = Ĵ, Ĥ ∈ {0, 1}NN×R0 ,

rank(Gj) ≤ 1, j = 1, ...R0,SĴeR0 = eN .

(15)

Using the notion of approximate augmented Lagrangian de-
fined by [24] and applying it to problem (15), we obtain

Lk = ℓk(Ĝ
k) +

⟨
ℓ′k+1(Ĝ

k), Ĝ
⟩
+ γ

R0∑
j=1

||Hj ||20 +
1

2µ
||Ĝ− Ĥ||2F+⟨

Y1, Ĝ− Ĥ
⟩
+

1

2µ
||Ĝ− Ĵ||2F +

⟨
Y2, Ĝ− Ĵ

⟩
+

1

2µ
||SĴeR0 − eN ||2F +

⟨
Y3,SĴeR0 − eN

⟩
+

||Ĝ− Ĝk||2F
2ηk+1

s.t. Ĥ ∈ {0, 1}NN×R0 ,Gj ∈ S+, rank(Gj) ≤ 1, j = 1, ...R0,

(16)

where ℓ′k+1 is the subgradient of ℓk+1 and ||Ĝ− Ĝk|| is the
proximal term which is scaled by a time-varying stepsize
ηk+1. The subproblems we need to solve become:
Solving G.

min
Ĝ

∥Ĝ− P̂∥2F ,

s.t. Gj ∈ S+, rank(Gj) ≤ 1, j = 1 . . . R0,
(17)

where P̂ = ( 1
µ
Ĥ+ 1

µ
Ĵ+ 1

ηk+1
Ĝk−Y1−Y2−ℓ′k+1(Ĝ

k))/( 2
µ
+

1
ηk+1

).
Solving H.

min
Ĥ

∥Ĥ− Q̂∥2F + 2µγ

R0∑
j=1

||Hj ||20,

s.t. Ĥ ∈ {0, 1}NN×R0 ,

(18)

where Q̂ = Ĝ+ µY1.
Solving J.

min
Ĵ

⟨
Y2, Ĝ− Ĵ

⟩
+

1

2µ
∥Ĝ− Ĵ∥2F+⟨

Y3,SĴeR0 − eN

⟩
+

1

2µ
∥SĴeR0 − eN∥2F

(19)

Since subproblem (17) can be solved in a similar manner
as (11) and (19) is linear in Ĵ, the only difficulty lies in (18).
Evidently, (18) is separable in the columns of Hj . We solve
each column Hj individually by the following theorem:

Theorem 2. Let a ∈ Rm be a given vector such that its
elements a1 ≥ a2 ≥ · · · ≥ am. Consider problem:

x∗ = argmin ∥x− a∥+ ρ(eTx)2, s.t. x ∈ {0, 1}m, (20)

where e is an all-one vector. The components of x∗ are also
in a descending order and there exists an integer 0 ≤ s ≤ m
such that x∗

i = 1 for i ≤ s and x∗
i = 0 for i > s.

This theorem can be proved by contradiction. The detailed
proof is provided in the supplementary material.

The stochastic ADMM is close to but not exactly the
same as ADMM; details of the algorithm are provided in the



supplementary material. Since the problem is solved in an
online fashion, we only need to randomly construct a slice
in each iteration; thus this algorithm is memory-efficient.

5. Experiments
In this section, we compare our method with various

model selection methods, including those based on pairwise
affinity (acting upon projected 2D graph) and those based
on higher order affinity. For the former category, we adopt
the widely used clique expansion algorithm [36] to get the
projected 2D graph. We then apply the basic gap heuris-
tic (GH) [20] followed by normalized cut [30], the results
of which are taken as baseline. We also choose SCAMS
[18] as the representative of the state-of-the-art 2D graph
methods for comparison. We denote these two methods as
CExp+GH and CExp+SCAMS respectively. For the latter
category, we choose the Ensembles of Affinity Relations
(EAR) method [19], which is based on a generalization of
the game-theoretic approach [6]. To obtain the final cluster-
ings of [19], we need to further construct a 2D graph based
on the probabilities output of this method and apply GH
and normalized cut. We denote our methods as SCAMSTA
and SCAMSTA-SADMM (the stochastic ADMM version).
In all experiments, the upper bound R0 is given as R + 2,
where R is the groundtruth group number. To evaluate the
performance of the algorithms, we adopt the F1-measure.
5.1. Line clustering

