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A Texture Frequency Projection Model —
Back-Projection Error

1Besides the re-projection error (Eqn. 5), we also define an error measure
in the affine space (i.e., on the intermediate plane, where constant world-plane
frequency is projected to another constant frequency via an affine transform).
Consider H−1

P that projects the intermediate plane to the image. The corre-
sponding transposed Jacobian:
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back-projects the variable image frequency ui, vi to constant intermediate plane
frequency us, vs. We thus arrive at the back-projection error :
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To compute Eqn.A.2, back-projected coordinates xs = xs(xi) and ys = ys(yi)
are obtained via the following transformation by HP :

xs =
xi

h7xi + h8yi + 1
(A.3a)

ys =
yi

h7xi + h8yi + 1
(A.3b)

In practice, we minimize (using the Levenberg-Marquardt algorithm) the sum
of both error measures for improved estimates:

E(h7, h8, us, vs) = ERP + EBP (A.4)

1 Published in ECCV 2016, Part II, LNCS 9906 c©Springer. The final publication is
available at link.springer.com.
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Fig. B.1: Visualization of the Gabor filter bank used in all experiments for this
paper. Only the real parts of the complex-valued functions are shown. The radial
frequencies increase along a geometric progression from 3 to 16.9706, while the
orientations are uniformly spaced from −90◦ to 72◦.

Our rationale for combining the two error measures ERP and EBP is as
follows. One can view the operation performed by Eqns. A.3 to obtain error
EBP as some kind of data normalization, and, analogous to the case of estimating
epipolar geometry in [1], we empirically evaluate which data normalization yields
the best results and arrive at Eqn. A.4. For computational stability, the pixel
coordinates are also normalized such that the top-left of an image patch is given
by (-1,-1) and the bottom right by (1,1).

B Computing the Gabor Filter Bank

A Gabor filter with effective width γ, and spatial center frequency u = (u, v) is
defined as:

h(u; x) =
1

2πγ2
exp

{
−x.x2

2γ2

}
exp {2πju.x} (B.5)

The above form of the Gabor function is as in [2–4]. It can be easily shown
that it is equivalent to the parameterization proposed in [5–7] if the spatial
aspect ratio of the filter is fixed to 1 (i.e., the filters have a circular rather than
an elliptical shape).

For all experiments in this paper, the filter bank was constructed based on
the following parameters, which differ somewhat from [2–4] since they were ex-
perimentally fine-tuned to our setting. Filters sized 45x45 pixels are generated
via Eqn. B.5. Six (6) radial center frequencies Ω are sampled along a geomet-
ric progression from 3 to 16.9706 cycles/image, with a common ratio

√
2. As

suggested in [3, 4], the bandwidth is fixed so that the effective width γ varies
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proportionally with the center frequency Ω. The proportionality constant may
be computed via [5]:

γ

λ
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1

π

√
ln2

2
.
2b + 1

2b − 1
(B.6)

where b is the half-magnitude spatial bandwidth of the Gabor filter, set to 1 in
all experiments. Ten radial orientations θ spanning quadrants IV and I are used,
spaced uniformly by 18◦ i.e., −90◦ to 72◦. Finally, the relationship between the
polar form (Ω, θ) and the cartesian form u = (u, v) of spatial frequency is defined
as:

u = (u, v) = (Ωsinθ, Ωcosθ) (B.7)

The filter bank constructed above is illustrated in Fig. B.1 by visualizing the
real part of the complex-valued functions. The imaginary parts simply consist
of a 90◦ offset relative to their real counterparts.

C Filtering — Implementation Details

Extensive experiments have helped to fine-tune parameters that yield the overall
best results. The filter bank has been described in detail in Sec. B, with the
filter kernel size fixed to 45x45 pixels. Meanwhile, the image patch to be filtered
should be resized such that the smaller dimension is 80 pixels (using bicubic
interpolation), and the aspect ratio is retained.

Instead of computing the partial derivatives of the Gabor filter h(u; x), the
associativity property of convolution [f ∗ (g ∗ h) = (f ∗ g) ∗ h] is invoked, and
B(u; x), C(u; x) (Eqns. 8) defined as the responses of the partial derivatives fx,
fy of the texture image f(x) to the Gabor h(u; x). These partial derivatives were
obtained via a simple forward difference approximation on the texture image.
A Central difference approximation, or the use of filter masks involving it —
e.g., Sobel and Fri-Chen — can only successfully recover half of the otherwise
maximum measurable frequency, leading to aliasing in texture containing high
frequency, where measuring changes over each pixel counts (see, e.g., Fig. 6(i)).

Following [3], the filter responses are smoothened by a Gaussian low-pass
filter, also sized 45x45 pixels, and having a standard deviation 1/12th its size.

