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1. Implementation Detail

We utilize the Deepflow [2] algorithm to compute the op-
tical flow due to its robust performance in practice. While
the optical flow algorithm always returns a dense motion
field, the reliability and accuracy are not the same for every
pixel. To prevent unreliable flow from degrading the per-
formance of our algorithm, we check the forward-backward
consistency error and preserve the top 20% most reliable
measurements as the input for motion estimation.

We note here that for the GS model and RS model under
constant velocity motion, we are able to build a large ho-
mogeneous linear system by making use of all those points
deemed as inliers to the best minimal solution of RANSAC.
As per common practice, we use the solution to this large
linear system as a more robust means to bootstrap the non-
linear refinement.

2. Additional results on synthetic data

The quantitative evaluation results on the Castle data un-
der constant acceleration motion are shown in Fig. [T|respec-
tively. As can be seen, the RS model in general produces
better accuracies compared to the GS model, which corrob-
orates the analysis presented in the main paper.

3. Additional remarks on synthetic experiment

Source of noise. Although the synthesized motions are test-
ed as they are and no noise is introduced, there are two other
extant noise sources that explain the non-zero errors. First,
the estimation of optical flow introduces noises. Note that
the optical flow used for motion estimation is not synthe-
sized but computed using [2] on the rendered image. This
makes our synthetic experiments more realistic. Second,
as mentioned in Sec. 3 of the main paper, the differential
epipolar constrain is true only in the limiting case of in-
finitesimal motion and is always an approximation in prac-
tice. This will introduce errors in the motion estimation.
More analysis on the error curves:

1. we remark here that although the accuracy gap between
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Figure 1: Quantitative evaluation for constant acceleration mod-
el on Castle. GS-Mini/RS-Mini and GS-NL/RS-NL stand for the

results from the minimal solver and non-linear refinement respec-
tively using GS/RS model.

the results from the GS and RS model are caused by RS dis-
tortion, the overall trend of the errors might also be large-
ly influenced by the motion type tested. For example, one
can observe that the translation errors decrease noticeably
while increasing the amount of translation, even for the GS
model. This can be explained by the reduced dominance
asserted by the rotation when the translation is increased.
Specifically, when the translation is close to zero, the ro-
tation is more dominant (which is known to have a detri-
mental effect on the translation estimate), leading to larger
translation errors. Conversely, reduced rotation dominance
with increasing translation leads to a drop in the errors.

2. From the quantitative result, one can see that the GS



RS Image &
Optical flow

GS

Constant
Velocity
RS

Constant
Acceleration
RS

Front view

RS Image &
Optical flow

GS

Constant
Velocity
RS

Constant
Acceleration
RS

Front view Side view Front view

()

Tow-down view

Side view

Tow-down view

®

Side view

Figure 2: Additional SfM results on real image data. Top row: original RS images. Bottom 3 rows: reconstructed 3D point clouds by the
GS and our RS models with constant velocity and acceleration from different viewpoints.

model can achieve equally well or even better accuracy
when the magnitude of rotation is small, e.g. in Fig.[I(d).
We posit that under small rotation the RS effect is not strong
enough to introduce bias to the GS model, under which case
the fidelity of the simpler GS model is higher, hence some-
times giving more accurate results. This also happens when
the translation is large relative to the rotation. In such case,
the first term (consisting of only translation) of Eq.13 in the
main paper becomes more dominant than the second term
(involving RS effect), reducing the impact of RS effect. In
the extreme case of pure translation, the translation direc-
tion estimation using GS model is not affected by the RS

effect at all, though GS model will lead to bias in the recon-
struction of the scene due to wrong scanline pose estimation
as a result of wrong camera model.

4. Additional results on real data

Additional Structure from Motion (SfM) results by our
algorithm on the public dataset [1] are shown in Fig.[2} For
each scene, we show the input RS image with optical flow
in the top row, and the reconstructed point clouds by the
GS and our RS models with constant velocity and acceler-
ation in the bottom three rows. We plot the point clouds



from two different viewpoints for better visualization. In
the examples shown in Fig. a) - (d), we can see that the
point clouds returned by the GS model are significantly dis-
torted, while the point clouds returned by our RS models
are of higher quality—as highlighted by the red ellipses.
This means that our RS models have successfully compen-
sated for the RS effect and mitigated the RS induced bias in
SfM. We observe that our RS model with constant accelera-
tion performs better than (Fig. a) - (b)) or equally well as
(Fig.[J[c) - (d)) our RS model with constant velocity. This is
to be expected given the more realistic motion assumption.
In Fig.[J[(e) & (f), the quality of the point clouds returned by
all the models are similar. This is to be expected since care-
ful inspection in the original consecutive images will reveal
that the RS effect in these two cases is not strong.
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