We first investigate the performance of the various meth-
ods on the task of line clustering in the 2D space. In
this task, we randomly generate lines within the region
[−0.5, 0.5]2, with all lines passing through the origin. To
generate the affinities, we measure how well a triplet of
points can be fitted to a line. Thus the order of the affinity
tensor in this problem is three. To examine how noise can
affect the performance of the various algorithms, we fix the
number of lines to three and sample 10, 30 and 60 points
from them respectively, resulting in a total of N = 100
points and three unbalanced clusters overlapping with each
other to some extent. We perturb the sampled points by
adding Gaussian noise N (0, σ), and consider 11 differen-
t noise levels: σ = 0, 0.005, · · · , 0.05. Since larger noise
leads to more ambiguous affinities, we should reduce the in-
fluence of the data term (the first term in (6)) as noise level
increases. This is actually implemented by increasing the
weightage of the sparsity term in (6). For this experiment,
we set the parameters λ = 2N and γ = 2σ for SCAMSTA
and γ = 4σ × 10−4 for SCAMSTA-SADMM. Similarly,
we set λ = 2 and γ = 2σ for SCAMS. For EAR, we set
ϵ = 1

10 , where the ’10’ is obtained from the number of
points of the smallest cluster. The test runs 20 times and the
average F1-measures are reported in Figure 1 (a). We also
evaluate our method under varying number of lines. In this
experiment, we fix σ = 0.005, and thus the parameter set-
tings correspond to that noise level. We gradually increase
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Figure 1. Comparison on line clustering. Left: F1-measure on
clustering the lines perturbed with increasing noise levels. Right:
F1-measure on clustering varying number of lines.

the line number from 2 to 8, and the average F1-measures
over 20 runs are reported in Figure 1 (b).

As can be seen from Figure 1 (a), the performances of
SCAMSTA and SCAMSTA-SADMM are close, and they
are significantly better than those of the other methods at all
noise levels. In Figure 1 (b), SCAMSTA and SCAMSTA-
SADMM also consistently outperform the other methods.
When we examined the estimated numbers of clusters pro-
duced by the different approaches, the performance gap is
even more remarkable. We find that our approaches yield
75% correct number estimation among all test runs, while
those of the other approaches are less than 30%. The reason
for this performance gap is that the projection step required
to produce the conventional 2D graph representation loses
information. This is especially detrimental to performance
when there are unbalanced clusters, as the genuine affinities
in the small cluster are averaged out to small values by the
clique expansion step.

5.2. Vanishing point estimation
We further evaluate our methods in dealing with real

world problems. In this subsection, we tackle the vanishing
point estimation problem 3 given multiple detected lines in
the image plane. Since two lines always intersect at a point
(perhaps at infinity), we need the third line to determine to
what extent the triplet of lines intersect at a common point.
Specifically, the affinity between three lines is computed as
the sum of the distances from the three lines to the fitted
intersection point, and the order of the affinity tensor in this
problem is 3. Actually, this is a dual problem to the line
clustering problem in the preceding experiment.

In this experiment, we evaluate the performance of the
algorithms on the York Urban Dataset [12]. This dataset
consists of 102 images with line segments hand-assigned
to the vanishing points and pre-selected to conform to the
Manhattan assumption [9]. It contains both indoor and out-
door scenes. Besides the other methods, we further compare
with the J-Linkage clustering method [32], which is used in

3Under projective geometry, a set of parallel lines in 3D scene is pro-
jected onto a set of image lines meeting at a common point known as the
vanishing point. Identifying these vanishing points provides strong 3D
cues for inferring structure of the scene.



Table 1. Vanishing point estimation (F1-measure) on York Urban Dataset

Method CExp-GH CExp-SCAMS EAR J-Linkage SCAMSTA SCAMSTA-SADMM
Pre-selected 0.8487± 0.1849 0.8884± 0.1083 0.8434± 0.1515 0.7831± 0.1010 0.9426± 0.0739 0.9274± 0.0793

Detected 0.6602± 0.1617 0.7993± 0.1966 0.6570± 0.1837 0.7936± 0.1504 0.8273± 0.1760 0.8035± 0.1938

the state-of-the-art vanishing point estimation method [31].
However, J-Linkage usually needs a good sampling, and
thus a fully computed affinity tensor (our input) – which
means all possible model candidates are sampled – leads to
very bad result (F1-measure < 0.6). Thus, the J-Linkage
results reported here are instead obtained using the RCM
sampling [25] to generate the input samples.