D Robust Parameter Estimation via RANSAC

In our setting of Eqns. 5 and A.2, a minimum of 2 points are sufficient to es-
timate the 4 parameters h7, h8, us, vs. For affine-rectification results (Sec. 4.1),
RANSAC was run for 50 iterations with an error tolerance of 0.001, applied to
Eqn. A.4, and using an anisotropic multiscale representation (Sec. E). For detec-
tion results (Sec. 4.2) — which, in turn, also influence the layout (Sec. 4.3) and
scene recognition results (Sec. 4.4) — the threshold is 0.01, and the maximum
number of iterations to run is adapted continuously based on the proportion
of outliers in a given iteration [8]. RANSAC can then terminate in much fewer
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Fig. E.2: An anisotropic multi-scale approach, combined with carefully normal-
ized error measure for choosing the best scale, improves texture rectification.
Rotation may be allowed for DEMOD to automatically resolve quadrant ambi-
guity, if any.

iterations. While this speeds up the process, using more RANSAC iterations
will certainly improve performance. Since we evaluate a large number of over-
lapping patches, however, we may choose to make this trade-off. For the same
reason, an anisotropic representation for detection is also foregone, but the error
normalization (see Sec. 4.2) is performed.

E Anisotropic Multiscale Representation

The following anisotropic approach was observed to improve performance. The
given image is represented at three scales — one where the smaller dimension is
80 pixels, second where the rows are doubled while columns stay the same, and
third where columns are doubled and rows stay the same (bicubic interpolation is
used for the required resizing). For e.g., the subway patch (Fig. 6(q)) is originally
200x400 pixels. It is resized to give three representations: 80x160 pixels (shown in
Fig. E.2(a)), 160x160 pixels (shown in Fig. E.2(b)) and 80x320 pixels. Parameters
are obtained for each multiscale representation, and the winning one is obtained
based on the normalized root mean squared error:

RMSE =

√∑
i

E(xi) (E.8)

Table 1: Robust estimated projective parameters for the example texture in Fig.
E.2(a) using an anisotropic multi-scale approach for DEMOD+ROT, GCO and
QPBO. RANSAC error tolerance = 0.001.

DEMOD+ROT+RANSAC GCO+RANSAC GT

h7 0.0437 0.0431 -0.0064
h8 0.6563 0.6087 0.7011

% outliers 36.21% 30.01% N/A
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where E(xi) is as given in Eqn. 11. The qualitative (Fig. E.2) as well as the
quantitative results (summarized in Table 1) indicate a marked improvement
over a uni-scale approach. In each case (DEMOD, GCO), the winning repre-
sentation happened to be case# 2 — i.e., doubling of rows (Fig. E.2(b)). For
DEMOD, rotated versions of each of the three representations were also included
to handle quadrant ambiguity, giving six representations in total (the winning
one happened to be a rotated version with double the rows). Anisotropic scaling
essentially makes the scale of the relevant image features (track rails in our ex-
ample) more pertinent with respect to the size of the Gabor filters used (45x45
pixels).

The affine-rectification results presented in Sec. 4.1 employ the above anisotropic
multiscale representation. Note that both the compared methods — TILT and
REM — also employ multiscale representations.

F Detection in the Wild — Implementation Details

An approach similar to object detection [9, 10] is taken, wherein a given image is
represented at multiple scales, and patches of fixed size extracted and processed
at each scale. This provides for a space and scale invariant detection.

Specifically, a given image, in grayscale, is first resized to a reference scale,
such that the smaller dimension is 400 pixels, and the aspect ratio preserved.
Patches, sized 80x80 pixels, are extracted on a regular grid with a spatial stride
of 16 pixels. This gives the number of octaves, such that at least one such patch
may be extracted at the coarsest scale, as log2(400/80) = 2.3. Fixing the number
of scales per octave to 3.5, the total number of levels in our multiscale pyramid
is then N = floor(2.3 × 3.5) + 1 = 9. The corresponding scales to resize the
image to (via bicubic interpolation) are given by a geometric progression with
common ratio r = 2−1/3.5, i.e., rl, where l = 0, 1, ..., N − 1. Following [10,
11], a patch containing very little image variation, i.e., gradient energy (average
gradient norm over all pixels) smaller than a certain threshold (fixed to 50% of
the average gradient energy over all image patches) are discarded at the outset.
This results in a total of around 1500 patches per image on average.

A smaller grid spacing may be used at higher computational expense (e.g., a
spacing of 8 pixels can result in four times the number of patches). Also, a non-
unit aspect ratio for patches (e.g., sizes of 80x160 or 160x80, etc) can often be
more representative of the homogeneous texture occurring in scenes, and sam-
pling such additional patches to improve detection and recognition performance
may be done at higher computational expense, but this was not implemented.