We first carry out our evaluation under this almost noise-
less setting, for which we set parameters λ = 2N and
γ = 0.05 for SCAMSTA, γ = 5 × 10−5 for SCAMSTA-
SADMM, λ = 2 and γ = 0.08 for SCAMS, the inlier
threshold of J-Linkage is set to 0.05, and ϵ = 1

c for EAR,
where c is the number of points of the smallest cluster ob-
tained from the groundtruth. The first row of Table 1 reports
the F1-measures averaged over the 102 images. As can be
seen, our methods significantly outperform the others, being
the ones with mean F1-measure greater than 0.9 and stan-
dard deviation less than 0.1. Note that the stochastic version
degrades slightly compared to the original one.

The above scenario is not very realistic as the line seg-
ments are pre-selected and hand-labeled. Thus, we next
recreate a more realistic environment by having the Canny
line detector generate the line segments in the images. This
setting brings much more noise (e.g. orientations of lines
might be perturbed) and outlier lines (e.g. lines belonging to
additional vanishing points). To evaluate the algorithms, we
match the detected line segments to the pre-selected ones
and compute the F1-measure of only those line segments
which can be matched (as only those have groundtruth).
The last row of Table 1 reports the F1-measures averaged
over the 102 images. The F1-measures of all methods drop
due to the noise and outliers except J-Linkage, probably due
to the RCM sampling. Nevertheless, both SCAMSTA and
its stochastic variant perform consistently better than the
other methods; SCAMSTA outperforms the best of other
methods by 0.03.

5.3. Multiple homography fitting
In this subsection, we estimate multiple planar homogra-

phies on real images. Given the matched points in an image
pair, at least 4 correspondences are needed to fit a homog-
raphy model; a 5-th point is need to determine the goodness
of the fitted model, meaning that the order in this problem
is at least 5. With such an order and the attendant large
number of unknowns, the ADMM version of SCAMSTA
is impractical. Thus, we only compare the stochastic AD-
MM version with the others. Unfortunately, EAR cannot
return a result in a reasonable time (i.e. 24 hours), and it
often crashes with unknown reasons, so its result is also not

Table 2. Multiple homography fitting (F1-measure) on Adelai-
deRMF dataset

Method Label-
Cost

CExp-
GH

CExp-
SCAMS

SCAMSTA-
SADMM

mean ±
variance

0.7871±
0.1183

0.6980±
0.1796

0.7827±
0.1925

0.8418 ±
0.1071

listed. For a better comparison, we add the state-of-the-art
multi-structure fitting method with label cost (LabelCost)
[11], since multiple homography estimation is usually for-
mulated as a multi-structure fitting problem.

In this experiment, we evaluate the performances of
the algorithms on the AdelaideRMF dataset [34]. This
dataset consists of 17 image pairs with matched points
available for multiple homography fitting. In each iteration
of SCAMSTA-SADMM, we adopt the RCM sampling [25]
to sample 3 correspondences, as (5 − 2) samples are re-
quired to generate a slice. All the generated slices are also
used to construct the projected 2D graph needed by other
methods; using the same slices makes sure that the same
amount of information are provided for each methods. We
set the label cost to 7000 for all labels, parameters γ = 10−5

for SCAMSTA-SADMM, and λ = 2 and γ = 0.16 for S-
CAMS. The F1-measures averaged over 17 instances are
reported in Table 2. It is observed that our method again
outperforms the others significantly, being the only one with
mean F1-measure greater than 0.8. An extra experiment on
multiple fundamental matrix fitting is provided in the sup-
plementary material, which shows similar results.

6. Conclusion
We propose a general and robust algorithm to perform

simultaneous clustering and model selection given an affin-
ity tensor as input. This is a more general setting for solv-
ing clustering problems and the proposed algorithm sub-
sumes the previous SCAMS algorithm for the matrix case.
To solve this problem, we impose the low-rank and sparsi-
ty conditions on the affinity tensor to reveal the underlying
clusters hidden therein. With careful observation and de-
sign, we transform the tensor rank minimization and rank-
1 sum constraint into matrix forms such that the problem
becomes solvable. To tackle the scalability issue, we also
provide an alternative slice formulation which lends itself
to a stochastic ADMM solution. Experiments on different
applications show its scalability to large problems and the
advantage of our approach in dealing with unbalanced clus-
ters and detecting small clusters.
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