For the qualitative results presented in Figs. 2, H.4, H.5 an intra-scale non-
max suppression (NMS) is performed as follows. Candidate patches (those
with < 50% outliers) are sorted and processed in ascending order of percentage
of outliers. Then, a patch is admitted as a detection only if some previously ad-
mitted patch (detected at the same scale) does not overlap 50% of its area. NMS
across scales tends to discourage detections at coarse scales, hence suppression
only within a given scale is carried out. However, the quantitative evaluation pre-
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Fig. F.3: Left: We annotate images with quadrilaterals specifying left (red) /
right (yellow) walls, ceiling (blue) and floor (green), using our GUI written for
the purpose. Right: We assign a geometric class ID to a detection based on its
estimated vanishing line (Sec. 4.3), and perform a quantitative evaluation based
on precision and recall computed against our annotated ground truth (Sec. 4.2).

sented in Sec. 4.2. employs the semantic class-aware (walls/ceiling/floor) NMS
as described in Sec. 4.3, and discussed in Sec. 4.2.

Given the experimental set-up as described above, and in Secs. B and C, pro-
cessing one image takes around 15 – 20 mins per CPU core running a MATLAB
implementation at 3GHz.

Fig. F.3(left) illustrates how we annotate our subset of 300 MIT Indoor67
images, for conducting the quantitative evaluation in Sec. 4.2. All homogeneous
textured regions in the image are annotated with their vanishing points and
semantic / geometric class ID.

G Indoor Scene Recognition — Implmentation Details

In what follows, we disclose the implementation details of our scene recognition
pipeline from Sec. 4.4, which are common for all 4 descriptors used (except when
stated otherwise). A given image is resized to a reference scale, such that the
smaller dimension is 400 pixels, and the aspect ratio preserved.

Feature Extraction — Regular Rep. For regular representation (no rec-
tification), patches sized 16x16 pixels are extracted on a regular grid with a spa-
tial stride of 8 pixels (4 pixels for SIFT), with the reference image, in grayscale,
represented at the same set of 9 scales as determined in Sec. F.

Feature Extraction — Rectified Rep. For a rectified representation,
80x80 pixel regions are detected as in Sec. F, fixing a decision threshold of 50%
RANSAC outliers. No NMS is performed, as that would result in a significantly
sparse representation, losing discriminative power of the resulting image repre-
sentation. A detection is always warped (using bilinear interpolation for speed)
to a fixed size of 80x80 pixels (essentially, retaining the scale at which a homoge-
neous texture is detected). Given a warped textured region, patches, sized 16x16
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pixels, are densely extracted on a regular grid with a spatial stride of 8 pixels (4
pixels for SIFT). A patch in the warped image which is not fully visible in the
original non-rectified image is rejected.

Feature Encoding. Best practices for dense local feature based classifi-
cation, as suggested in [12, 11] are followed. Specifically, the descriptor dimen-
sionality is first reduced to 80 features via PCA, followed by learning a 256-
component GMM. Separate dictionaries for regular and rectified features are
learned, using a sample of 106 features, obtained equally over the entire training
set. A 2-level spatial pyramid ([13]) is constructed, wherein a Fisher Encoding
with sum pooling [14] is performed over each of the 5 spatial bins, obtaining a
40,960-dimensional descriptor per bin. Different from [12] (who normalize each
bin separately), descriptors at each level of the spatial pyramid are l2-normalized
separately (i.e., 1 at the first level and the concatenated 4 at the second level),
since this was observed to give a better performance (for both regular and rec-
tified representation). Hellinger kernel mapping is then performed on the de-
scriptors, followed by an l2-normalization (as before) again, thereby obtaining a
so-called Improved Fisher Vector (IFV). The 5 descriptors are then concatenated
to obtain a 204,800-dimensional image representation.

Classification. Linear one-vs-all SVMs are employed (having already incor-
porated a non-linear Hellinger mapping), using the library made available by
[15]. Classification performance is reported as an average of 3 runs using the
standard train-test split for the MIT Indoor 67 [16]. As is standard practice on
this dataset, classification accuracy is defined as the average of the diagonal of
the confusion matrix (i.e., average of per-class rates rather than average over
all dataset). For obtaining the classification performance of a combined rep-
resentation, softmax transformed SVM scores of individual representations are
multiplied, as proposed in [17].

H Detection in the Wild — Additional Qualitative
Results

Fig. H.4 presents a qualitative comparison of our homogeneous texture detection
vs. that performed by TILT [18]. The decision score for TILT used is a rank ratio
of 0.5 (i.e., ratio of final to initial rank), along with the intra-scale NMS described
in Sec. F. It can be observed that TILT is able to localize texture only in a few
cases (e.g., b), when the low-rank assumption is satisfied. Correct rectifications
are usually obtained when a patch is free from outliers (e.g., some patches in f).
By contrast, the proposed approach is seen to perform remarkably well. Fig. H.5
presents additional qualitative results for our method in representative images
from various scene categories.
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I Indoor Scene Geometric Layout — Additional
Qualitative Results

Fig. I.6 gives additional scene layout estimation results for the proposed ap-
proach (Sec. 4.3). Apart from many success cases, some limitations of ours may
also be identified. For e.g., the middle column for (c) (respectively, d) reveals
some correct detections on the right wall (respectively, ceiling) were obtained.
However, the right colum demonstrates that across-category NMS (as described
in Sec. 4.3) adversely rejects these detections. So while our NMS scheme is in-
strumental in “cleaning up” bad detections (e.g., a, b, etc) to produce a good
layout, it can also suppress valid detections. Another limitation is that the pro-
posed method naturally requires the scene / room faces to be textured to be
able to produce an exhaustive layout, for e.g, (g) and (r) where only the office
blinds or the patterned table cover can be correctly detected.

The floor in case (i) is incorrectly assigned the ceiling category — the algo-
rithm has mistaken the muddy footsteps for homogeneous texture. The spurious
right-wall detections in case (q) are likely due to the person in this museum image,
interfering with the otherwise regularly spaced stands and their shadows.

In order to address these shortcomings, future work is intended that shall
investigate a combined approach involving appearance based assignment of geo-
metric classes to superpixels, as in [19, 20], while also leveraging our texture cues.
Global optimization, possibly with some ordering constraints, as in [21], can also
potentially provide a more principled approach to rejecting bad detections, as
opposed to our current greedy NMS scheme.
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(a)

(b)

(c)

Fig. H.4: Detection of Homogeneous Texture: comparing PROPOSED method (CEN-
TER) with TILT (RIGHT). Images (LEFT) sampled from (a) airport inside, (b)
art studio, (c) auditorium — 1/3
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(d)

(e)

(f)

Fig. H.4: Detection of Homogeneous Texture: comparing PROPOSED method (CEN-
TER) with TILT (RIGHT). Images (LEFT) sampled from (d) casino, (e)
classroom, (f) cloister — 2/3
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(g)

(h)

(i)

Fig. H.4: Detection of Homogeneous Texture: comparing PROPOSED method (CEN-
TER) with TILT (RIGHT). Images (LEFT) sampled from (g) cloister, (h)
laundromat, (i) winecellar — 3/3
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. H.5: Detection of Homogeneous Texture by the proposed method. Images sampled
from (a) warehouse, (b) winecellar, (c) library, (d) meeting room, (e) pool inside,
(f) staircase, (g) train station, (h) video store.
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(a)

(b)

(c)

(d)

Fig. I.6: Indoor Scene Geometric Layout Estimation. LEFT: Image, CENTER:
top 150 detections with geometric class assigned, RIGHT: after performing across-
category NMS. Red: Left Wall, Yellow: Right Wall, Blue: Ceiling, Green: Floor.
Best viewed in color. — 1/6
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(e)

(f)

(g)

(h)

Fig. I.6: Indoor Scene Geometric Layout Estimation. LEFT: Image, CENTER:
top 150 detections with geometric class assigned, RIGHT: after performing across-
category NMS. Red: Left Wall, Yellow: Right Wall, Blue: Ceiling, Green: Floor.
Best viewed in color. — 2/6
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(i)

(j)

(k)

(l)

Fig. I.6: Indoor Scene Geometric Layout Estimation. LEFT: Image, CENTER:
top 150 detections with geometric class assigned, RIGHT: after performing across-
category NMS. Red: Left Wall, Yellow: Right Wall, Blue: Ceiling, Green: Floor.
Best viewed in color. — 3/6
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(m)

(n)

(o)

(p)

Fig. I.6: Indoor Scene Geometric Layout Estimation. LEFT: Image, CENTER:
top 150 detections with geometric class assigned, RIGHT: after performing across-
category NMS. Red: Left Wall, Yellow: Right Wall, Blue: Ceiling, Green: Floor.
Best viewed in color. — 4/6
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(q)

(r)

(s)

(t)

Fig. I.6: Indoor Scene Geometric Layout Estimation. LEFT: Image, CENTER:
top 150 detections with geometric class assigned, RIGHT: after performing across-
category NMS. Red: Left Wall, Yellow: Right Wall, Blue: Ceiling, Green: Floor.
Best viewed in color. — 5/6
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(u)

(v)

(w)

Fig. I.6: Indoor Scene Geometric Layout Estimation. LEFT: Image, CENTER:
top 150 detections with geometric class assigned, RIGHT: after performing across-
category NMS. Red: Left Wall, Yellow: Right Wall, Blue: Ceiling, Green: Floor.
Best viewed in color. — 6/6
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